函数的奇偶性(必修1)
人教版高一数学必修一函数的奇偶性课件PPT

总之,他们不是老老实实地坐在座位上听讲,而是急不可耐地 挨过上课时间,显然,你已经知道,从上课铃到下课铃的整个 课堂时段中,只有那些高效教师才能保持课堂不被琐事中断, 并且保证学生能够集中注意力。在高效教师的课堂上,没有 一分钟被浪费,没有学生无事可做。也正是因为这个原因,高 效的教师很少遇到有关课堂纪律的问题。 那么,高效教师是如何让整个课堂从头到尾一直保持饱满的 状态呢?他们仔细规划课堂上的每一分钟,以保证没有时间 被浪费;他们仔细规划讲课过程,力求简明扼要(因为他们知 道长时间维持学生的注意力是件很不容易的事。)他们为领 先的学生着想,他们也为后进的学生着想。
奇函数的定义域有什么特征?
奇函数的定义域关于原点对称
理论迁移
例1 判断下列函数的奇偶性:
(1)
; (2)
.
例2 已知定义在R上的函数f(x)满足:对任
意实数,都有
成立.
(1)求f(1)和f(-1)的值;
(2)
确定f(x)的奇偶性.
例3 确定函数
y
-1 o 1
的单调区间.
x
1.3.2 奇偶性 第一课时 函数的奇偶性
f(x)=-f(-x)
思考4:我们把具有上述特征的函数叫做奇函 数,那么怎样定义奇函数?
如果对于函数f(x)定义域内的任意一个x, 都有f(-x)=-f(x)成立,则称函数f(x)为奇 函数.
思考5:等式f(-x)=-f(x)用文字语言怎样表 述?
自变量相反时对应的函数值相反
思考6:函数
是奇函数吗?
偶函数的定义域关于原点对称
知识探究(二)
考察下列两个函数:
(1)
;
(2)
.
y
y
o
高一数学必修一函数专题:奇偶性

高一数学必修一函数专题:奇偶性第一部分:常见的奇函数和偶函数常见奇函数:第一种:nx x f =)((n 为奇数)例:x x f =)(;x x x f 1)(1==-;3)(x x f =;331)(xx x f ==-。
第二种:n x x f =)((n 为奇数)例:331)(x x x f ==;515)(x x x f ==。
第三种:)sin()(x A x f ϖ=例:)2sin()(x x f =;)sin()(x x f --=;x x f sin 21)(=。
第四种:)tan()(x A x f ϖ=例:x x f tan )(=;)21tan(2)(x x f --=;x x f tan 3)(=。
常见偶函数:第一种:n x x f =)((n 为偶数)例:2)(x x f =;221)(x x x f ==-;4)(x x f =;441)(x x x f ==-。
第二种:c x f =)((c 为常数)例:2)(=x f ;21)(-=x f 。
第三种:)cos()(x A x f ϖ=例:)cos(3)(x x f -=;)2cos(21)(x x f =;)cos()(x x f -=。
第四种:|)(|)(x g x f =()(x g 为奇函数或者偶函数)例:|)sin(2|)(x x f -=;||)(4x x f =;|tan |)(x x f =;|)21cos(|)(x x f -=。
两种特殊的奇偶函数:第一种:)()()()(x f x g x g x f ⇒-+=是偶函数例:x x e e x f -+=)(,假设:)()()()()()(x f x g x g x f e x g e x g x x ⇒-+=⇒=-⇒=-是偶函数。
第二种:)()()()(x f x g x g x f ⇒--=是奇函数例:x x x f 313)(-=,假设:)()()()(313)(3)(x f x g x g x f x g x g xx x ⇒--=⇒==-⇒=-是奇函数。
北师大版高中数学 必修第一册 2.4.1函数的奇偶性

所以f(-1)=f(1),
所以f(1)=-f(1),得f(1)=0.
答案:0
.
偶函数求值
角度二
例10.设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2-x,
则f(1)等于(
A.-3
B.-1
)
C.1
D.3
解析:∵f(x)是定义在R上的偶函数,且当x≤0
解: −, − , , , ,
1
3
1.设f ( x)是偶函数,在区间 , 上是减(增)
函数,则f 在区间 −, − 上是增(减)函数.
2.设f ( x)是奇函数,在区间 , 上是减(增)
函数,则f 在区间 −, − 上是减(增)函数.
奇同偶异
角度三
利用对称性研究性质
一方面它影响着对解 析式的化简,另一方面,也是衡
量奇偶性的重要指标;学生最常犯的错误是一上来就
考虑f(-x)与f(x)关系;
2.能化简就化简,化简后再验证f(-x)与f(x)关系;
3.在判断f(x)与f(-x)的关系时,有时应用
定义的变通形式较方便,常见的变通形式:f
(-x)=±f(x)⇔f(-x)±f(x)=0⇔f(-x)
(3)函数的定义域为{-1,1},因为对定义域内
的每一个x,都有f(x)=0,所以f(-x)=f(x),故函数
f(x)为偶函数.又f(-x)=-f(x),故函数f(x)为奇函
数.即该函数既是奇函数又是偶函数.
经验
如果不把x的值代入,发现不了既奇又偶,感
觉是偶。说明结合定义域 化简函数很必要
例1.判断并证明下列函数的奇偶性:
例6.已知f(x)是定义在区间[-2,0)∪(0,2]上的奇函数,当x>0时,f(x)的图
高中数学必修1函数的基本性质

高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
高一数学必修一,函数的奇偶性题型归纳

函数的奇偶性 题型归纳题型一、函数奇偶性的概念➢ 函数奇偶性的定义:设函数D x x f y ∈=,)(,(D 为关于原点对称的区间):①如果对于任意的D x ∈,都有)()(x f x f -=,则称)(x f y =为偶函数;②如果对于任意的D x ∈,都有)()(x f x f --=,则称)(x f y =为奇函数。
➢ 函数奇偶性的性质:①函数具有奇偶性的必要条件是其定义域关于原点对称。
②奇偶函数的图像:奇函数关于原点对称;偶函数关于y 轴对称。
③奇函数)(x f y =在0=x 处有意义,则必有0)0(=f 。
④偶函数)(x f y =必满足|)(|)(x f x f =。
1. 若)(x f 是奇函数,则其图象关于( )【答案:C 】A .x 轴对称B .y 轴对称C .原点对称D .直线x y =对称2. 若函数))((R x x f y ∈=是奇函数,则下列坐标表示的点一定在函数)(x f y =图象上的是( )【答案:C 】A .))(,(a f a -B .))(,(a f a --C .))(,(a f a ---D .))(,(a f a -3. 下列说法错误的是( )【答案:D 】A.奇函数的图像关于原点对称B.偶函数的图像关于y 轴对称C.定义在R 上的奇函数()x f y =满足()00=fD.定义在R 上的偶函数()x f y =满足()00=f题型二、判断函数的奇偶性➢ 定义法:➢ 运算函数奇偶性的规律:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×÷奇=偶;奇×÷偶=奇;偶×÷偶=偶。
➢ 复合函数奇偶性判断:内偶则偶,两奇为奇。
➢ 抽象函数奇偶性:赋值法。
1、定义法:1. 下列函数中为偶函数的是( )【答案:C 】A .x y =B .x y =C .2x y =D .13+=x y2. 判断函数的奇偶性 ①)3,1(,)(2-∈=x x x f ②2)(x x f -=;③25)(+=x x f ; ④)1)(1()(-+=x x x f .⑤()xx x f 1-= ⑥()13224+-=x x x f 【答案:】(1)非奇非偶函数.(2)偶函数.(3)非奇非偶函数.(4)偶函数.(5)奇函数(6)偶函数.2、奇偶函数的四则运算法则:3. 下列函数为偶函数的是( )【答案:D 】A.()x x x f +=B.()xx x f 12+= C.()x x x f +=2 D.()2x x x f =4. 判断函数的奇偶性①53)(x x x x f ++=; ②1y 2+=x x【答案:(1)奇函数. (2)奇函数. 】5. 已知函数)(x f y =是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号)。
高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)首先,画出函数y=-x^2+2|x|+3的图像,然后确定函数的单调区间。
当x≥0时,y=-x^2+2x+3=-(x-1)+4;当x<0时,y=-x^2-2x+3=-(x+1)^2+4.因此,在区间(-∞,-1]和[1,+∞)上,函数是增函数;在[-1,1]上,函数是减函数。
需要注意的是,函数单调性是针对某个区间而言的,对于单独一个点没有增减变化,因此对于区间端点只要函数有意义,都可以带上。
接下来,考虑函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上是减函数的情况下,求实数a的取值范围。
首先,要充分运用函数的单调性,以对称轴为界线这一特征。
将f(x)=x^2+2(a-1)x+2写成[x+(a-1)]^2-(a-1)^2+2的形式,可以发现其对称轴是x=1-a。
因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.最后,判断函数f(x)=-2的奇偶性和函数f(x)=(x-1)的奇偶性。
对于第一个函数,其定义域为R,因为f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-f(x),因此f(x)为奇函数。
对于第二个函数,其定义域为{x|-1≤x<1},不关于原点对称,因此f (x)既不是奇函数,也不是偶函数。
判断函数的奇偶性时,需要先求出函数的定义域,并考查定义域是否关于原点对称。
然后计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f (-x)=-f(x)之一是否成立。
如果f(-x)与-f(x)的关系不明确,可以考查f(-x)±f(x)是否成立,从而判断函数的奇偶性。
最后,对于函数f(x)=|x|/x,需要判断其奇偶性并确定其在(-∞,+∞)上是增函数还是减函数。
由于f(x)的定义域为R,且f(-x)=f(x),因此f(x)为偶函数。
高中数学必修一-函数的奇偶性

函数的奇偶性知识集结知识元根据奇偶性求值知识讲解一、奇函数1、定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.2.点拨(1)如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;(2)若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;(3)已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f (x),当x>0时,f(x)=x2+x,那么当x<0时,﹣x>0,有f(﹣x)=(﹣x)2+(﹣x)⇒﹣f(x)=x2﹣x⇒f(x)=﹣x2+x3.命题方向奇函数是函数里很重要的一个知识点,同学们一定要熟悉奇函数的概念和常用的解题方法,它的考查形式主要也就是上面提到的这两种情况﹣﹣求参数或者求函数的表达式.二、偶函数1.定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.2.点拨(1)运用f(x)=f(﹣x)求相关参数,如y=ax3+bx2+cx+d,那么a+c是多少?(2)结合函数图象关于y轴对称求函数与x轴的交点个数或者是某个特定的值,如偶函数f (﹣2)=0,周期为2,那么在区间(﹣2,8)函数与x轴至少有几个交点.3.命题方向与奇函数雷同,熟悉偶函数的性质,高考中主要还是以选择题或者填空题的形式考查对偶函数性质的灵活运用.例题精讲根据奇偶性求值例1.设y=f(x)是定义域为R的偶函数,若当x∈(0,2)时,f(x)=|x-1|,则f(-1)=()A.0B.1C.-1D.2例2.已知定义域为R的奇函数f(x)的图象关于直线x=1对称,且当0≤x≤1时,f(x)=x3,则=()A.B.C.D.例3.下列函数,既是偶函数,又在(-∞,0)上单调递增的是()A.f(x)=-(x-1)2B.C.f(x)=3|x|D.f(x)=cos x例4.已知函数f(x)和f(x+2)都是定义在R上的偶函数,当x∈[0,2]时,f(x)=2x,则=()A.2B.C.D.函数的奇偶性中的含参数问题知识讲解一、奇函数1、定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.2.点拨(1)如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;(2)若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;(3)已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f (x),当x>0时,f(x)=x2+x,那么当x<0时,﹣x>0,有f(﹣x)=(﹣x)2+(﹣x)⇒﹣f(x)=x2﹣x⇒f(x)=﹣x2+x3.命题方向奇函数是函数里很重要的一个知识点,同学们一定要熟悉奇函数的概念和常用的解题方法,它的考查形式主要也就是上面提到的这两种情况﹣﹣求参数或者求函数的表达式.二、偶函数1.定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.2.点拨(1)运用f(x)=f(﹣x)求相关参数,如y=ax3+bx2+cx+d,那么a+c是多少?(2)结合函数图象关于y轴对称求函数与x轴的交点个数或者是某个特定的值,如偶函数f (﹣2)=0,周期为2,那么在区间(﹣2,8)函数与x轴至少有几个交点.3.命题方向与奇函数雷同,熟悉偶函数的性质,高考中主要还是以选择题或者填空题的形式考查对偶函数性质的灵活运用.例题精讲函数的奇偶性中的含参数问题例1.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=﹣2,则实数a=.例2.若f(x)=2x+a•2﹣x为奇函数,则a=.例3.设函数f(x)=为奇函数,则实数a=.根据函数的奇偶性求函数解析式知识讲解一、奇函数1、定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.2.点拨(1)如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;(2)若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;(3)已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f (x),当x>0时,f(x)=x2+x,那么当x<0时,﹣x>0,有f(﹣x)=(﹣x)2+(﹣x)⇒﹣f(x)=x2﹣x⇒f(x)=﹣x2+x3.命题方向奇函数是函数里很重要的一个知识点,同学们一定要熟悉奇函数的概念和常用的解题方法,它的考查形式主要也就是上面提到的这两种情况﹣﹣求参数或者求函数的表达式.二、偶函数1.定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.2.点拨(1)运用f(x)=f(﹣x)求相关参数,如y=ax3+bx2+cx+d,那么a+c是多少?(2)结合函数图象关于y轴对称求函数与x轴的交点个数或者是某个特定的值,如偶函数f (﹣2)=0,周期为2,那么在区间(﹣2,8)函数与x轴至少有几个交点.3.命题方向与奇函数雷同,熟悉偶函数的性质,高考中主要还是以选择题或者填空题的形式考查对偶函数性质的灵活运用.例题精讲根据函数的奇偶性求函数解析式例1.设f(x)是R上的奇函数,且当x∈(0,+∞)时,f(x)=x(1+)+1,则f(x)表达式为.例2.'已知函数y=f(x)为R上的奇函数,当x>0时,,求f(x)在R上的解析式.'例3.已知f(x)是R上的奇函数,且当x∈(0,+∞)时,,则f(x)的解析式为.备选题库知识讲解本题库作为知识点“函数奇偶性的定义”的题目补充.例题精讲备选题库例1.已知一个奇函数的定义域为{-1,2,a,b},则a+b=()A.-1B.1C.0D.2例2.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2-2x,则当x<0时,f(x)的解析式是()A.f(x)=-x(x+2)B.f(x)=x(x-2)C.f(x)=-x(x-2)D.f(x)=x(x+2)例3.若函数f(x)(f(x)≠0)为奇函数,则必有()A.f(x)∙f(-x)>0B.f(x)∙f(-x)<0C.f(x)<f(-x)D.f(x)>f(-x)例4.y=f(x)为奇函数,当x>0时f(x)=x(1-x),则当x<0时,f(x)=______。
高一数学必修1第一章-函数奇偶性

1.结合具体函数,了解函数奇偶性的含义教学目标2.掌握判断函数奇偶性的方法,了解奇偶性与函数图象对称性之间的关系重难点 3.会求一些简单函数的定义域、函数值。
【知识回顾与能力提升】1.定义域为I的函数f(x)的增减性2.函数的单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格)的单调性,区间D叫做y=f(x)的单调区间.3.最大值(1)定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值.(2)几何意义:函数y=f(x)的最大值是图象最高点的纵坐标.4.最小值(1)定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最小值.(2)几何意义:函数y=f(x)的最小值是图象最低点的纵坐标.规律方法判断函数奇偶性的方法:(1)定义法:若函数定义域不关于原点对称,则函数为非奇非偶函数;若函数定义域关于原点对称,则应进一步判断f(-x)是否等于±f(x),或判断f(-x)±f(x)是否等于0,从而确定奇偶性.(2)图象法:若函数图象关于原点对称,则函数为奇函数;若函数图象关于y轴对称,则函数为偶函数.(3)分段函数的奇偶性应分段说明f(-x)与f(x)的关系,只有当对称区间上的对应关系满足同样的关系时,才能判定函数的奇偶性.跟踪演练1(1)下列函数为奇函数的是()A.y=|x| B.y=3-xC.y=1x3D.y=-x2+14(2)若f(x)=ax2+bx+c(a≠0)是偶函数,则g(x)=ax3+bx2+cx是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数答案(1)C(2)A解析(1)A、D两项,函数均为偶函数,B项中函数为非奇非偶函数,而C项中函数为奇函数.(2)∵f(x)=ax2+bx+c是偶函数,∴f(-x)=f(x),得b=0.∴g(x)=ax3+cx.∴g(-x)=a(-x)3+c(-x)=-g(x),∴g(x)为奇函数.要点二利用函数奇偶性研究函数的图象例2已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如下图所示,则使函数值y<0的x的取值集合为________.答案(-2,0)∪(2,5)解析因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如下图所示.由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).规律方法给出奇函数或偶函数在y轴一侧的图象,根据奇函数的图象关于原点对称,偶函数的图象关于y轴对称,可以作出函数在y轴另一侧的图象.作对称图象时,可以先从点的对称出发,点(x0,y0)关于原点的对称点为(-x0,-y0),关于y轴的对称点为(-x0,y0).跟踪演练2设偶函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是________________________.答案 {x |-5≤x <-2,或2<x ≤5}解析 由于偶函数的图象关于y 轴对称,所以可根据对称性确定不等式f (x )<0的解.∵当x ∈[0,5]时,f (x )<0的解为2<x ≤5,所以当x ∈[-5,0]时,f (x )<0的解为-5≤x <-2.∴f (x )<0的解是-5≤x <-2或2<x ≤5.要点三 利用函数的奇偶性求解析式例3 已知函数f (x )(x ∈R )是奇函数,且当x >0时,f (x )=2x -1,求函数f (x )的解析式.解 当x <0,-x >0,∴f (-x )=2(-x )-1=-2x -1.又∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (x )=2x +1.又f (x )(x ∈R )是奇函数,∴f (-0)=-f (0),即f (0)=0.∴所求函数的解析式为f (x )=⎩⎪⎨⎪⎧ 2x -1,x >0,0,x =0,2x +1,x <0.规律方法 1.本题易忽视定义域为R 的条件,漏掉x =0的情形.若函数f (x )的定义域内含0且为奇函数,则必有f (0)=0.2.利用奇偶性求解析式的思路:(1)在待求解析式的区间内设x ,则-x 在已知解析式的区间内;(2)利用已知区间的解析式进行代入;(3)利用f (x )的奇偶性,求待求区间上的解析式.跟踪演练3 (1)已知函数f (x )是定义在R 上的偶函数,x ≥0时,f (x )=x 2-2x ,则函数f (x )在R 上的解析式是( )A .f (x )=-x (x -2)B .f (x )=x (|x |-2)C .f (x )=|x |(x -2)D .f (x )=|x |(|x |-2)(2)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)等于( ) A .-2 B .0C .1D .2答案 (1)D (2)A解析 (1)∵f (x )在R 上是偶函数,且x ≥0时,f (x )=x 2-2x ,∴当x <0时,-x >0,f (-x )=(-x )2+2x =x 2+2x ,则f (x )=f (-x )=x 2+2x =-x (-x -2).又当x ≥0时,f (x )=x 2-2x =x (x -2),解析 ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴f (-x )=f (x ),∴b =0,又a -1=-2a ,∴a =13,∴a +b =13. 6.偶函数f (x )在区间[0,+∞)上的图象如图,则函数f (x )的增区间为________.答案 [-1,0],[1,+∞)解析 偶函数的图象关于y 轴对称,可知函数f (x )的增区间为[-1,0],[1,+∞).7.已知f (x )是R 上的偶函数,当x ∈(0,+∞)时,f (x )=x 2+x -1,求x ∈(-∞,0)时,f (x )的解析式.解 设x <0,则-x >0.∴f (-x )=(-x )2+(-x )-1.∴f (-x )=x 2-x -1.∵函数f (x )是偶函数,∴f (-x )=f (x ).∴f (x )=x 2-x -1.∴当x ∈(-∞,0)时,f (x )=x 2-x -1.二、能力提升8.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 取值范围是( )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23 D.⎣⎡⎭⎫12,23 答案 A解析 由题意得|2x -1|<13⇒-13<2x -1<13⇒23<2x <43⇒13<x <23,故选A. 9.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )A .4B .3C .2D .1答案 B解析 ∵f (x )是奇函数,∴f (-1)=-f (1).又g (x )是偶函数,∴g (-1)=g (1).∵f (-1)+g (1)=2,∴g (1)-f (1)=2.①又f (1)+g (-1)=4,∴f (1)+g (1)=4.②由①②,得g (1)=3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偶 函 数
定义:一般地,如果对于函数f(x)定义域中的任意 一个x,都有 f(-x) =f(x),那么函数f(x)就叫做 偶函数。 图像特征:偶函数图像关于y轴对称。
说明:
(1)如果一个函数f(x)是奇函数或偶函数,那么我们 就说函数f(x)具有奇偶性。 (2)定义域关于原点对称是判断函数是否具有奇偶性 的前提。(必要条件) [-b,-a]
2.选择题:
(1)下列说法中,不正确的是( C ) A)图像关于原点对称的函数一定是奇函数 B)图像关于y轴对称的函数一定是偶函数 C)奇函数的图像一定过原点。 D)奇函数或偶函数的定义域一定关于原点对称。
(2)函数
A) x轴
f (x)
B)
y轴
1 x2
的图像关于( B )对称。
C)原点 D)直线 y=x
函数的奇偶性
蓟县擂鼓台中学 张建 黄丽波
一、奇函数的定义
1.利用描点法做出函数
⑴列表
x
1 f(x) 图像。 x
1 3
1 f (- ) 3
3 2 1
f (-3) f (-2) f (-1)
1 2
1 3
1 2 1 f( ) 2
1
2
3
1 f (x)
1 f (- ) 2
2 (3) f ( x) x
f (x) x 1 (x 1) f (x)
解:原函数的定义 域为R,关于原点 对称。但
f (x ) (x) 2 x 2 f (x ) 所以函数 f (x ) x 2
不是奇函数。
y o x
y
-1 1
y x o x
o
二、偶函数的定义
•
(-x,f(-x))
y
f(-x) f(x)
9
•
f(x) x 2
(x,f(x))
• •
-3
4
• •
1 3
f(-x)=f(x)
1
-x
-1
•
x
x
你能由此总结出偶函数的定义并概括出偶函数的图像特征吗?
偶函数:一般地,如果对于函数f(x)定义域中的任意一 个x,都有f(-x) =f(x),那么函数f(x)就叫做偶函数。 结论:一个函数是偶函数的充要条件:它的图像关于y 对称。
定义域为R,关 于原点对称,且 1 1 f ( x ) 2 f ( x ) f(-x)=2=f(x)所 ( x ) 2 x 以函数f(x)=2是 所以函数是偶函数。 偶函数。
y o x
y
2
y x
-1 o 3
o
x
三、类比巩固:
奇 函 数
定义:一般地,如果对于函数f(x)定义域中的任意 一个x,都有f(-x) = -f(x),那么函数f(x)就叫做 奇函数。
(4)f(x)= -2x+1 (5)f(x)=0
1 x
根据定义判断一个函数是奇函数还是偶函数的 方法和步骤:
第一步:求出函数的定义域,并判断函数的定义域是 否关于原点对称;
(若不对称,则既不是奇函数也不是偶函数;若对称,进 行第二步)
第二步:判断f(-x)与f(x)的关系;
(若f(-x)=-f(x),是奇函数; 若f(-x)=f(x),是偶函数; 若f(-x)=-f(x)=f(x),则既是奇函数也是偶函数,此 时 f(x)=0; 若 f (x) f (x)且f (x) f (x) ,则既不是奇函数也不 是偶函数)
这说明若x在函数定义域上,-x也在其定
4
1 x的定义域是什么?
-4
••
-3 -2 -1
• 2• 1 • •
3
• -1 • -2 • -3
-4
o 2
1
1
•3 2
x 义域上。
问题2、点(-1,f(-1))与(1,f(1))、点(-2, f(-2))与(2,f(2))、点(-3,f(-3))与(3,f(3)) 有什么关系?点(-x,f(-x))与点(x,f(x))也 满足这种关系吗?
么关系?你能证明这个关系吗?
答:f(-x)=-f(x)
f () x
1 1 x) f( x x
⑵描点 ⑶连线
4
y
• 2 •
3 1
f(x)
1 x
•
1 2
-4
• •
-3
-2
-1
• •
2 3 4
• • •
o
1 1 2
x
-1 -2 -3 -4
f(x)
1 x
y
4
2.观察图像,考虑以下问题: 问题1、函数f(x) 定义域关于原点对称吗? 答:定义域为x | x 0 关于原点对称。
o
[a ,b]
x
(3)奇函数和偶函数定义的逆命题也成立,即: 若f(x)为奇函数, 则f(-x)=-f(x)成立。 若f(x)为偶函数, 则f(-x)= f(x)成立。
四、应用举例:
例题: 判断下列函数的奇偶性
(1)f ( x ) x 3 2x
(2)f (x) 2x 4 3x 2
(3)f ( x ) x
(3) 已知f(x)是区间 (,) 上的奇函数, f(-2)=5,则f(2)=( D )
A) 2 B) -2 C) 5 D) -5
六、课堂小结:
1.奇函数、偶函数的概念及图像特征。 2.利用定义判断函数奇偶性的方法和步骤。 3.根据奇偶性对函数的分类。
七、课堂作业:
课本95页习题2.3 1-3题
答:关于原点对称。
-x
f(x)
(-x,f(-x))
•
-f(x)
• x
(x,f(x))
由此,对于函数
Байду номын сангаас
1 f ( x ) 定义域上的任意一个x都有f(-x)= -f(x), x
反映在图像上x与-x所对应的点(x,f(x))与点(-x,f(-x))关于坐
标原点对称。
f (x) 1 x
的图像关于坐标原点对称。
结论:一个函数是奇函数的充要条件:它的图像关于原点 对称。
巩固练习1:
判断下列函数是不是奇函数? (1)f(x)=x
解:原函数的定 义域为R,关于原 点对称。 且f(-x)=-x=-f(x) 所以函数f(x)=x 是奇函数。
(2) f(x)=x+1
解:原函数的定义 域为R,关于原点对 称。但 所以函数f(x)=x+1 不是奇函数。
巩固练习2: 判断下列函数是不是偶函数。 1 (3)f (x) 2x 2 1(x [-1,3]) (2)f ( x) 2 (1)f ( x ) 2
x 解:原函数的定义 域为 x | x 0 ,关 于原点对称,且
解:原函数的
解:原函数的定义
域为[-1,3],不关 于原点对称,所以 函数不是偶函数。
f (1)
3
1 2
1 2
3
3
3
f (1) f ( 2) f (3)
2
1
1 2
1 3
问题:当x取-1,-2,-3时所对应的函数值f(-1), f(-2),f(-3)与
x取1,2,3时所对应的函数f(1),f(2),f(3)有什么关系?
答:f(-1)= - f(1),f(-2)= - f(2),f(-3)= - f(3) 猜测:对于这个函数定义域中的任意一个x,f(-x)与f(x)具有什
课后思考:
判断下列函数的奇偶性并总结规律:
(1)f ( x ) kx b (k 0) (2)f(x) a (a R) (3)f(x) x n ( n Z)
谢 谢 大 家
根据奇偶性不同,函数可以分为以下四类:
(1)奇函数 (2)偶函数 (3)既是奇函数又是偶函数 (4)非奇非偶函数
五、跟踪练习:
1.判断题:
(1)对于函数f(x),若f(-2)=-f(2),则f(x)为奇函数. (错 ) (2)若函数f(x)在实数集R上是奇函数,则它在区间 错 [a,b]上一定是奇函数。 ( ) 对 (3)存在既是奇函数又是偶函数的函数。 ( ) (4)函数f(x)=2是偶函数。 (对 )
3.分析总结:函数
f(x)
1 具有特性: x
坐标原点 (1)定义域关于( )对称。 (2)对于其定义域上的任意一个x,都有( f(-x)=-f(x) ) 成立。 1 这时就称具有这种特性的函数 f(x) 为奇函数。
x
4.得出定义: 奇函数:一般地,如果对于函数f(x) 定义域中的任意 一个x,都有f(-x) =-f(x),那么函数f(x)就叫做奇函数。