matlab提供的红外图像增强实例
(整理)图像增强、图像滤波、边缘检测的MATLAB实现

(整理)图像增强、图像滤波、边缘检测的MATLAB实现图像增强、图像滤波及图像边缘检测MATLAB实现程序图像增强图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
其主要目的是使处理后的图像对某些特定的应用比原来的图像更加有效。
图像增强技术主要包含直方图修改处理、图像平滑化处理、图像尖锐化处理、和彩色处理技术等。
图像增强有图像对比度增强、亮度增强,轮廓增强等等。
下面利用直方图统计算法对灰度图像进行增强:程序代码:I=imread('cameraman.tif');subplot(121)imshow(I);title('原始图像');subplot(122)imhist(I,64)%绘制图像的直方图,n=64为灰度图像灰度级,若I为灰度图像,默认n=256;若I为二值图像,默认n=2。
title('图像的直方图');(请自己运行查看)n=256时:(请自己运行查看)下面利用直方图均衡化增强图像的对比度:I=imread('cameraman.tif');J=histeq(I);%将灰度图像转换成具有64(默认)个离散灰度级的灰度图像imshow(I)title('原始图像')figure,imshow(J)title('直方图均衡化后的图像')figure(1)subplot(121);imhist(I,64)title('原始图像的直方图')subplot(122);imhist(J,64)title('均衡化的直方图')(请自己运行查看)分析:从上图中可以看出,用直方图均衡化后,图像的直方图的灰度间隔被拉大了,均衡化的图像的一些细节显示了出来,这有利于图像的分析和识别。
直方图均衡化就是通过变换函数histeq将原图的直方图调整为具有“平坦”倾向的直方图,然后用均衡直方图校正图像。
利用Matlab进行图像去噪和图像增强

利用Matlab进行图像去噪和图像增强随着数字图像处理技术的不断发展和成熟,图像去噪和图像增强在各个领域都有广泛的应用。
而在数字图像处理的工具中,Matlab凭借其强大的功能和易于使用的特点,成为了许多研究者和工程师首选的软件之一。
本文将介绍如何利用Matlab进行图像去噪和图像增强的方法和技巧。
一、图像去噪图像去噪是指通过一系列算法和技术,将图像中的噪声信号去除或减弱,提高图像的质量和清晰度。
Matlab提供了多种去噪方法,其中最常用的方法之一是利用小波变换进行去噪。
1. 小波变换去噪小波变换是一种多尺度分析方法,能够对信号进行时频分析,通过将信号分解到不同的尺度上,实现对图像的去噪。
在Matlab中,可以使用"dwt"函数进行小波变换,将图像分解为低频和高频子带,然后通过对高频子带进行阈值处理,将噪声信号滤除。
最后通过逆小波变换将去噪后的图像重构出来。
这种方法能够有效抑制高频噪声,保留图像的细节信息。
2. 均值滤波去噪均值滤波是一种基于平均值的线性滤波方法,通过计算像素周围邻域内像素的平均值,替代原始像素的值来去除噪声。
在Matlab中,可以使用"imfilter"函数进行均值滤波,通过设置适当的滤波模板大小和滤波器系数,实现对图像的去噪。
二、图像增强图像增强是指通过一系列算法和技术,改善图像的质量、增强图像的细节和对比度,使图像更容易被观察和理解。
Matlab提供了多种图像增强方法,以下将介绍其中的两种常用方法。
1. 直方图均衡化直方图均衡化是一种通过对图像像素值的分布进行调整,增强图像对比度的方法。
在Matlab中,可以使用"histeq"函数进行直方图均衡化处理。
该函数能够将图像的像素值分布拉伸到整个灰度级范围内,提高图像的动态范围和对比度。
2. 锐化增强锐化增强是一种通过增强图像边缘和细节来改善图像质量的方法。
在Matlab中,可以使用"imsharpen"函数进行图像的锐化增强处理。
Matlab中的图像增强方法

Matlab中的图像增强方法图像增强是数字图像处理中的一项重要技术,通过使用各种算法和方法,可以改善图像的质量、增加图像的信息量和清晰度。
在Matlab中,有许多强大而灵活的工具和函数,可以帮助我们实现图像增强的目标。
本文将介绍几种常用的Matlab图像增强方法,并探讨它们的原理和应用。
一、直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素分布来增强图像的对比度和亮度。
在Matlab中,我们可以使用“histeq”函数来实现直方图均衡化。
该函数会根据图像的直方图信息,将像素的灰度值重新映射到一个均匀分布的直方图上。
直方图均衡化的原理是基于图像的累积分布函数(CDF)的变换。
它首先计算图像的灰度直方图,并根据直方图信息计算CDF。
然后,通过将CDF线性映射到期望的均匀分布上,将图像的像素值进行调整。
直方图均衡化的优点在于简单易实现,且效果较好。
但它也存在一些限制,比如对噪声敏感、全局亮度调整可能导致细节丢失等。
因此,在具体应用中,我们需要权衡其优缺点,并根据图像的特点选择合适的方法。
二、自适应直方图均衡化自适应直方图均衡化是对传统直方图均衡化的改进,它能够在改善对比度的同时,保持局部细节。
与全局直方图均衡化不同,自适应直方图均衡化采用局部的直方图信息来进行均衡化。
在Matlab中,我们可以使用“adapthisteq”函数来实现自适应直方图均衡化。
该函数会将图像分成小块,并在每个块上进行直方图均衡化。
通过这种方式,自适应直方图均衡化可以在增强图像对比度的同时,保留图像的细节。
自适应直方图均衡化的优点在于针对每个小块进行处理,能够更精确地调整局部对比度,避免了全局调整可能带来的细节丢失。
然而,相对于全局直方图均衡化,自适应直方图均衡化的计算量较大,因此在实时处理中可能会引起性能问题。
三、模糊与锐化图像增强不仅局限于对比度和亮度的调整,还可以改善图像的清晰度和边缘信息。
在Matlab中,我们可以使用一些滤波器来实现图像的模糊和锐化。
MATLAB中的遥感图像处理方法解析

MATLAB中的遥感图像处理方法解析遥感图像处理是一项重要的技术,广泛应用于农业、环境保护、城市规划等领域。
MATLAB作为一种强大的科学计算软件,提供了许多有效的图像处理工具和算法,使得遥感图像的处理更加简便高效。
本文将通过几个实例,介绍MATLAB 中常用的遥感图像处理方法。
一、图像预处理遥感图像通常存在一些噪声和失真。
为了提高图像质量和后续分析的精确性,需要对图像进行预处理。
MATLAB提供了各种滤波器和降噪算法,如中值滤波、高斯滤波和小波变换。
这些方法可以降低图像中的噪声,并使细节更加清晰。
二、图像增强图像增强是提升图像视觉效果的重要方法。
在遥感图像处理中,一般采用直方图均衡化和对比度拉伸等方法。
直方图均衡化可以使图像的亮度分布更均匀,增强图像的视觉效果。
对比度拉伸则通过扩展图像的动态范围,使得图像中的细节更加丰富。
三、影像分割影像分割是将图像分割成不同的区域或目标的过程。
MATLAB提供了多种分割算法,如基于阈值的分割、基于区域的分割和基于边缘的分割。
这些方法可以帮助我们从遥感图像中提取出感兴趣的目标,为后续的分析提供有效的数据。
四、特征提取特征提取是从遥感图像中提取出有意义的特征信息的过程。
常用的特征包括纹理特征、形状特征和光谱特征等。
MATLAB提供了一系列用于特征提取的函数和工具箱,如灰度共生矩阵、哈尔小波变换和主成分分析等。
这些方法可以帮助我们从遥感图像中提取出有价值的特征,用于后续的分类和识别任务。
五、图像分类图像分类是将图像分成不同的类别或类别的过程。
在遥感图像处理中,一般采用监督学习和无监督学习的方法。
监督学习需要样本标注数据,可以通过支持向量机和随机森林等算法进行分类。
无监督学习则不需要标注数据,常用的方法有k均值聚类和自组织映射网络等。
MATLAB提供了这些算法的实现和函数,方便我们进行遥感图像的分类和识别。
六、图像融合图像融合是将多个传感器或多个波段的图像进行融合,得到更全面、更丰富的信息的过程。
Matlab中图像函数大全图像增强

Matlab中图像函数大全图像增强1. 直方图均衡化的 Matlab实现1.1 imhist函数功能:计算和显示图像的色彩直方图格式:imhist(I,n)imhist(X,map)%说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色图像X 的直方图,map 为调色板。
用 stem(x,counts) 同样可以显示直方图。
1.2 imcont our 函数功能:显示图像的等灰度值图格式:imcont our(I,n),imcont our(I,v)说明:n 为灰度级的个数,v 是有用户指定所选的等灰度级向量。
1.3 imadju st 函数功能:通过直方图变换调整对比度格式:J=imadju st(I,[low high],[bottom top],gamma)newmap=imadju st(map,[low high],[bottom top],gamma)说明:J=imadju st(I,[low high],[bottom top],gamma)其中,gamma为校正量r,[low high] 为原图像中要变换的灰度范围,[bottom top]指定了变换后的灰度范围;newmap=imadju st(map,[low high],[bottom top],gamma)调整索引色图像的调色板map 。
此时若 [low high] 和[bottom top] 都为2×3的矩阵,则分别调整R、G、B 3个分量。
1.4 histeq函数功能:直方图均衡化格式:J=histeq(I,hgram)J=histeq(I,n)[J,T]=histeq(I,...)newmap=histeq(X,map,hgram)newmap=histeq(X,map)[new,T]=histeq(X,...)说明:J=histeq(I,hgram)实现了所谓“直方图规定化”,即将原是图象 I 的直方图变换成用户指定的向量 hgram。
基于matlab的图像对比度增强处理的算法的研究与实现

基于matlab的图像对比度增强处理的算法的研究与实现1. 引言1.1 研究背景图像对比度增强是数字图像处理中的一个重要领域,它能够提高图像的视觉质量,使图像更加清晰、鲜明。
随着现代科技的快速发展,图像在各个领域的应用越来越广泛,因此对图像进行对比度增强处理的需求也越来越迫切。
在数字图像处理领域,图像对比度增强处理是一种经典的技术,通过调整图像的灰度级范围,提高图像的对比度,使图像更加清晰和易于观察。
对比度增强处理可以应用于医学影像、卫星图像、照片修复等领域,有效提升图像质量和信息量。
随着数字图像处理算法的不断发展和完善,基于matlab的图像对比度增强处理算法也得到了广泛研究和应用。
通过matlab编程实现图像对比度增强处理算法,可以快速、高效地对图像进行处理,并进行实验验证和效果分析。
研究基于matlab的图像对比度增强处理算法的研究与实现具有重要的理论意义和实际应用价值。
1.2 研究目的研究目的是探索基于matlab的图像对比度增强处理算法,通过对比不同算法的效果和性能进行分析,进一步提高图像的清晰度和质量。
具体目的包括:1. 深入理解图像对比度增强处理的基本原理,掌握常用的算法和技术;2. 研究基于matlab的图像对比度增强处理算法实现的方法和步骤,探究其在实际应用中的优劣势;3. 通过实验结果与分析,评估不同算法在提升图像对比度方面的效果和效率;4. 对现有算法进行优化与改进,提出更加有效的图像对比度增强处理方法;5.总结研究成果,为今后进一步完善图像处理技术提供参考和借鉴。
通过对图像对比度增强处理算法的研究与实现,旨在提高图像处理的效率和质量,满足不同应用领域对图像处理的需求,促进图像处理技术的发展和应用。
1.3 研究意义对比度增强处理是图像处理领域中一项重要的技术,在实际应用中有着广泛的使用。
通过增强图像的对比度,可以使图像更加清晰、鲜明,提高图像的质量和观感效果。
对比度增强处理在医学影像分析、卫星图像处理、数字摄影等领域都有着重要的应用。
Matlab技术图像增强方法

Matlab技术图像增强方法图像增强是数字图像处理的一个重要任务,通过改善图像的质量和视觉效果来提高图像的可读性和理解性。
在现实生活中,我们常常会遇到一些图像质量较差、光照不均匀或者图像噪声较多的情况,这时候就需要借助一些图像增强方法来改善图像。
Matlab作为一款强大的数学软件,提供了丰富的图像处理工具箱,其中包含了多种图像增强方法。
本文将介绍几种常用的Matlab图像增强方法,并对其原理和应用进行探讨。
一、直方图均衡化直方图均衡化是一种常用的图像增强方法,通过重新分配图像的灰度级来拉伸图像的灰度范围,以增强图像的对比度和细节。
在Matlab中,我们可以使用以下代码实现图像的直方图均衡化:```matlabimg = imread('image.jpg');img_eq = histeq(img);imshowpair(img, img_eq, 'montage');```直方图均衡化的原理是将图像的累积分布函数进行线性映射,使得图像的灰度级均匀分布,从而增强对比度。
然而,直方图均衡化有时候会导致图像过亮或者过暗,因为它只考虑了灰度分布,并未考虑图像的空间信息。
二、自适应直方图均衡化为了克服直方图均衡化的不足,自适应直方图均衡化应运而生。
自适应直方图均衡化是一种局部增强方法,它将图像划分为若干小区域,并对每个区域进行直方图均衡化,以保留图像的局部对比度。
Matlab中的自适应直方图均衡化函数为`adapthisteq`,使用方法如下:```matlabimg = imread('image.jpg');img_adapteq = adapthisteq(img);imshowpair(img, img_adapteq, 'montage');```自适应直方图均衡化在增强图像对比度的同时,能够保留图像的细节,并且不会引入过多的噪声。
MATLAB环境下红外图像增强处理算法研究和仿真

图像一的处理及结果
f=imread('1.bmp'); w4=fspecial('laplacian',0); f=im2double(f); g4=f-imfilter(f,w4,'replicate'); figure,imshow(g4)
将处理后的结果和原图像进行比较
f=imread('1.bmp'); w8=[1 1 1;1 -8 1;1 1 1]; f=im2double(f); g8=f-imfilter(f,w8,'replicate'); figure,imshow(g8)
将两种处理结果进行比较
图像二的处理及结果
f=imread('2.bmp'); gm=medfilt2(f); figure,imshow(gm)
将处理后的结果和原图像进行比较
图像三的处理及结果
f=imread('3.bmp'); gm=medfilt2(f); figure,imshow(图像增强 结果分析
采集图像
采集图像并分析图像
图像一 模糊不清,没有噪声
采集图像并分析图像
图像二 有大量的噪声,称为 椒盐噪声
采集图像并分析图像
图像三 有大量的椒盐噪声, 而且模糊不清
算法研究
线形空间滤波 线形滤波源于频域中信号处理所使用的傅
立叶变换,线性运算包括将邻域中每个像素 与相应的系数相乘,然后将结果进行累加, 从而得到该点处的响应。这些系数排列为一 个矩阵,我们称其为滤波器或掩模。线性空 间滤波的过程仅是简单地在图像f中逐点移 动滤波掩模w的中心。在每个点处,滤波器 在该点处的响应是滤波掩模所限定的相应邻 域像素与滤波器系数的乘积结果的累加。所 有假设都是基于掩模的大小应均为奇数的原 则,有意义的掩模的最小尺寸是3*3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab里提供的TM图像增强实例:
View code for landsatdemoRun this demo
Landsat Color Composite
landsatdemo Landsat color composite demo.
This demo allows you to experiment with creating color composites from
Landsat Thematic Mapper ndsat data consists of7spectral bands
that each reveal different features of the region that is imaged.The
data is read into a512-by-512-by-7array.To create a color composite,
we form an RGB image by assigning spectral bands to red,green,and blue
intensities.
Try out some common color composites by clicking on the radio
buttons.The numbers in square brackets map the spectral bands to red,
green,and blue.The array[321]means band3will be shown as red
intensities,band2will be shown as blue intensities,and band1will
be shown as green intensities.
"True Color[321]"-shows what our eyes would see from an airplane.
"Near Infrared[432]"-shows vegetation as red,water as dark.
"Shortwave Infrared[743]"-shows changes due to moisture.
Click on"Custom Composite",and change the popup menus to create your own combinations of red,green,and blue.
Click on"Single Band Intensity"to see individual bands as gray
intensity images.
Try turning off"Saturation Stretch"by clicking on the checkbox.For
most Landsat data sets,saturation stretching is important.When
saturation stretching is turned on,the demo clips2%of the pixels in
each band and does a linear contrast stretch before displaying the
image.
Try turning on"Decorrelation Stretch"by clicking on the checkbox.
This visual enhancement increases color separation by eliminating
correlation between channels,making subtle spectral differences
easier to recognize.If both"Saturation Stretch"and"Decorrelation
Stretch"are checked,the decorrelation stretch is followed by a
linear saturation stretch.
While the demo is running,you can bring the image and data into the workspace.
IMG=landsatdemo('getimage')brings the image into the workspace.
DATA=landsatdemo('getdata')brings all7bands into the workspace.
Note
----
Permission to use Landsat TM data sets provided by Space Imaging, LLC,Denver,Colorado.
Example
-------
data=landsatdemo('getdata');
truecolor=data(:,:,[321]);
stretched=imadjust(truecolor,stretchlim(truecolor),[]);
imshow(truecolor),figure,imshow(stretched)
See also decorrstretch,imadjust,stretchlim,ipexlanstretch.
Run this demo。