高一数学必修一函数的奇偶性.
2024-2025学年高一数学必修第一册(人教B版)函数的奇偶性(综合)-课件

例 8 已知函数 = 2 + 4 + 6, 求证: 的图像关于直线 = −2对称.
y
分析 只需要证明图像上所有的点关于直线的
对称点还在图像上即可.
O
x = -2
x
例 8 已知函数 = 2 + 4 + 6, 求证: 的图像关于直线 = −2对称.
证明 在 的图像上任取点 0, 0 , 设 P 关于 = −2对
图所示, 若 f (2) = 0, 则使得 ≥ 0的 x 的取值范围是____________.
y
5
-5
-2
O
2
x
例 1′ 已知函数()是定义在 −5,5 上的奇函数, 它在 −5,0 上是增函数,
−2,0 ⋃ 2,5
若 2 = 0, 则使得 ≥ 0的 x 的取值范围是____________.
y
称的点为 1, 1 .
由
0+1
= −2,得
2
1
1 = 0
= −4 − 0, 即 −4 − 0, 0 .
Q(-4 -x0 ,y0 )
P(x0 ,y0 )
∵ −4 − 0 = −4 − 0 2 + 4 −4 − 0 + 6 = 20 + 40 + 6,
而0 = 0 =
分析 先将不等式变形成 1 > 2 的形式, 再利用函数 的单调性
去掉 “f ”, 得到1和2的大小关系, 即关于 m的不等式.
例 4 设函数 定义域为 −2,2 , 且在区间 0,2 上为减函数.
(1) 若 为奇函数, 且 + − 1 > 0, 则实数 m的范围为_______;
高一必修一数学奇偶性知识点

高一必修一数学奇偶性知识点在高一必修一的数学学习中,奇偶性是一个非常重要的知识点。
奇偶性在数学中具有广泛的应用,不仅在解方程、证明等数学题目中有用,还在实际生活中有很多应用。
下面我们将详细介绍高一必修一数学中与奇偶性相关的知识点。
一、整数的奇偶性整数的奇偶性是指整数的性质,可以判断一个数是奇数还是偶数。
整数的奇偶性是通过整除2来确定的。
当一个整数除以2的余数为0时,它是一个偶数;当余数为1时,它是一个奇数。
二、四则运算中的奇偶性在四则运算中,奇数与奇数相加、相乘,结果仍为奇数;偶数与偶数相加、相乘,结果也是偶数。
而奇数与偶数相加、相乘,结果则是偶数。
三、幂的奇偶性在幂的运算中,奇数的任意次幂都是奇数,而偶数的任意次幂都是偶数。
四、多项式的奇偶性对于多项式来说,奇次幂项的系数的奇偶性与整体多项式的奇偶性相同;偶次幂项的系数的奇偶性与整体多项式的奇偶性相反。
五、函数的奇偶性在函数的奇偶性中,如果对于任意的x,函数f(-x) = f(x),则称函数是偶函数;如果对于任意的x,函数f(-x) = -f(x),则称函数是奇函数。
六、图形的奇偶性在几何图形中,奇函数的图形关于坐标原点对称,偶函数的图形关于y轴对称。
七、应用举例1. 在解一元二次方程时,可以根据方程中各项的系数的奇偶性,来判断方程的根的奇偶性,从而简化解题过程。
2. 在证明数学命题时,奇偶性也经常被用到。
通过分析题目中给出的条件和结论的奇偶性,可以选择合适的方法进行证明。
3. 在计算机科学中,奇偶性也常常被用于数据校验,如奇偶校验位、CRC校验等。
综上所述,高一必修一数学中的奇偶性知识点涉及整数、四则运算、幂、多项式、函数和图形等方面。
掌握奇偶性的规律和应用,可以帮助我们更好地理解和解决数学问题,提高数学思维能力和解题能力。
因此,我们要认真学习和掌握这一知识点,为接下来的学习打下良好的基础。
人教版高一数学必修一知识点梳理

人教版高一数学必修一知识点梳理(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!人教版高一数学必修一知识点梳理本店铺为你整理的《人教版高一数学必修一知识点梳理》,希望你不负时光,努力向前,加油!1.人教版高一数学必修一知识点梳理函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。
高一数学必修一函数专题:奇偶性

高一数学必修一函数专题:奇偶性第一部分:常见的奇函数和偶函数常见奇函数:第一种:nx x f =)((n 为奇数)例:x x f =)(;x x x f 1)(1==-;3)(x x f =;331)(xx x f ==-。
第二种:n x x f =)((n 为奇数)例:331)(x x x f ==;515)(x x x f ==。
第三种:)sin()(x A x f ϖ=例:)2sin()(x x f =;)sin()(x x f --=;x x f sin 21)(=。
第四种:)tan()(x A x f ϖ=例:x x f tan )(=;)21tan(2)(x x f --=;x x f tan 3)(=。
常见偶函数:第一种:n x x f =)((n 为偶数)例:2)(x x f =;221)(x x x f ==-;4)(x x f =;441)(x x x f ==-。
第二种:c x f =)((c 为常数)例:2)(=x f ;21)(-=x f 。
第三种:)cos()(x A x f ϖ=例:)cos(3)(x x f -=;)2cos(21)(x x f =;)cos()(x x f -=。
第四种:|)(|)(x g x f =()(x g 为奇函数或者偶函数)例:|)sin(2|)(x x f -=;||)(4x x f =;|tan |)(x x f =;|)21cos(|)(x x f -=。
两种特殊的奇偶函数:第一种:)()()()(x f x g x g x f ⇒-+=是偶函数例:x x e e x f -+=)(,假设:)()()()()()(x f x g x g x f e x g e x g x x ⇒-+=⇒=-⇒=-是偶函数。
第二种:)()()()(x f x g x g x f ⇒--=是奇函数例:x x x f 313)(-=,假设:)()()()(313)(3)(x f x g x g x f x g x g xx x ⇒--=⇒==-⇒=-是奇函数。
高一数学 必修一函数的奇偶性

数学·必修1(人教A版)1.3.3函数的奇偶性►基础达标1.已知f(x)是定义在R上的奇函数,则f(0)的值为() A.-1B.0C.1D.无法确定解析:∵f(x)为R上的奇函数,∴f(-x)=-f(x),∴f(0)=-f(0),∴f(0)=0.答案:B2.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=()A.-2 B.0 C.1 D.2答案:A3.如果偶函数在区间[a,b]上有最大值,那么该函数在区间[-b,-a]上()A.有最大值B.有最小值C.没有最大值D.没有最小值解析:∵偶函数图象关于y轴对称,由偶函数在区间[a,b]上具有最大值,∴在区间[-b,-a]上有最大值.答案:A4.已知f(x)=ax3+bx+5,其中a,b为常数,若f(-7)=-7,则f(7)=()A.7 B.-7 C.12 D.17解析:∵f(-7)=-7,∴a(-7)3+b(-7)+5=-7,∴73a+7b=12.∴f(7)=73a+7b+5=12+5=17.答案:D5.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的递减区间是________.解析:∵f(x)是偶函数,∴f(-x)=f(x),∴k-1=0,∴k=1,∴f(x)=-x2+3的递减区间为[0,+∞).答案:[0,+∞)►巩固提高6.设f(x)是R上的任意函数,则下列叙述正确的是()A.f(x)f(-x)是奇函数B.f(x)|f(-x)|是奇函数C .f (x )-f (-x )是偶函数D .f (x )+f (-x )是偶函数解析:取f (x )=x ,则f (x )f (-x )=-x 2是偶函数,A 错,f (x )|f (-x )|=x 2是偶函数,B 错;f (x )-f (-x )=2x 是奇函数,C 错.故选D.答案:D7.已知定义在R 上的偶函数f (x )的单调递减区间为[0,+∞),则使f (x )<f (2)成立的自变量取值范围是( )A .(-∞,2)B .(2,+∞)C .(-2,2)D .(-∞,-2)∪(2,+∞)解析:∵f (x )是偶函数且在[0,+∞)为减区间,示意图如下:由图示可知:f (x )<f (2)成立的自变量的取值范围是(-∞,-2)∪(2,+∞).答案:D8.设函数f (x )满足:①函数在(-∞,-1)上递减;②函数具有奇偶性;③函数有最小值.则f (x )可以是:____________答案:f (x )=x 2(答案不唯一)9.已知函数f (x )是定义在(-∞,+∞)上的奇函数,当x ∈(-∞,0)时,f (x )=x -x 2.求当x ∈(-∞,+∞)时,f (x )的表达式.解析:当x ∈(0,+∞)时,-x ∈(-∞,0),因为x ∈(-∞,0)时,f (x )=x -x 2,所以f (-x )=(-x )-(-x )2,因为f (x )是定义在(-∞,+∞)上的奇函数,所以f (-x )=-f (x ),所以f (x )=x +x 2.综上,x ∈(-∞,+∞)时,f (x )=⎩⎪⎨⎪⎧ x +x 2(x >0),0(x =0),x -x 2(x <0).10.已知函数f (x )=-x 3+3x .求证:(1)函数f(x)是奇函数;证明:显然f(x)的定义域是R.设任意x∈R,∵f(-x)=-(-x)3+3(-x)=-(-x3+3x)=-f(x),∴函数f(x)是奇函数.(2)函数f(x)在区间(-1,1)上是增函数.证明:在区间(-1,1)上任取x1,x2,且x1<x2.f(x2)-f(x1)=-(x2-x1)(x22+x2x1+x21)+3(x2-x1)=(x2-x1)(3-x22-x2x1-x21).因为-1<x1<x2<1,所以(x2-x1)>0,(3-x22-x2x1-x21)>0,所以f(x2)>f(x1).所以函数f(x)=-x3+3x在区间(-1,1)上是增函数.。
高一数学人必修一课件时函数奇偶性的定义与判定

06
函数奇偶性的深入理解
奇偶性与函数周期性的关系
奇偶性是函数周期性的一种特 殊表现
奇偶性函数必定有周期性,但 周期性函数不一定有奇偶性
奇偶性函数周期性的判断可以 通过观察函数的图像或解析式 来实现
奇偶性函数周期性的应用在解 决实际问题中具有重要意义, 如信号处理、控制系统设计等
奇偶性与函数单调性的关系
反函数法:通过反函数判断其奇偶 性
图像法:通过观察函数图像判断其 奇偶性
02
复合函数法:通过复合函数判断其 奇偶性
04
特殊值法:通过特殊值判断其奇偶 性
06
04
函数奇偶性的性质
奇偶性对函数图像的影响
奇函数:关于原点对称,图像关于y轴对称 偶函数:关于y轴对称,图像关于x轴对称 非奇非偶函数:既不关于原点对称,也不关于y轴对称 奇偶性对函数图像的影响:决定了函数图像的对称性和周期性
奇偶性对函数值的影响
奇函数:f(-x)=-f(x),函数值关于原点对称
偶函数:f(-x)=f(x),函数值关于y轴对称
非奇非偶函数:既不是奇函数也不是偶函数 奇偶性对函数图像的影响:奇函数的图像关于原点对称,偶函数的图像关 于y轴对称,非奇非偶函数的图像既不关于原点对称也不关于y轴对称。
奇偶性对函数运算的影响
函数奇偶性的定义 与判定
汇报人:
目录
01 单 击 添 加 目 录 项 标 题 02 函 数 奇 偶 性 的 定 义 03 函 数 奇 偶 性 的 判 定 方 法 04 函 数 奇 偶 性 的 性 质 05 函 数 奇 偶 性 的 应 用 06 函 数 奇 偶 性 的 深 入 理 解
01
添加章节标题
在解决实际问题中的应用
高一数学必修一,函数的奇偶性题型归纳

函数的奇偶性 题型归纳题型一、函数奇偶性的概念➢ 函数奇偶性的定义:设函数D x x f y ∈=,)(,(D 为关于原点对称的区间):①如果对于任意的D x ∈,都有)()(x f x f -=,则称)(x f y =为偶函数;②如果对于任意的D x ∈,都有)()(x f x f --=,则称)(x f y =为奇函数。
➢ 函数奇偶性的性质:①函数具有奇偶性的必要条件是其定义域关于原点对称。
②奇偶函数的图像:奇函数关于原点对称;偶函数关于y 轴对称。
③奇函数)(x f y =在0=x 处有意义,则必有0)0(=f 。
④偶函数)(x f y =必满足|)(|)(x f x f =。
1. 若)(x f 是奇函数,则其图象关于( )【答案:C 】A .x 轴对称B .y 轴对称C .原点对称D .直线x y =对称2. 若函数))((R x x f y ∈=是奇函数,则下列坐标表示的点一定在函数)(x f y =图象上的是( )【答案:C 】A .))(,(a f a -B .))(,(a f a --C .))(,(a f a ---D .))(,(a f a -3. 下列说法错误的是( )【答案:D 】A.奇函数的图像关于原点对称B.偶函数的图像关于y 轴对称C.定义在R 上的奇函数()x f y =满足()00=fD.定义在R 上的偶函数()x f y =满足()00=f题型二、判断函数的奇偶性➢ 定义法:➢ 运算函数奇偶性的规律:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×÷奇=偶;奇×÷偶=奇;偶×÷偶=偶。
➢ 复合函数奇偶性判断:内偶则偶,两奇为奇。
➢ 抽象函数奇偶性:赋值法。
1、定义法:1. 下列函数中为偶函数的是( )【答案:C 】A .x y =B .x y =C .2x y =D .13+=x y2. 判断函数的奇偶性 ①)3,1(,)(2-∈=x x x f ②2)(x x f -=;③25)(+=x x f ; ④)1)(1()(-+=x x x f .⑤()xx x f 1-= ⑥()13224+-=x x x f 【答案:】(1)非奇非偶函数.(2)偶函数.(3)非奇非偶函数.(4)偶函数.(5)奇函数(6)偶函数.2、奇偶函数的四则运算法则:3. 下列函数为偶函数的是( )【答案:D 】A.()x x x f +=B.()xx x f 12+= C.()x x x f +=2 D.()2x x x f =4. 判断函数的奇偶性①53)(x x x x f ++=; ②1y 2+=x x【答案:(1)奇函数. (2)奇函数. 】5. 已知函数)(x f y =是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号)。
高一数学函数的奇偶性知识点详解

高一数学函数的奇偶性知识点详解1.定义一般地,对于函数fx1如果对于函数定义域内的任意一个x,都有f-x=-fx,那么函数fx就叫做奇函数。
2如果对于函数定义域内的任意一个x,都有f-x=fx,那么函数fx就叫做偶函数。
3如果对于函数定义域内的任意一个x,f-x=-fx与f-x=fx同时成立,那么函数fx既是奇函数又是偶函数,称为既奇又偶函数。
4如果对于函数定义域内的任意一个x,f-x=-fx与f-x=fx都不能成立,那么函数fx 既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇或偶函数。
分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与fx比较得出结论③判断或证明函数是否具有奇偶性的根据是定义2.奇偶函数图像的特征:定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
fx为奇函数《==》fx的图像关于原点对称点x,y→-x,-y奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
3.奇偶函数运算1.两个偶函数相加所得的和为偶函数.2.两个奇函数相加所得的和为奇函数.3.一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.4.两个偶函数相乘所得的积为偶函数.5.两个奇函数相乘所得的积为偶函数.6.一个偶函数与一个奇函数相乘所得的积为奇函数.1. 集合的含义2. 集合的中元素的三个特性:1 元素的确定性如:世界上最高的山2 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}3 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2 集合的表示方法:列举法与描述法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中 心 对 称 图 形
y
f (x)=x2
x
x … -2 -1 0 1 2 … y … 4 1 0 1 4 …
问题: 1、这两个函数图像有什么 共同特征? 2、在定义域内,f(-x)与f(x) 的值有什么关系?
O
y
f (x)=|x|
x
O
x … -2 -1 0 1 2 … y … 2 1 0 1 2 …
( 2) f ( x) x 1 ( 4) f ( x ) 2 x
3
(2)解:定义域为R f(-x)=(-x)3=- x3 =-f(x) 即f(-x)=-f(x)
∴f(x)偶函数 ∴f(x)奇函数 (3)解:定义域为{x|x≠0} (4)解:定义域为{x|x≠0} ∵ f(-x)=-x+1/(-x)=-f(x) ∵ f(-x)=1/(-x)2=f(x) 即f(-x)=-f(x) 即f(-x)=f(x)
-3 -
… …
f(-1)= -1 =-f(1)
f(-3)=
……
=-f(3)
f(-x) = -f(x)
f(-x) = -f(x)
对定义域中的ห้องสมุดไป่ตู้一个 x,-x,都有f(-x)=-f(x)
1、函数y=f(x)的图象 关于原点对称 2、定义域关于原点对称
如果对于函数f(x)的定义域内任意 一个x,都有f(-x)=- f(x),那么函数f(x) 就叫做奇函数 。
若f(-x) = f(x), 则函数为 偶函数 若f(-x) = - f(x),则函数为 奇函数 否则为非奇非偶函数
(3)下结论。
3、性质法
y
例1:
0
3
y=x3
-2
2 1 -1 0 -1 -2 -3 1 2
y=0
3 x
奇函数
f ( x ) x, x [1,)
y 3
2 1
偶函数
既是奇函数 又是偶函数
对定义域中的每一个 x,-x,都有f(-x)=f(x)
1、函数y=f(x)的图象关 于y轴对称 2、定义域关于原点对称
如果对于函数f(x)的定义域内任意一 个x,都有 f(-x)= f(x),那么函数f(x)就叫做 偶函数。
说明: 1、定义域: 偶函数的定义域关于原点对称。 2、图像: 偶函数的图像关于y轴对称。
说明: 1、定义域: 奇函数的定义域关于原点对称。 2、图像: 奇函数的图像关于原点对称。
f(0)=0
1、图象法:看图象是否关于原点或y轴对称 2、定义法:(1)求定义域,看定义域是否关于原 点对称;
(若定义域不关于原点对称,则函数为非奇非偶函数
(2)求f ( x), 判断f ( x)与f ( x)的关系;
观察图像回答问题
y 3 2 1 -3 -2 -1 0 -1 -2 -3 1 2
f(x)=x
3 x -2
y 3 2 1 -1 0 -1 -2 -3
f ( x)
1 x
1
2
3 x
x
问题: 1、这两个函数图像有什么共同特征? 2、在定义域内,f(-x)与f(x)的值有什么关系?
f(x)= x
… …
-1 0 1 2 3 -3 -2 2 -1 0 1 2 3
y 3 2 1
y=x2+2x
-3 -2 -1 0 -1 -2 -3
1
2
3 x -2
非奇非偶函数
非奇非偶函数
-1 0 -1 -2 -3
1
2
3 x
例2:判断下列函数的奇偶性:
(1) f ( x) x
2
1 (3) f ( x ) x x
(1)解:定义域为R ∵ f(-x)=(-x)2=f(x) 即f(-x)=f(x)
∴f(x)奇函数
∴f(x)偶函数