高一数学必修一函数的奇偶性

合集下载

高一数学人教A版必修1课件1321函数的奇偶性

高一数学人教A版必修1课件1321函数的奇偶性

总结:(1)偶函数 一般地,如果对于函数 f(x)的定义域内 每 一个 x,都有 f(-x)=f(x) ,那么函数 f(x)就叫做偶函数. (2)奇函数 一般地,如果对于函数 f(x)的定义域内 每 一个 x,都有 f(-x)=-f(x) ,那么函数 f(x)就叫做奇函数.
【归纳提升】 (1)奇偶函数的定义域关于原点对称,如 果函数的定义域不关于原点对称,则此函数既不是奇函数也 不是偶函数.
(6)显然函数 f(x)的定义域关于原点对称. 当 x>0 时,-x<0,f(-x)=x2-x=-(x-x2)=-f(x), 当 x<0 时,-x>0,f(-x)=-x-x2=-(x2+x)=-f(x), ∴f(-x)=-f(x), ∴函数 f(x)为奇函数.
2 利用函数的奇偶性求解析式
学法指导:利用函数奇偶性求函数解析式 利用函数奇偶性求函数解析式的关键是利用奇偶函数的 关系式 f(-x)=-f(x)或 f(-x)=f(x)成立,但要注意求给定哪 个区间的解析式就设这个区间上的变量为 x,然后把 x 转化 为-x(另一个已知区间上的解析式中的变量),通过适当推导, 求得所求区间上的解析式.
[例 2] 已知函数 y=f(x)的图象关于原点对称,且当 x>0 时,f(x)=x2-2x+3.试求 f(x)在 R 上的表达式,并画出它的图 象,根据图象写出它的单调区间.
[分析] 由函数图象关于原点对称可知 y=f(x)是奇函 数.利用奇函数性质可求得解析式.
[解析] ∵函数 f(x)的图象关于原点对称. ∴f(x)为奇函数,则 f(0)=0, 设 x<0,则-x>0,∵x>0 时,f(x)=x2-2x+3, ∴f(x)=-f(-x)=-(x2+2x+3)=-x2-2x-3 于是有:

高一数学必修一全套课件 PPT课件 人教课标版15

高一数学必修一全套课件 PPT课件 人教课标版15
1.3.2 奇偶性 第一课时 函数的奇偶性
问题提出
1.研究函数的基本性质不仅是解决实际问题的 需要,也是数学自身发展的必然结果. 例如事物 的变化趋势,利润最大、效率最高等,这些特性 反映在函数上,就是要研究函数的单调性及最值.
2.我们从函数图象的升降变化引发了函数的单
调性,从函数图象的最高点最低点引发了函数的
最值,如果从函数图象的对称性出发又能得到什
么性质?
函数的奇偶性
知识探究(一)
考察下列两个函数:
(1) f (x) x2 ;
yo
x
(2) f (x) | x |.
y
o
x
图(1)
图(2)
思考1:这两个函数的图象分别是什么?二者
有何共同特征?
思考2:对于上述两个函数,f(1)与f(-1), f(2)与f(-2),f(3)与f(-3)有什么关系?

52、思想如钻子,必须集中在一点钻下去才有力量。

53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。

54、最伟大的思想和行动往往需要最微不足道的开始。

55、不积小流无以成江海,不积跬步无以至千里。

56、远大抱负始于高中,辉煌人生起于今日。

57、理想的路总是为有信心的人预备着。

58、抱最大的希望,为最大的努力,做最坏的打算。

59、世上除了生死,都是小事。从今天开始,每天微笑吧。

60、一勤天下无难事,一懒天下皆难事。

61、在清醒中孤独,总好过于在喧嚣人群中寂寞。

高一必修一数学知识点:函数奇偶性

高一必修一数学知识点:函数奇偶性

高一必修一数学学问点:函数奇偶性高一必修一数学学问点:函数奇偶性数学是学习和探讨现代科学技术必不行少的基本工具。

下面为大家带来了函数奇偶性的数学学问点,希望能够帮助到大家。

1.定义一般地,对于函数f(x)(1)假如对于函数定义域内的随意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)假如对于函数定义域内的随意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)假如对于函数定义域内的随意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)假如对于函数定义域内的随意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言②奇、偶函数的定义域肯定关于原点对称,假如一个函数的定义域不关于原点对称,则这个函数肯定不是奇(或偶)函数。

(分析:推断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格依据奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)③推断或证明函数是否具有奇偶性的依据是定义2.奇偶函数图像的特征:定理奇函数的`图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

f(x)为奇函数《==》f(x)的图像关于原点对称点(x,y)→(-x,-y)奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

3.奇偶函数运算(1).两个偶函数相加所得的和为偶函数.(2).两个奇函数相加所得的和为奇函数.(3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.(4).两个偶函数相乘所得的积为偶函数.(5).两个奇函数相乘所得的积为偶函数.(6).一个偶函数与一个奇函数相乘所得的积为奇函数.。

高一数学人必修一课件时函数奇偶性的定义与判定

高一数学人必修一课件时函数奇偶性的定义与判定

06
函数奇偶性的深入理解
奇偶性与函数周期性的关系
奇偶性是函数周期性的一种特 殊表现
奇偶性函数必定有周期性,但 周期性函数不一定有奇偶性
奇偶性函数周期性的判断可以 通过观察函数的图像或解析式 来实现
奇偶性函数周期性的应用在解 决实际问题中具有重要意义, 如信号处理、控制系统设计等
奇偶性与函数单调性的关系
反函数法:通过反函数判断其奇偶 性
图像法:通过观察函数图像判断其 奇偶性
02
复合函数法:通过复合函数判断其 奇偶性
04
特殊值法:通过特殊值判断其奇偶 性
06
04
函数奇偶性的性质
奇偶性对函数图像的影响
奇函数:关于原点对称,图像关于y轴对称 偶函数:关于y轴对称,图像关于x轴对称 非奇非偶函数:既不关于原点对称,也不关于y轴对称 奇偶性对函数图像的影响:决定了函数图像的对称性和周期性
奇偶性对函数值的影响
奇函数:f(-x)=-f(x),函数值关于原点对称
偶函数:f(-x)=f(x),函数值关于y轴对称
非奇非偶函数:既不是奇函数也不是偶函数 奇偶性对函数图像的影响:奇函数的图像关于原点对称,偶函数的图像关 于y轴对称,非奇非偶函数的图像既不关于原点对称也不关于y轴对称。
奇偶性对函数运算的影响
函数奇偶性的定义 与判定
汇报人:
目录
01 单 击 添 加 目 录 项 标 题 02 函 数 奇 偶 性 的 定 义 03 函 数 奇 偶 性 的 判 定 方 法 04 函 数 奇 偶 性 的 性 质 05 函 数 奇 偶 性 的 应 用 06 函 数 奇 偶 性 的 深 入 理 解
01
添加章节标题
在解决实际问题中的应用

高一数学必修一,函数的奇偶性题型归纳

高一数学必修一,函数的奇偶性题型归纳

函数的奇偶性 题型归纳题型一、函数奇偶性的概念➢ 函数奇偶性的定义:设函数D x x f y ∈=,)(,(D 为关于原点对称的区间):①如果对于任意的D x ∈,都有)()(x f x f -=,则称)(x f y =为偶函数;②如果对于任意的D x ∈,都有)()(x f x f --=,则称)(x f y =为奇函数。

➢ 函数奇偶性的性质:①函数具有奇偶性的必要条件是其定义域关于原点对称。

②奇偶函数的图像:奇函数关于原点对称;偶函数关于y 轴对称。

③奇函数)(x f y =在0=x 处有意义,则必有0)0(=f 。

④偶函数)(x f y =必满足|)(|)(x f x f =。

1. 若)(x f 是奇函数,则其图象关于( )【答案:C 】A .x 轴对称B .y 轴对称C .原点对称D .直线x y =对称2. 若函数))((R x x f y ∈=是奇函数,则下列坐标表示的点一定在函数)(x f y =图象上的是( )【答案:C 】A .))(,(a f a -B .))(,(a f a --C .))(,(a f a ---D .))(,(a f a -3. 下列说法错误的是( )【答案:D 】A.奇函数的图像关于原点对称B.偶函数的图像关于y 轴对称C.定义在R 上的奇函数()x f y =满足()00=fD.定义在R 上的偶函数()x f y =满足()00=f题型二、判断函数的奇偶性➢ 定义法:➢ 运算函数奇偶性的规律:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×÷奇=偶;奇×÷偶=奇;偶×÷偶=偶。

➢ 复合函数奇偶性判断:内偶则偶,两奇为奇。

➢ 抽象函数奇偶性:赋值法。

1、定义法:1. 下列函数中为偶函数的是( )【答案:C 】A .x y =B .x y =C .2x y =D .13+=x y2. 判断函数的奇偶性 ①)3,1(,)(2-∈=x x x f ②2)(x x f -=;③25)(+=x x f ; ④)1)(1()(-+=x x x f .⑤()xx x f 1-= ⑥()13224+-=x x x f 【答案:】(1)非奇非偶函数.(2)偶函数.(3)非奇非偶函数.(4)偶函数.(5)奇函数(6)偶函数.2、奇偶函数的四则运算法则:3. 下列函数为偶函数的是( )【答案:D 】A.()x x x f +=B.()xx x f 12+= C.()x x x f +=2 D.()2x x x f =4. 判断函数的奇偶性①53)(x x x x f ++=; ②1y 2+=x x【答案:(1)奇函数. (2)奇函数. 】5. 已知函数)(x f y =是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号)。

高中数学必修一课件 第一章集合与函数概念 1.3.2.1 奇偶性

高中数学必修一课件 第一章集合与函数概念 1.3.2.1 奇偶性

[规律方法] 1.(1)首先考虑定义域是否是关于原点对称,如 果定义域不关于原点对称,则函数是非奇非偶函数;(2)在定 义 域 关 于 原 点 对 称 的 前 提 下 , 进 一 步 判 定 f( - x) 是 否 等 于 ±f(x). 2.分段函数的奇偶性应分段说明f(-x)与f(x)的关系,只有 当对称区间上的对应关系满足同样的关系时,才能判定函数 的奇偶性.
4.若函数f(x)=(x+a)(x-4)为偶函数,则实数a=________. 解析 f(x)=x2+(a-4)x-4a, 又f(x)为偶函数, ∴a-4=0,则a=4. 答案 4
5.(1)如图①所示,给出奇函数y=f(x)的局部图象,试作出y 轴右侧的图象并求出f(3)的值; (2)如图②所示,给出偶函数y=f(x)的局部图象,比较f(1) 与f(3)的大小,并试作出y轴右侧的图象.
|1-m|<|m|.
-2≤m≤2, 即-1≤m≤3,
m>12.
因此,m 的取值范围为12<m≤2.
易错辨析 忽视定义域,错判函数的奇偶性 【示例】 判断函数 f(x)=(x-1) 11+ -xx的奇偶性. [错解] f(x)=- 1-x2·11+-xx=- 1+x1-x =- 1-x2, ∴f(-x)=- 1--x2=- 1-x2=f(x), ∴f(x)为偶函数.
互动探究 探究点1 奇函数、偶函数的定义域一定关于原点对称吗?为 什么? 提示 一定关于原点对称.由定义知,若x是定义域内的一 个元素,-x也一定是定义域内的一个元素,所以函数y=f(x) 具有奇偶性的一个必不可少的条件是:定义域关于原点对 称. 探究点2 有没有既是奇函数又是偶函数的函数? 提示 有.如f(x)=0,x∈R.
∴--22≤≤m1-≤m2,≤2, 1-m>m,

高一数学 函数奇偶性知识点归纳

高一数学 函数奇偶性知识点归纳

函数奇偶性知识点归纳考点分析配经典案例分析函数的奇偶性定义:1.偶函数:一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.2.奇函数:一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于原点对称;2、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立;3、可逆性:)()(x f x f =-⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 奇函数;4、等价性:)()(x f x f =-⇔0)()(=--x f x f (||)()f x f x ⇔=;)()(x f x f -=-⇔0)()(=+-x f x f ;5、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

7、判断或证明函数是否具有奇偶性的根据是定义。

8、如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。

并且关于原点对称。

三、关于奇偶函数的图像特征 一般地:奇函数的图像关于原点对称,反过来,如果一个函数的图像关于原点对称,那么这个函数是奇函数; 即:f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y )偶函数的图像关于y 轴对称,反过来,如果一个函数的图像关于y 轴对称,那么这个函数是偶函数。

即: f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y )奇函数对称区间上的单调性相同(例:奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

)偶函数对称区间上的单调性相反(例:偶函数在某一区间上单调递增,则在它的对称区间上单调递减)。

高一数学必修1《函数的奇偶性》说课稿

高一数学必修1《函数的奇偶性》说课稿

⾼⼀数学必修1《函数的奇偶性》说课稿 "说课"是教学改⾰中涌现出来的新⽣事物,是进⾏教学研究、教学交流和教学探讨的⼀种新的教学研究形式,也是集体备课的进⼀步发展,⽽说课稿则是为进⾏说课准备的⽂稿。

下⾯是店铺为⼤家整理的⾼⼀数学必修1《函数的奇偶性》说课稿,欢迎参考! ⾼⼀数学必修1《函数的奇偶性》说课稿 ⼀、教材分析 1.教材所处的地位和作⽤ “奇偶性”是⼈教A版第⼀章“集合与函数概念”的第3节“函数的基本性质”的第2⼩节。

奇偶性是函数的⼀条重要性质,教材从学⽣熟悉的及⼊⼿,从特殊到⼀般,从具体到抽象,注重信息技术的应⽤,⽐较系统地介绍了函数的奇偶性。

从知识结构看,它既是函数概念的拓展和深化,⼜是后续研究指数函数、对数函数、幂函数、三⾓函数的基础。

因此,本节课起着承上启下的重要作⽤。

2.学情分析 从学⽣的认知基础看,学⽣在初中已经学习了轴对称图形和中⼼对称图形,并且有了⼀定数量的简单函数的储备。

同时,刚刚学习了函数单调性,已经积累了研究函数的基本⽅法与初步经验。

从学⽣的思维发展看,⾼⼀学⽣思维能⼒正在由形象经验型向抽象理论型转变,能够⽤假设、推理来思考和解决问题. 3.教学⽬标 基于以上对教材和学⽣的分析,以及新课标理念,我设计了这样的教学⽬标: 【知识与技能】 1.能判断⼀些简单函数的奇偶性。

2.能运⽤函数奇偶性的代数特征和⼏何意义解决⼀些简单的问题。

【过程与⽅法】 经历奇偶性概念的形成过程,提⾼观察抽象能⼒以及从特殊到⼀般的归纳概括能⼒。

【情感、态度与价值观】 通过⾃主探索,体会数形结合的思想,感受数学的对称美。

从课堂反应看,基本上达到了预期效果。

4、教学重点和难点 重点:函数奇偶性的概念和⼏何意义。

⼏年的教学实践证明,虽然“函数奇偶性”这⼀节知识点并不是很难理解,但知识点掌握不全⾯的学⽣容易出现下⾯的错误。

他们往往流于表⾯形式,只根据奇偶性的定义检验成⽴即可,⽽忽视了考虑函数定义域的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性和奇偶性
教材复习
基本知识方法
1.奇偶函数的性质:
()1函数具有奇偶性的必要条件是其定义域关于原点对称;
()2()f x 是偶函数⇔()f x 的图象关于y 轴对称;()f x 是奇函数⇔()f x 的图象关于原点对称; ()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的 单调性. 2.()f x 为偶函数()()(||)f x f x f x ⇔=-=.
3.若奇函数()f x 的定义域包含0,则(0)0f =.
4.判断函数的奇偶性的方法:
()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式;
()2图象法;
()3性质法:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域1
2D D D =上:奇±奇
=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;
5. 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-.
6.判断函数的单调性的方法:
(1)定义法;(2)图象法;(3)性质法:在公共定义域内,利用函数的运算性质:若()f x 、)(x g 同为增函数,则①()()f x g x +为增函数;②()()f x g x 为增函数;③()1()0()
f x f x >为减函数; ④()f x ()()0f x ≥为增函数;⑤()f x -为减函数.
类别 增函数 减函数 图像 描述
自左向右....看: 图像是 自左向右....看: 图像是 单调
性定

一般地,设函数()f x 的定义域为A ,区间I A ⊆,如果对于区间I 内任意两个 自变量12,x x I ∈ 当12x x <时,都有 , 那么,就称()f x 在区间I 上是增函数 当12x x <时,都有 , 那么,就称()f x 在区间I 上是减函数 单调 区间 若函数()f x 在区间I 上是增函数或减函数,则称函数()f x 在这一区间具有 ,区间I 叫做()f x 的
奇偶性 定义 图像特点 偶函数 如果对函数()f x 的定义域内 x 都有 ,那么称函数()f x 是
偶函数 关于 对称. 奇函数 如果对函数()f x 的定义域内 x 都有 ,那么称函数()f x 是奇函数
关于 对称.
1.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( )
A .奇函数
B .偶函数
C .既是奇函数又是偶函数
D .非奇非偶函数。

2.函数)11()(+--=x x x x f 是( )
A .是奇函数又是减函数
B .是奇函数但不是减函数
C .是减函数但不是奇函数
D .不是奇函数也不是减函数
3.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)2
52()23
(2++-a a f f 与的大小关系是( ) A .)23(-f >)252(2++a a f B .)23(-f <)2
52(2
++a a f
C .)23(-f ≥)252(2++a a f
D .)23(-f ≤)2
52(2++a a f 4.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或
C .{}|33x x x <->或
D .{}
|3003x x x -<<<<或
5.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( )
A .3a ≤-
B .3a ≥-
C .5a ≤
D .3a ≥
6.设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =_____________________。

7.若函数2()1
x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________. 8.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = .
9.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数, ()g x 是奇函数,且1()()1
f x
g x x +=-,求()f x 和()g x 的解析式.
10.利用函数的单调性求函数x x y 21++=的值域;。

相关文档
最新文档