人教版高中数学必修1《函数的奇偶性》教案

合集下载

函数的奇偶性教案

函数的奇偶性教案

函数的奇偶性一、教材分析本节课选自人教版高中数学必修1第一章第三节第二课时;教材通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。

然后,为深化对概念的理解。

函数的奇偶性是函数的重要性质,是对函数概念的深化。

它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上形成对称性。

这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。

它的研究也为今后幂函数、三角函数的性质等后续内容的深入起着铺垫的作用。

二、学情分析学生已经学习了函数的单调性,对于研究函数的性质的方法已经有了一定的了解。

尽管他们尚不知函数奇偶性,但学生在初中已经学习过图形的轴对称与中心对称,对图象的特殊对称性早已有一定的感性认识;在研究函数的单调性方面,学生懂得了由形象到具体,然后再由具体到一般的科学处理方法,具备一定数学研究方法的感性认识;高一学生具备一定的观察能力,但观察的深刻性及稳定性也都还有待提高;三、教学重难点重点:函数奇偶性概念和函数奇偶性的判断。

难点:函数奇偶性概念的形成。

四、教学目标知识与技能目标:表述函数奇偶性的概念;能利用定义判断函数的奇偶性过程与方法目标:通过体验函数奇偶性概念的形成过程体会到了数形结合的思想方法,感悟由形象到具体,再从具体到一般的研究方法。

情感态度与价值观目标:体验数学研究严谨性,感受数学对称美。

五、教学过程考察下列两个函数:(1) (2)思考1:这两个函数的图象有何共同特征?思考2:对于上述两个函数,f(1)与f(-1),f(2)与f(-2),f(a)与f(-a)有什么关系?思考3:对于任意的x ,都有f(-x)=f(x)吗?思考3:怎样定义偶函数? 思考4:函数偶函数吗?偶函数的定义域有什么特征?练习1:判断下列函数是否为偶函数?(口答)设计意图:由教师引导学生发现偶函数的特点,使得学生有一定的成就感,提高了学生学习的积极性。

(三)合作探究、类比发现仿照讨论偶函数的过程,回答下列问题,共同完成探究x x f =)(x x f 1)(=(1)请你仔细观察这两个函数图象,它们又有什么共同特征?(2)请你完成下列函数值对应表,描述它们又是如何体现这些特征的呢?(3)你能尝试利用数学语言描述函数图象的这个特征吗?(4)对于任意的x ,都有f(-x)=f(x)吗?奇函数的定义练习2:判断下列函数是否为奇函数?(口答)设计意图:通过学生自己合作探究,类比发现了奇函数的相关知识,加深了学生对于知识的认知程度,并且培养了学生的合作交流意识(四)强化定义,深化内涵2(),[3,2]fx xx =∈-]1,1[,)()1(2-∈=x x x f 2(2)(),[2,1)(1,2]f x x x =∈--]1,1[,)()1(3-∈=x x x f )1,1[,)()2(3-∈=x x x f ]2,1[)1,2[,)()3(3 --∈=x x x f对奇函数、偶函数定义的说明:(1)如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x) 具有奇偶性。

3.1.3 高中必修一数学教案《函数的奇偶性》

3.1.3  高中必修一数学教案《函数的奇偶性》

高中必修一数学教案《函数的奇偶性》教材分析函数的奇偶性是高中数学必修一人教版B版第三章第一单元第三节的内容,是函数的一条重要性质。

教材从学生熟知的函数入手,结合初中学生已经学习过的轴对称和中心对称,感受奇函数和偶函数的图象特征,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地学习函数的奇偶性。

从知识结构上而言,奇偶性既是函数概念的拓展和深化,又是后续研究基本初等函数的基础,起着承上启下的作用。

学情分析从学生的认知基础来看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。

同时,学生刚刚学习了函数的单调性,已经积累了研究函数的基本方法与初步经验。

从学生的思维发展来看,高一学生的思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题。

教学目标1、理解函数奇偶性的概念和图像特征,能判断一些简单函数的奇偶性。

2、经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。

3、通过自主探索,体会数形结合的思想,感受数学的对称美;通过分组讨论,培养合作交流的精神,学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。

教学重点函数奇偶性的概念及其建立过程,判断函数的奇偶性。

教学难点对函数奇偶性的概念理解与认识。

教学方法讲授法、讨论法、练习法教学过程一、复习导入初中时我们学习过有关轴对称和中心对称的知识,而且已经知道,在平面直角坐标系中,点(x,y)关于y轴的对称点为(-x,y),关于原点的对称点为(-x,-y)。

例如,(-2,3)关于y轴的对称点(2,3),关于原点的对称点(2,-3)二、学习新知1、偶函数填写下表,观察指定函数的自变量x互为相反数时,函数值之间具有什么关系,并分别说出函数图象应具有的特征。

不难发现,上述两个函数,当自变量取为相反数的两个值x和-x,对应的函数值相等。

f(-x)= (-x)2 = x2 = f(x)g(-x)= 1|−x| = 1|x|= g(x)一般地,设函数y = f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且f(-x)= f(x)则称y = f(x)为偶函数。

人教版高中数学教案-函数的奇偶性

人教版高中数学教案-函数的奇偶性

11. 3.2函數的奇偶性【教學目標】1.理解函數的奇偶性及其幾何意義;2.學會運用函數圖像理解和研究函數的性質;3.學會判斷函數的奇偶性; 【教學重難點】教學重點:函數的奇偶性及其幾何意義 教學難點:判斷函數的奇偶性的方法與格式【教學過程】(一)創設情景,揭示課題“對稱”是大自然的一種美,這種“對稱美”在數學中也有大量的反映,讓我們看看下列各函數有什麼共性?觀察下列函數的圖像,總結各函數之間的共性.2()f x x = ()||1f x x =- 21()x x x=通過討論歸納:函數2()f x x =是定義域為全體實數的抛物線;函數()||1f x x =-是定義域為全體實數的折線;函數21()f x x =是定義域為非零實數的兩支曲線,各函數之間的共性為圖像關於y 軸對稱.觀察一對關於y 軸對稱的點的座標有什麼關係?歸納:若點(,())x f x 在函數圖像上,則相應的點(,())x f x -也在函數圖像上,即函數圖像上橫坐標互為相反數的點,它們的縱坐標一定相等.(二)研探新知 函數的奇偶性定義: 1.偶函數一般地,對於函數()f x 的定義域內的任意一個x ,都有()()f x f x -=,那麼()f x 就叫做偶函數.(學生活動)依照偶函數的定義給出奇函數的定義.2.奇函數一般地,對於函數()f x 的定義域的任意一個x ,都有()()f x f x -=-,那麼()f x 就叫做奇函數.2注意:①函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;②由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對於定義域內的任意一個x ,則x -也一定是定義域內的一個引數(即定義域關於原點對稱).3.具有奇偶性的函數的圖像的特徵偶函數的圖像關於y 軸對稱;奇函數的圖像關於原點對稱. (三)質疑答辯,排難解惑,發展思維. 例1.判斷下列函數是否是偶函數.(1)2()[1,2]f x x x =∈-(2)32()1x x f x x -=-解:函數2(),[1,2]f x x x =∈-不是偶函數,因為它的定義域關於原點不對稱.函數32()1x x f x x -=-也不是偶函數,因為它的定義域為}{|1x x R x ∈≠且,並不關於原點對稱.點評:判斷函數的奇偶性,先看函數的定義域。

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》一、教学目标:1. 知识与技能:理解函数奇偶性的概念,能够判断函数的奇偶性;学会运用函数的奇偶性解决一些简单问题。

2. 过程与方法:通过观察、分析、归纳等方法,探索函数奇偶性的性质及其判断方法。

3. 情感态度价值观:培养学生的逻辑思维能力,提高学生对数学的兴趣。

二、教学内容:1. 函数奇偶性的定义2. 函数奇偶性的判断方法3. 函数奇偶性的性质三、教学重点与难点:1. 教学重点:函数奇偶性的定义及其判断方法。

2. 教学难点:函数奇偶性的性质及其应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究函数奇偶性的性质;2. 通过实例分析,让学生掌握函数奇偶性的判断方法;3. 利用小组讨论,培养学生的合作能力。

五、教学过程:1. 导入:回顾上一节课的内容,引导学生思考函数的奇偶性与什么有关。

2. 新课讲解:(1)介绍函数奇偶性的定义;(2)讲解函数奇偶性的判断方法;(3)分析函数奇偶性的性质。

3. 例题解析:选取典型例题,分析解题思路,引导学生运用函数奇偶性解决问题。

4. 课堂练习:布置练习题,让学生巩固所学内容。

5. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。

6. 课后作业:布置适量作业,巩固所学知识。

注意:在教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数奇偶性的相关知识。

六、教学评估:1. 课堂提问:通过提问了解学生对函数奇偶性的理解程度,及时发现并解决学生学习中存在的问题。

2. 练习题解答:检查学生完成练习题的情况,评估学生对函数奇偶性知识的掌握情况。

3. 课后作业:批改课后作业,了解学生对课堂所学知识的巩固程度。

七、教学反思:1. 反思教学内容:检查教学内容是否全面、深入,是否适合学生的认知水平。

2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。

3. 反思教学效果:总结本节课的教学成果,找出不足之处,为下一节课的教学做好准备。

函数的奇偶性教学设计

函数的奇偶性教学设计

《函数的奇偶性》教学设计五华县高级中学叶双霞教材来源:人教版高中数学必修一一、教材分析“奇偶性”是人教版必修1中第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。

函数的奇偶性是函数的一条重要性质,教材从学生熟悉的初中学过的的一些轴对称图形入手,体会到数形结合思想,初步学会用数学的眼光看待事物,感受数学的对称美。

尝试画出和的图像,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性.从知识结构看,奇偶性既是函数概念的拓展和深入,又是为以后学习基本初等函数奠定了基础。

因此,本节课起着承上启下的重要作用。

二、学情分析从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。

同时,上节课学习了函数单调性,积累了研究函数的基本方法与初步经验。

三、教学目标【知识与技能】1.理解奇函数、偶函数的概念及其几何意义;2.能从定义、图像特征、性质等多种角度判断函数的奇偶性,学会函数的应用。

【过程与方法】通过实例观察、具体函数分析、数与形的结合,定性与定量的转化,让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验。

【情感、态度与价值观】1.在经历概念形成的过程中,培养学生内容、归纳、抽象、概括的能力;2.通过自主探索,体会数形结合的思想,感受数学的对称美。

四、教学重点和难点重点:函数奇偶性的概念和函数图像的特征。

难点:利用函数奇偶性的概念和图像的对称性,证明或判断函数的奇偶性。

五、教学方法引导发现法为主,直观演示法、类比法为辅。

六、教学手段PPT课件。

七、教学过程(一)情境导入、观察图像出示一组轴对称和中心对称的图片。

设计意图:通过图片引起学生的兴趣,培养学生的审美观,激发学习兴趣。

师:“同学们,这是我们生活中常见的一些具有对称性的物体,你能说出它们有什么特点吗?”生:“它们的共同点都是关于某一地方是对称的。

”师:“是的,而我们今天要学习的函数图像也有类似的对称图像,首先我们来尝试画一下和的图像,并一起探究几个问题。

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》章节一:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的概念;2. 学会判断函数的奇偶性;3. 掌握函数奇偶性的性质。

教学内容:1. 引入奇偶性的概念;2. 举例说明奇偶性的判断方法;3. 总结奇偶性的性质。

教学步骤:1. 引入奇偶性的概念,让学生思考日常生活中遇到的奇偶性例子;2. 给出函数奇偶性的定义,解释奇偶性的判断方法;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 引导学生总结奇偶性的性质。

教学评估:1. 课堂提问,了解学生对奇偶性概念的理解程度;2. 布置练习题,让学生运用奇偶性的判断方法。

章节二:奇函数和偶函数的性质教学目标:1. 理解奇函数和偶函数的性质;2. 学会运用奇偶性解决实际问题。

教学内容:1. 介绍奇函数和偶函数的性质;2. 举例说明奇偶性在实际问题中的应用。

教学步骤:1. 回顾奇偶性的概念,引导学生理解奇函数和偶函数的性质;2. 通过具体例子,让学生学会运用奇偶性解决实际问题;3. 总结奇偶性在实际问题中的应用。

教学评估:1. 课堂提问,了解学生对奇偶性性质的理解程度;2. 布置练习题,让学生运用奇偶性解决实际问题。

章节三:函数奇偶性的判定定理教学目标:1. 理解函数奇偶性的判定定理;2. 学会运用判定定理判断函数的奇偶性。

教学内容:1. 介绍函数奇偶性的判定定理;2. 举例说明判定定理的运用方法。

教学步骤:1. 引导学生理解函数奇偶性的判定定理;2. 通过具体例子,让学生学会运用判定定理判断函数的奇偶性;3. 总结判定定理的运用方法。

教学评估:1. 课堂提问,了解学生对判定定理的理解程度;2. 布置练习题,让学生运用判定定理判断函数的奇偶性。

章节四:函数奇偶性在实际问题中的应用教学目标:1. 理解函数奇偶性在实际问题中的应用;2. 学会运用奇偶性解决实际问题。

教学内容:1. 介绍函数奇偶性在实际问题中的应用;2. 举例说明奇偶性在实际问题中的解决方法。

高一数学教案函数的奇偶性5篇

高一数学教案函数的奇偶性5篇

高一数学教案函数的奇偶性5篇使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数奇偶性的方法.高一数学教案函数的奇偶性1一、内容与解析 (一)内容:基本初等函数习题课(一)。

(二)解析:对数函数的性质的掌握,要先根据其图像来分析与记忆,这样更形像更直观,这是学习图像与性质的基本方法,在此基础上,我们要对对数函数的两种情况的性质做一个比较,使之更好的'掌握.二、目标及其解析:(一)教学目标(1)掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质及其奇偶性.(二)解析(1)基本初等函数的学习重要是学习其性质,要掌握好性质,从图像上来理解与掌握是一个很有效的办法.(2)每类基本初类函数的性质差别比较大,学习时要有一个有效的区分.三、问题诊断分析在本节课的教学中,学生可能遇到的问题是不易区分各函数的图像与性质,不容易抓住其各自的特点。

四、教学支持条件分析在本节课一次递推的教学中,准备使用P5高一数学教案函数的奇偶性2【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】函数单调性的概念、判断及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下 (1)函数的单调性起着承前启后的作用。

高一数学必修1《函数的奇偶性》说课稿

高一数学必修1《函数的奇偶性》说课稿

⾼⼀数学必修1《函数的奇偶性》说课稿 "说课"是教学改⾰中涌现出来的新⽣事物,是进⾏教学研究、教学交流和教学探讨的⼀种新的教学研究形式,也是集体备课的进⼀步发展,⽽说课稿则是为进⾏说课准备的⽂稿。

下⾯是店铺为⼤家整理的⾼⼀数学必修1《函数的奇偶性》说课稿,欢迎参考! ⾼⼀数学必修1《函数的奇偶性》说课稿 ⼀、教材分析 1.教材所处的地位和作⽤ “奇偶性”是⼈教A版第⼀章“集合与函数概念”的第3节“函数的基本性质”的第2⼩节。

奇偶性是函数的⼀条重要性质,教材从学⽣熟悉的及⼊⼿,从特殊到⼀般,从具体到抽象,注重信息技术的应⽤,⽐较系统地介绍了函数的奇偶性。

从知识结构看,它既是函数概念的拓展和深化,⼜是后续研究指数函数、对数函数、幂函数、三⾓函数的基础。

因此,本节课起着承上启下的重要作⽤。

2.学情分析 从学⽣的认知基础看,学⽣在初中已经学习了轴对称图形和中⼼对称图形,并且有了⼀定数量的简单函数的储备。

同时,刚刚学习了函数单调性,已经积累了研究函数的基本⽅法与初步经验。

从学⽣的思维发展看,⾼⼀学⽣思维能⼒正在由形象经验型向抽象理论型转变,能够⽤假设、推理来思考和解决问题. 3.教学⽬标 基于以上对教材和学⽣的分析,以及新课标理念,我设计了这样的教学⽬标: 【知识与技能】 1.能判断⼀些简单函数的奇偶性。

2.能运⽤函数奇偶性的代数特征和⼏何意义解决⼀些简单的问题。

【过程与⽅法】 经历奇偶性概念的形成过程,提⾼观察抽象能⼒以及从特殊到⼀般的归纳概括能⼒。

【情感、态度与价值观】 通过⾃主探索,体会数形结合的思想,感受数学的对称美。

从课堂反应看,基本上达到了预期效果。

4、教学重点和难点 重点:函数奇偶性的概念和⼏何意义。

⼏年的教学实践证明,虽然“函数奇偶性”这⼀节知识点并不是很难理解,但知识点掌握不全⾯的学⽣容易出现下⾯的错误。

他们往往流于表⾯形式,只根据奇偶性的定义检验成⽴即可,⽽忽视了考虑函数定义域的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、实例引入,初步感知
请比较下列两组函数图象,从对称的角度,你发现了什么?
-1
生:函数图象关于 轴对称
师:再观察表1和表2,你看出了什么?
x
-3
-2
-1
0
1
2
3
f(x)=x2
9
4
1
0
1
4
9
表1
x
-3
-2
-1
0
1
2
3
f(x)=|x|
3
2
1
0
1
2
3
表2
生:当自变量x取一对相反数时,相应的两个函数值相等。
人教版高中数学必修1《函数的奇偶性》教案
§1.3.2函数的奇偶性(1)
教学目标:
知识目标——理解函数的奇偶性并能熟练应用数形结合的数学思想解决、推导问题;能应用奇偶性的知识解决简单的函数问题。
能力目标——通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想;培养学生从特殊到一般的概括归纳问题的能力。
(3)判断函数的奇偶性:判对称、看相等、定结论。
六、作业布置:
1、必做题:P40,练习第2题
2、课后探究:判断下列函数的奇偶性;
(1) ;(2) ;
(3) ;(4)
思考:函数按是否有奇偶性可分为几类?
七、板书设计
1.3.2函数的奇偶性(1)
偶函数定义例题学生练习
奇函数定义作业布置
归纳格式步骤: 判对称、看相等、定结论
情感目标——通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学习积极性;养成积极主动,勇于探索,不断创新的学习习惯和品质。
教学分析:
教学重点:函数的奇偶性的概念及其建立过程,判断函数的奇偶性的步骤;
教学难点:对函数奇偶性概
教学过程
一、创设情景,激发兴趣(多媒体投放图片)
开放探究
已知函数 的定义域为 。 为何值时 为奇函数?(注:请用两种方法解答)
五、课堂小结:
(1)两个定义:对于f(x)定义域内的任意一个x,
如果都有f(-x)=-f(x) f(x)为奇函数
如果都有f(-x)=f(x) f(x)为偶函数
(2)两个性质:
一个函数为奇函数它的图象关于原点对称
一个函数为偶函数它的图象关于y轴对称
三、实验体验,加以体会
【探究】图象关于 轴对称的函数满足:对定义域内的任意一个 ,都有 。
反之也成立吗?(超级链接几何画板演示)
师:从以上的讨论,你能够得到什么?(师生讨论,共同完善,形成概念,老师板书偶函数定义)
一般地,如果对于函数 的定义域内的任意一个 ,都有 ,那么称函数 是偶函数;
师:仿此请观察下面两组图象,你能给出关于原点对称的函数图象与式子之间的关系,进而给出奇函数的定义吗?
师:定义域关于原点对称,即隐含着定义域关于数“0”对称。定义域关于原点对称是函数具有奇偶性的必要但不充分条件。
四、自主探索,知识反馈
典例讲解
判断下列函数的奇偶性
(1) (2)
(3) (4)
归纳格式步骤:
①首先确定函数的定义域,并判断其定义域是否关于原点对称;
②确定 ;
③作出相应结论:
若 ;

总结为:判对称、看相等、定结论
一般地,如果对于函数 的定义域内的任意一个 ,都有 ,那么称函数是奇函数。
问题1:具有奇偶性函数的图象的对称如何?
师:偶函数的图象关于y轴对称,奇函数的图象关于原点对称。
问题2:函数的奇偶性是怎样的一个性质?与单调性有何区别?
师:函数的奇偶性在定义域上的一个整体性质,它不同于函数的单调性。
问题3:-x与x在几何上有何关系?具有奇偶性的函数的定义域有何特征?
基础训练
判断下列函数的奇偶性
(1) (2)
(3) (4)
能力提升一
(1)判断函数 的奇偶性
(2)如果右图是函数 图象的一部分,你能根据
的奇偶性画出它在 轴左边的图象吗?
能力提升二
已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0,+∞)时,f(x)=_______.
相关文档
最新文档