利用MATLAB对图像进行增强处理

合集下载

matlab图像处理实验报告

matlab图像处理实验报告

matlab图像处理实验报告《Matlab图像处理实验报告》摘要:本实验报告通过使用Matlab软件进行图像处理实验,对图像进行了灰度化、二值化、边缘检测、图像增强等处理,通过实验结果分析,验证了Matlab在图像处理领域的实用性和有效性。

1. 实验目的本实验旨在通过Matlab软件进行图像处理实验,掌握图像处理的基本方法和技术,提高对图像处理算法的理解和应用能力。

2. 实验原理图像处理是对图像进行数字化处理的过程,主要包括图像获取、图像预处理、图像增强、图像分割和图像识别等步骤。

Matlab是一种功能强大的科学计算软件,具有丰富的图像处理工具箱,可用于图像的处理、分析和识别。

3. 实验内容(1)图像灰度化首先,通过Matlab读取一幅彩色图像,并将其转换为灰度图像。

利用Matlab 中的rgb2gray函数,将RGB图像转换为灰度图像,实现图像的灰度化处理。

(2)图像二值化接着,对灰度图像进行二值化处理,将图像转换为黑白二值图像。

利用Matlab 中的im2bw函数,根据设定的阈值对灰度图像进行二值化处理,实现图像的二值化处理。

(3)边缘检测然后,对二值图像进行边缘检测处理,提取图像的边缘信息。

利用Matlab中的edge函数,对二值图像进行边缘检测处理,实现图像的边缘检测处理。

(4)图像增强最后,对原始图像进行图像增强处理,改善图像的质量和清晰度。

利用Matlab 中的imadjust函数,对原始图像进行图像增强处理,实现图像的增强处理。

4. 实验结果分析通过实验结果分析,可以发现Matlab在图像处理领域具有较高的实用性和有效性。

通过Matlab软件进行图像处理实验,可以快速、方便地实现图像的处理和分析,提高图像处理的效率和精度,为图像处理技术的研究和应用提供了重要的工具和支持。

5. 结论本实验通过Matlab图像处理实验,掌握了图像处理的基本方法和技术,提高了对图像处理算法的理解和应用能力。

MATLAB中的图像融合与增强技术指南

MATLAB中的图像融合与增强技术指南

MATLAB中的图像融合与增强技术指南介绍图像处理是计算机科学与技术领域的核心研究方向之一,而MATLAB作为一种功能强大的科学计算软件,提供了许多图像融合与增强的工具和函数。

本文将深入探讨MATLAB中的图像融合与增强技术,并为读者提供一份详尽的技术指南。

一、图像融合技术1.1 像素级融合图像融合的一种常用方式是像素级融合,即将两幅或多幅图像的像素值进行组合,生成一幅新的图像。

MATLAB中的`imfuse`函数可以实现像素级融合,可以选择使用不同的融合方式,如加权平均、最大值、最小值等。

1.2 尺度级融合尺度级融合是一种多尺度图像处理技术,它将不同尺度空间中的图像进行融合,以获得更全面的信息。

MATLAB中的`waveletFusion`函数可用于尺度级融合,该函数使用小波变换对输入图像进行分解和重建,从而实现图像融合。

二、图像增强技术2.1 灰度变换灰度变换是一种常见的图像增强技术,它通过调整图像的灰度级别来改善图像的质量。

MATLAB中的`imadjust`函数可以实现灰度变换,可以通过调整参数来实现图像的对比度增强、亮度调整等效果。

2.2 直方图均衡化直方图均衡化是一种常用的图像增强技术,它通过重新分布图像的灰度级别,使得图像的直方图在整个灰度范围内更均匀。

MATLAB中的`histeq`函数可以实现直方图均衡化,可以使图像的对比度得到显著提高。

2.3 空间滤波空间滤波是一种用于图像增强的重要技术,它基于图像的局部邻域信息来对图像进行处理。

MATLAB中的`imfilter`函数可以实现各种空间滤波操作,如平滑、锐化、边缘检测等。

三、图像融合与增强实例3.1 多传感器图像融合多传感器图像融合是一种将来自不同传感器的图像信息进行融合的技术,旨在提高图像的质量和信息丰富度。

MATLAB中的`multisensorFusion`函数可以实现多传感器图像融合,可以选择使用不同的融合算法和技术。

利用Matlab进行图像去噪和图像增强

利用Matlab进行图像去噪和图像增强

利用Matlab进行图像去噪和图像增强随着数字图像处理技术的不断发展和成熟,图像去噪和图像增强在各个领域都有广泛的应用。

而在数字图像处理的工具中,Matlab凭借其强大的功能和易于使用的特点,成为了许多研究者和工程师首选的软件之一。

本文将介绍如何利用Matlab进行图像去噪和图像增强的方法和技巧。

一、图像去噪图像去噪是指通过一系列算法和技术,将图像中的噪声信号去除或减弱,提高图像的质量和清晰度。

Matlab提供了多种去噪方法,其中最常用的方法之一是利用小波变换进行去噪。

1. 小波变换去噪小波变换是一种多尺度分析方法,能够对信号进行时频分析,通过将信号分解到不同的尺度上,实现对图像的去噪。

在Matlab中,可以使用"dwt"函数进行小波变换,将图像分解为低频和高频子带,然后通过对高频子带进行阈值处理,将噪声信号滤除。

最后通过逆小波变换将去噪后的图像重构出来。

这种方法能够有效抑制高频噪声,保留图像的细节信息。

2. 均值滤波去噪均值滤波是一种基于平均值的线性滤波方法,通过计算像素周围邻域内像素的平均值,替代原始像素的值来去除噪声。

在Matlab中,可以使用"imfilter"函数进行均值滤波,通过设置适当的滤波模板大小和滤波器系数,实现对图像的去噪。

二、图像增强图像增强是指通过一系列算法和技术,改善图像的质量、增强图像的细节和对比度,使图像更容易被观察和理解。

Matlab提供了多种图像增强方法,以下将介绍其中的两种常用方法。

1. 直方图均衡化直方图均衡化是一种通过对图像像素值的分布进行调整,增强图像对比度的方法。

在Matlab中,可以使用"histeq"函数进行直方图均衡化处理。

该函数能够将图像的像素值分布拉伸到整个灰度级范围内,提高图像的动态范围和对比度。

2. 锐化增强锐化增强是一种通过增强图像边缘和细节来改善图像质量的方法。

在Matlab中,可以使用"imsharpen"函数进行图像的锐化增强处理。

Matlab中的图像增强方法

Matlab中的图像增强方法

Matlab中的图像增强方法图像增强是数字图像处理中的一项重要技术,通过使用各种算法和方法,可以改善图像的质量、增加图像的信息量和清晰度。

在Matlab中,有许多强大而灵活的工具和函数,可以帮助我们实现图像增强的目标。

本文将介绍几种常用的Matlab图像增强方法,并探讨它们的原理和应用。

一、直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素分布来增强图像的对比度和亮度。

在Matlab中,我们可以使用“histeq”函数来实现直方图均衡化。

该函数会根据图像的直方图信息,将像素的灰度值重新映射到一个均匀分布的直方图上。

直方图均衡化的原理是基于图像的累积分布函数(CDF)的变换。

它首先计算图像的灰度直方图,并根据直方图信息计算CDF。

然后,通过将CDF线性映射到期望的均匀分布上,将图像的像素值进行调整。

直方图均衡化的优点在于简单易实现,且效果较好。

但它也存在一些限制,比如对噪声敏感、全局亮度调整可能导致细节丢失等。

因此,在具体应用中,我们需要权衡其优缺点,并根据图像的特点选择合适的方法。

二、自适应直方图均衡化自适应直方图均衡化是对传统直方图均衡化的改进,它能够在改善对比度的同时,保持局部细节。

与全局直方图均衡化不同,自适应直方图均衡化采用局部的直方图信息来进行均衡化。

在Matlab中,我们可以使用“adapthisteq”函数来实现自适应直方图均衡化。

该函数会将图像分成小块,并在每个块上进行直方图均衡化。

通过这种方式,自适应直方图均衡化可以在增强图像对比度的同时,保留图像的细节。

自适应直方图均衡化的优点在于针对每个小块进行处理,能够更精确地调整局部对比度,避免了全局调整可能带来的细节丢失。

然而,相对于全局直方图均衡化,自适应直方图均衡化的计算量较大,因此在实时处理中可能会引起性能问题。

三、模糊与锐化图像增强不仅局限于对比度和亮度的调整,还可以改善图像的清晰度和边缘信息。

在Matlab中,我们可以使用一些滤波器来实现图像的模糊和锐化。

利用Matlab进行图像去雾与增强的技巧

利用Matlab进行图像去雾与增强的技巧

利用Matlab进行图像去雾与增强的技巧引言:随着数字图像处理技术的快速发展,人们对于图像的质量要求也越来越高。

然而,在拍摄或者采集图像时,由于天气、光照等各种原因,图像中常常存在雾霾现象,导致图像质量下降。

因此,图像去雾与增强成为了图像处理领域的重要研究方向。

本文将介绍利用Matlab进行图像去雾与增强的技巧。

一、图像去雾技术1. 传统去雾技术传统的图像去雾技术主要基于图像中的像素信息和颜色分布,通过调整图像的对比度、亮度以及增强局部细节来降低雾霾的影响。

其中,最常用的方法是通过估计全局大气光来进行去雾处理。

具体步骤如下:- 首先,通过计算图像中每个像素的亮度值,选择其中的亮度最大值作为全局大气光的估计值。

- 然后,根据全局大气光的估计值和经验参数,对图像进行调整,降低雾霾的影响。

- 最后,通过调整图像的对比度和亮度,增强图像的细节信息。

2. 基于深度学习的图像去雾技术近年来,随着深度学习的快速发展,基于深度学习的图像去雾技术取得了显著的进展。

与传统方法相比,基于深度学习的方法能够更准确地估计图像中的雾霾密度,并恢复出更清晰的图像。

具体步骤如下:- 首先,构建一个深度卷积神经网络模型,用于学习图像的雾霾特征。

- 然后,通过输入原始图像和雾密度的估计值,使用深度学习模型对图像进行去雾处理。

- 最后,根据去雾处理后的图像,调整图像的对比度和亮度,进一步增强图像的细节和质量。

二、图像增强技术1. 对比度增强对比度是指图像中不同区域之间的亮度差异程度。

对于低对比度的图像,可以使用以下技术来进行增强:- 线性变换:通过调整图像的灰度级分布,使得图像的对比度增加。

- 直方图均衡化:通过对图像的灰度级分布进行变换,使得图像的亮度均匀分布,增强图像的对比度。

- 自适应直方图均衡化:结合图像的局部信息,对图像的灰度级分布进行自适应调整,更好地增强图像的细节。

2. 锐化增强图像的锐化增强是通过增强图像的边缘和细节,使得图像更加清晰和鲜明。

使用Matlab进行图像增强与图像修复的方法

使用Matlab进行图像增强与图像修复的方法

使用Matlab进行图像增强与图像修复的方法图像增强与图像修复是数字图像处理领域中的重要研究方向之一。

随着数字摄影和图像处理技术的快速发展,越来越多的应用需要对图像进行增强和修复,以提高图像的质量和视觉效果。

在本文中,我们将探讨使用Matlab进行图像增强和图像修复的方法。

一、图像增强方法图像增强是通过对图像进行处理,改善其质量,使其更加清晰、鲜明和易于观察。

下面将介绍几种常用的图像增强方法。

1. 灰度拉伸灰度拉伸是一种简单而有效的图像增强方法,通过拉伸图像的灰度范围,使得图像中的细节更加明确可见。

具体操作是将图像的最低灰度值映射到0,最高灰度值映射到255,中间的灰度值按比例映射到相应的范围。

在Matlab中,我们可以使用imadjust函数实现灰度拉伸。

2. 直方图均衡化直方图均衡化是一种常用的图像增强方法,通过对图像的灰度分布进行调整,使得图像的对比度得到增强。

具体操作是对图像的灰度直方图进行均衡化处理,将图像的灰度级分布均匀化。

在Matlab中,我们可以使用histeq函数实现直方图均衡化。

3. 锐化锐化是一种常用的图像增强方法,通过增强图像的边缘和细节,使得图像更加清晰和立体。

具体操作是对图像进行高通滤波,突出图像中的边缘信息。

在Matlab中,我们可以使用imsharpen函数实现图像锐化。

4. 去噪去噪是一种常用的图像增强方法,通过抑制图像中的噪声,提高图像的质量。

常见的去噪方法包括中值滤波、均值滤波和小波去噪等。

在Matlab中,我们可以使用medfilt2函数实现中值滤波。

二、图像修复方法图像修复是对图像中存在的缺陷或损坏进行补全或恢复的过程,以提高图像的可视化效果。

下面将介绍几种常用的图像修复方法。

1. 图像插值图像插值是一种常用的图像修复方法,通过根据已知的像素值推测缺失的像素值,从而补全图像中的缺失部分。

常见的插值方法包括最近邻插值、双线性插值和双立方插值等。

在Matlab中,我们可以使用interp2函数实现图像插值。

基于matlab的图像对比度增强处理的算法的研究与实现

基于matlab的图像对比度增强处理的算法的研究与实现1. 引言1.1 研究背景图像对比度增强是数字图像处理中的一个重要领域,它能够提高图像的视觉质量,使图像更加清晰、鲜明。

随着现代科技的快速发展,图像在各个领域的应用越来越广泛,因此对图像进行对比度增强处理的需求也越来越迫切。

在数字图像处理领域,图像对比度增强处理是一种经典的技术,通过调整图像的灰度级范围,提高图像的对比度,使图像更加清晰和易于观察。

对比度增强处理可以应用于医学影像、卫星图像、照片修复等领域,有效提升图像质量和信息量。

随着数字图像处理算法的不断发展和完善,基于matlab的图像对比度增强处理算法也得到了广泛研究和应用。

通过matlab编程实现图像对比度增强处理算法,可以快速、高效地对图像进行处理,并进行实验验证和效果分析。

研究基于matlab的图像对比度增强处理算法的研究与实现具有重要的理论意义和实际应用价值。

1.2 研究目的研究目的是探索基于matlab的图像对比度增强处理算法,通过对比不同算法的效果和性能进行分析,进一步提高图像的清晰度和质量。

具体目的包括:1. 深入理解图像对比度增强处理的基本原理,掌握常用的算法和技术;2. 研究基于matlab的图像对比度增强处理算法实现的方法和步骤,探究其在实际应用中的优劣势;3. 通过实验结果与分析,评估不同算法在提升图像对比度方面的效果和效率;4. 对现有算法进行优化与改进,提出更加有效的图像对比度增强处理方法;5.总结研究成果,为今后进一步完善图像处理技术提供参考和借鉴。

通过对图像对比度增强处理算法的研究与实现,旨在提高图像处理的效率和质量,满足不同应用领域对图像处理的需求,促进图像处理技术的发展和应用。

1.3 研究意义对比度增强处理是图像处理领域中一项重要的技术,在实际应用中有着广泛的使用。

通过增强图像的对比度,可以使图像更加清晰、鲜明,提高图像的质量和观感效果。

对比度增强处理在医学影像分析、卫星图像处理、数字摄影等领域都有着重要的应用。

Matlab技术图像增强方法

Matlab技术图像增强方法图像增强是数字图像处理的一个重要任务,通过改善图像的质量和视觉效果来提高图像的可读性和理解性。

在现实生活中,我们常常会遇到一些图像质量较差、光照不均匀或者图像噪声较多的情况,这时候就需要借助一些图像增强方法来改善图像。

Matlab作为一款强大的数学软件,提供了丰富的图像处理工具箱,其中包含了多种图像增强方法。

本文将介绍几种常用的Matlab图像增强方法,并对其原理和应用进行探讨。

一、直方图均衡化直方图均衡化是一种常用的图像增强方法,通过重新分配图像的灰度级来拉伸图像的灰度范围,以增强图像的对比度和细节。

在Matlab中,我们可以使用以下代码实现图像的直方图均衡化:```matlabimg = imread('image.jpg');img_eq = histeq(img);imshowpair(img, img_eq, 'montage');```直方图均衡化的原理是将图像的累积分布函数进行线性映射,使得图像的灰度级均匀分布,从而增强对比度。

然而,直方图均衡化有时候会导致图像过亮或者过暗,因为它只考虑了灰度分布,并未考虑图像的空间信息。

二、自适应直方图均衡化为了克服直方图均衡化的不足,自适应直方图均衡化应运而生。

自适应直方图均衡化是一种局部增强方法,它将图像划分为若干小区域,并对每个区域进行直方图均衡化,以保留图像的局部对比度。

Matlab中的自适应直方图均衡化函数为`adapthisteq`,使用方法如下:```matlabimg = imread('image.jpg');img_adapteq = adapthisteq(img);imshowpair(img, img_adapteq, 'montage');```自适应直方图均衡化在增强图像对比度的同时,能够保留图像的细节,并且不会引入过多的噪声。

基于MATLAB的图像增强处理与应用


b = i m n o i s e( a , ’ g a u s s i a n ’ , 0 7 0 . 0 2 ) ; % ̄ l L / k . 高斯 噪

是拉氏算子增强的一大缺点。[ 6 1
3 结束 语
c = i f l t e r 2( f s p e c i a l( ‘ a v e r a g e ’ , [ 3 , 3 ] ) , b ) / 2 5 5 ; %用
7 7 . 79 .
MA T L A B中可 以采用拉普拉斯算子法对 图像
进行 锐化 , 其程 序语 言如下 :
i = i mr e a d ( ‘ i ma g e 。j P g ’ ) ;
[ 6 】 张兆礼 , 赵春晖 , 梅晓丹. 现代 图像处理技术 [ M] . 北京 : 人 民邮电出版社 , 2 0 1 1 .
[ 4 】 求是科技。 MA T L A B 7 . 0 从AI ' - I 到精通【 M】 .
北京 : 人 民 邮电 出版 社 , 2 0 0 9 .
[ 5 ] 徐辉. 基于 m a t l a b的图像增强技术的分析与
研究 [ J ] .湖 北 第 二 师 范 学 院 学 报 , 2 0 0 8 , 2 5 ( 0 8 ) :
0 1 0 1 ;%拉式算子模板表示
{ = c o n v 2 ( i , h , ‘ s a m e ’ ) ;%用拉式算子对 图像滤

k = i - j ; %增强 图像为原始 图像减去拉式算子
结构设 计 。
参考 文献
[ 1 1 冯安 , 王希常. MA T L A B在数字图像增强 中
的应用[ J 】 . 信息技术 , 2 0 0 7 , ( 0 5 ) : 6 5 . 6 8 , 7 3 . 【 2 】王斌. MA T L A B实现数字图像增强处理【 J ] .

《数字图像处理及MATLAB实现》图像增强与平滑实验

《数字图像处理及MATLAB实现》图像增强与平滑实验一.实验目的及要求1、熟悉并掌握MA TLAB 图像处理工具箱的使用;2、理解并掌握常用的图像的增强技术。

二、实验设备MATLAB 6.5 以上版本、WIN XP 或WIN2000 计算机三、实验内容(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。

熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。

(可将每段程序保存为一个.m文件)1.直方图均衡化clear all; close all % Clear the MATLAB workspace of any variables% and close open figure windows.I = imread('pout.tif'); % Reads the sample images ‘pout.tif’, and stores it inimshow(I) % an array named I.display the imagetext(60,20,'李荣桉1909290239','horiz','center','color','r')figure, imhist(I) % Create a histogram of the image and display it in% a new figure window.[I2,T] = histeq(I); % Histogram equalization.figure, imshow(I2) % Display the new equalized image, I2, in a new figure window.text(60,20,'李荣桉1909290239','horiz','center','color','r')figure, imhist(I2) % Create a histogram of the equalized image I2.figure,plot((0:255)/255,T); % plot the transformation curve.imwrite (I2, 'pout2.png'); % Write the newly adjusted image I2 to a disk file named% ‘pout2.png’.imfinfo('pout2.png') % Check the contents of the newly written file2.直接灰度变换clear all; close allI = imread('cameraman.tif'); 注意:imadjust()功能:调整图像灰度值或颜色映像表,也可实现伽马校正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB 是矩阵实验室(Matrix Laboratory)之意。除具备卓越 的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视 化建模仿真和实时控制等功能。
MATLAB 的基本数据单位是矩阵,它的指令表达式与数学,工程中常 用的形式十分相似,故用 MATLAB 来解算问题要比用 C,FORTRAN 等语言完 相同的事情简捷得多.
1.2.2 MATLAB 的函数文件
MATLAB 的内部函数是有限的,有时为了研究某一个函数的各种 性态,需要为 MATLAB 定义新函数,为此必须编写函数文件.
函数文件的第一行必须以特殊字符 function 开始,格式为: function < 因变量名> = < 函数名(自变量名)> 函数值的获得必须通过具体的运算实现,并赋给因变量.
2 数字图像处理的基本知识.....................................................................................3 2.1 数字图像处理的概念................................................................................ 3 2.1.1 图像的定义.................................................................................. 3 2.1.2 图像的基本属性............................................................................ 3 2.1.3 数字图像处理的概念...................................................................... 3 2.2 数字图像处理的内容................................................................................ 3 2.3 数字图像处理的特点及其应用.................................................................... 5 2.3.1 数字图像处理的基本特点................................................................ 5 2.3.2 数字图像处理的主要应用................................................................ 5 2.3.3 数字图像处理的主要优点................................................................ 5
4 利用直方图均衡化和直方图规定化对图像进行增强..................................................13 4.1 利用直方图均衡化对图像进行增强............................................................ 13 4.2 利用直方图规定化对图像进行增强............................................................ 14
1.3 MATLAB 的程序设计方法........................................................................ 2 1.3.1 逻辑运算符.................................................................................. 2 1.3.2 控制流........................................................................................ 2
基本要求:
1、 学会 MATLAB 的使用,掌握 MATLAB 的程序设计方法。 2、熟悉数字图像处理的基本知识。 3、利用灰度变换中的线性变换、分段线性变换、非线性变换对图像进行增强。 4、利用直方图均衡化和直方图规定化对图像进行增强 5、显示增强前后的图像,并对比增强的效果。
主要参考资料:
1、包振华.基于 MATLAB 的灰度级线性变换图像增强[J].武汉职业技术学院学 报.2006,3
郑州轻工业学院 课程设计任务书
题目
利用 MATLAB 对图像进行增强处理
专业、班级 资料等:
主要内容:
在图像形成、传输或变换的过程中,由于受到一些客观因素的影响,会使图像 产生失真,如图像对比度降低和图像模糊等等。因此需要利用图像增强技术改善这 种情况。寻找一幅灰度分布不均的原始图像,在 MATLAB 环境下对图像进行增强处 理。要求利用灰度变换、直方图均衡化和直方图规定化对图像进行增强,显示增强 前后的结果并比较增强的效果。
开放性使 MATLAB 广受用户欢迎.除内部函数外,所有 MATLAB 主包文 件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加 入自己编写程序构造新的专用工具包.
1.2 MATLAB 的使用
MATLAB 的 M 文件是文件名后缀为 M 的文件,有两种形式,一 种是程序文件,一种是函数文件。
对比度:是画面黑与白的比值,也就是从黑到白的渐变层次。比值 越大,从黑到白的渐变层次就越多,从而色彩表现越丰富。
直方图:表示图像中具有每种灰度级的象素的个数,反映图像中每 种灰度出现的频率。图像在计算机中的存储形式,就像是有很多点组成 一个矩阵,这些点按照行列整齐排列,每个点上的值就是图像的灰度值, 直方图就是每种灰度在这个点矩阵中出现的次数。
3 利用基本灰度变换对图像进行增强.........................................................................6 3.1 线性灰度变换......................................................................................... 6 3.2 分段线性灰度变换................................................................................... 8 3.3 非线性灰度变换.................................................................................... 10
5 参考文献........................................................................................................16
II
1 MATLAB的使用及其程序设计方法
1.1 MATLAB 简介
1.1.1 MATLAB 的概况
1.2.1 MATLAB 的程序文件
MATLAB 的应用程序。 调用方法:只需在 MATLAB 命令窗口直接输入文件名即可。 M 文件建立方法: 1、在 MATLAB 中,选择菜单:“File”→“New” →“M-file” 2、在编辑窗口中输入程序内容 3、选择菜单“File” →“Save”,存盘。
1.3.2 控制流
MATLAB 提供四种决策或控制语句: if-else-end 语句、 switch 语句、 for 语句、while 语句 前两种属于分支结构,后两种属于循环结构。这些结构通常包含大量的
MATLAB 命令,故常出现在 MATLAB 程序中,而不是直接应用在 MATLAB 提示符下。
I
目录
摘要.....................................................................................................................I 目录................................................................................................................... II 1 MATLAB 的使用及其程序设计方法....................................................................... 1
2、 汪志云. 基于直方图的图像增强及其 MATLAB 实现[J].计算机工程与科 学.2006,2
3、 贾永红. 数字图像处理[M].武汉大学出版社.2003,9
完 成 期 限:2010.6.21—2010.6.25
指导教师签名:
课程负责人签名:
2010 年 6 月 18 日
摘要
在图像形成、传输或变换的过程中,由于受到一些客观因素的影响, 会使图像产生失真,如图像对比度降低和图像模糊等等。因此需要利用 图像增强技术改善这种情况。本文寻找了一幅灰度分布不均的原始图像, 在 MATLAB 环境下对图像进行增强处理。本文还利用灰度变换、直方 图均衡化和直方图规定化对图像进行增强,显示增强前后的结果并比较 增强的效果。 关键词:图像增强,灰度变换,直方图均衡化,直方图规定化
1
说明: 函数文件名必须与函数名一致。 程序文件也以 M 文件保存。
1.3 MATLAB 的程序设计方法
由关系运算符构成的表达式称为关系表达式。
1.3.1 逻辑运算符
关系操作符 < <= > >= == ~=
相关文档
最新文档