边坡稳定计算

合集下载

(整理)边坡稳定性计算方法

(整理)边坡稳定性计算方法

一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。

根据边坡不同破裂面形状而有不同的分析模式。

边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。

这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。

(一)直线破裂面法化计算这类边坡稳定性分析采用直线破裂面法。

能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。

图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指标为c、φ。

如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。

沿边坡长度方向截取一个单位长度作为平面问题分析。

图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(ΔABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。

对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时当 F s =1时,β=φ,表明边坡处于极限平衡状态。

此时β角称为休止角,也称安息角。

此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。

这类滑坡滑动面的深度与长度之比往往很小。

当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。

图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。

取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。

第三讲边坡稳定性计算全过程

第三讲边坡稳定性计算全过程

第三讲边坡稳定性计算全过程边坡是指地面或岩石的斜坡,由于地质、工程结构或人为因素等原因,边坡可能会发生滑坡、坍塌等不稳定现象,因此边坡稳定性计算是工程设计中的重要环节。

本文将介绍边坡稳定性计算的全过程。

边坡稳定性计算过程主要包括选取边坡几何参数、确定边坡承载力和应力状态、计算安全系数和稳定性分析。

首先,需要选取合适的边坡几何参数,包括边坡的高度、坡度、坡面角等。

这些参数对边坡的稳定性有着重要的影响,需要根据具体情况进行选取。

接下来,需要确定边坡的承载力和应力状态。

边坡的承载力是指边坡能够承受的最大荷载,其取决于边坡材料的强度特性。

根据土壤或岩石的强度参数,可以计算边坡的承载力。

应力状态是指边坡内部的应力分布情况,可以通过有限元分析或理论计算进行确定。

然后,需要进行边坡的安全系数计算。

安全系数是评价边坡稳定性的重要指标,是边坡承载力与作用在边坡上的力的比值。

通常,安全系数大于1时,表示边坡稳定;安全系数小于1时,表示边坡不稳定。

安全系数的计算可以使用理论方法、有限元分析或实测数据等多种方法。

最后,进行边坡稳定性分析。

边坡稳定性分析是根据边坡参数、承载力和应力状态,通过计算安全系数来评估边坡的稳定性。

在分析过程中,通常需要考虑边坡的剪切强度、抗滑稳定性、土体的重力等因素,并进行相应的计算。

边坡稳定性分析可以通过手算、计算软件或有限元分析等方法进行。

总结起来,边坡稳定性计算的全过程包括选取边坡几何参数、确定边坡承载力和应力状态、计算安全系数和稳定性分析。

在实际工程中,为了确保边坡的稳定性,需要进行细致的计算过程,并根据计算结果进行相应的工程设计和措施的采取。

边坡稳定性设计计算

边坡稳定性设计计算

边坡稳定性计算一、基本资料土力学指标:天然容重(KN/m3)塑限(%)液限(%)含水量(%)粘聚力(kPa)内摩擦角(。

)tanφ18 14 27 19 19 28 0.53171二、稳定性验算公路按一级公路标准,双向四车道,设计车速为80km/h,路基宽度为24.5m,荷载为车辆重力标准值550KN,中间带取2m,车道宽度3.75m,硬路肩2.5m,土路肩0.75m,进行最不利布载时对左右各布3辆车。

路堤横断面图如下:1)将标准车重转换成土柱高度,按下列公式计算:ℎ0= NQ BLγ公式中:L按《公路丁程技术标准》(JTG BOl)规定对千标准车辆荷载取 12. 8m。

B为荷载横向分布宽度 (m)表示如下:B=Nb+(N-1)m+d其中:N为车辆数,取6;m为相邻两车的轮距,取1.3m ;d为轮胎着地宽度,取0.6m。

即:B = 6×1.8+(6-1)×1.3+0.6 = 17.9m因此ℎ0=NQBLγ=6×55017.9×12.8×18=0.8m2)计算高度HH = h0+H1+H2 =0.8+7+8 =15.8m3)计算平均坡度I已知上部坡度为1:1.25,下部坡度为1:1.5,台阶宽为2m,由已知数据可得平均坡度I为:I =(0.8+7+8):(8.75+2+12)=1:1.44 =1:1.5查规范得β1=26°、β2=35°三、按4.5H法确定滑动圆心辅助线,并绘制不同位置的滑动曲线1)滑动曲线过路基左边缘3/4处,将圆弧范围土体分成8块,如下:(从右往左分为5100×7+5450×1,8块)为4375×8,8块)右往左分为3600×7+3675×1,8块)4)滑动曲线过路基左边缘3/16处,将圆弧范围土体分成8块,如下:(从右往左分为3400×7+3543×1,8块)5)滑动曲线过路基左边缘1/8处,将圆弧范围土体分成8块,如下:(从右往左分为3300×7+2712×1,8块)6)由此可得出5个滑动面的K值,并作图如下:各个滑动面K值数据由上表可见K3曲线为极限的滑动面。

边坡稳定性计算方法

边坡稳定性计算方法

A
C c
B a
b
D
E. Hoek等人提出了一种确
定楔体稳定系数的方法——
E. Hoek图解法。
____________________________ 第十二页,共五十八页。
楔形体滑坡的E. Hoek图解法
E. Hoek法是将边坡面、坡顶面和两个结构面绘制在赤平极射投影 图上,4个圆弧有5个交点,分别代表了5条线,各线之间的夹角可在图
• 边坡内有确定的滑面及竖直张裂逢
_______________________________________________________________________________________
• 边坡内没有确定的滑面,滑面需经分析求得
_____________________________________________________________________________________________________________
力就范其1.1可 对对。目5内 外,工以稳通排排前三程土土判定过,场场级的断系抗边边边建影出 数滑坡坡坡筑响边 的力稳等物坡 大与定因取岩 小滑分素1体作动析.0确所出力5的。定处了(结,的规或果对状定抗通一态。滑常级,力用建这矩边筑就与坡物是滑稳取边动定1坡.力系2<>>5稳121矩数,000定)来二性级的表分建1比示.211析筑~较.。.321物。.5规,取 《露天煤矿工程设计规范》(GB 50197-94)
危险,另一个可能 是安全的。 Wsinψ
不超过柱体的底缘即:
h
Wsin tanb
Wcos
h
Wcosψ
W
ψ
第十六页,共五十八页。

边坡稳定性计算方法

边坡稳定性计算方法
边坡稳定性计算通常采用整体的极限平衡方法,根据破裂面形状有不同分析模式。直线破裂面法适用于破裂面近似平面的边坡,通过计算下滑力和抗滑力确定呈圆弧形。该方法包括圆弧滑动法和瑞典条分法,前者通过计算滑动力矩和抗滑力矩之比得到安全系数,适用于摩擦角为0的情况;后者则将滑动土体分成若干土条,分别计算各土条上的力对圆心的滑动力矩和抗滑力矩,进而求得整体的安全系数。这两种方法都是基于土体极限平衡理论,通过力学分析来评估边坡的稳定性,为工程设计和施工提供重要依据。

边坡稳定性计算极限平衡计算法的园弧形计算法

边坡稳定性计算极限平衡计算法的园弧形计算法

书山有路勤为径,学海无涯苦作舟
边坡稳定性计算极限平衡计算法的园弧形计算法
一、判别准则和要求
判定圆弧形滑坡的条件为:均质松散介质,包含多组产状各异的节理及风化破碎岩体。

二、边坡稳定系数计算
(一)滑动面位置的确定
弗先柯(ΦИСΕΗΚΟ·Γ·Η)作图法:根据()计算张裂隙高度,过坡顶B 点,取垂线BF=H90,过F 点以与水平线FC 成()角作直线FE,过坡脚A 点以与水平线成()角作直线AK 交FE 于K 点,再过A 点作AG 使与AB 成()角,作AK 的中垂线,过A 点作AG 线的垂线,并与上述中垂线相交于O 点,O 点即为所求的滑动弧AK 的圆心,如图1。

霍克(E· Hoek)曲线法①:用内摩擦角与边坡角度和高度H 查曲线图求出滑动弧圆心。

用试算法确定滑动面位置:取弧长L(如或等)与滑坡体最大厚度d 之比值等于7,作若干圆弧(一般作5 条,见图2),然后分别进行稳定性计算,取稳定性系数值最小者。

图1 弗先柯(ΦИСΕΗΚΟ·Γ·Η)图2 按试算法确定临界
临界滑面位置滑面位置
(二)稳定系数计算
圆弧形滑坡条块法计算是先根据所确定的滑动面位置,将滑坡体划分成若干个垂直条块,如图3,然后按分条块逐个进行的。

边坡支护计算书

边坡支护计算书

平面、折线滑动法边坡稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑边坡工程技术规范》GB50330-20133、《建筑施工计算手册》江正荣编著一、基本参数二、边坡稳定性计算计算简图滑动体自重和顶部所受荷载:W= (1/2γH+q)×H×(ctgω-ctgα)=1/2(γH+2q)×H×sin(α-ω)/sinω/sinα边坡稳定性系数为:K s=(W×cosω×tanφ+H/sinω×c)/(W×sinω)= cotω×tanφ+2c/(γH+2q)×sinα/(sin(α-ω)×sinω)滑动面位置不同,Ks值亦随之而变,边坡稳定与否根据稳定性系数的最小值Ksmin判断,相应的最危险滑动面的倾角为ω0。

求K smin值,根据dKs/dω=0,得最危险滑动面的倾角ω0的值:ctgω=ctgα+(a/(tanφ+a))0.5×cscα式中:a=2c/(γH+2q)= 2×26/(19×6.5+2×2)= 0.408ctgω=ctgα+(a/(tanφ+a))0.5×cscα= ctg(62°)+(0.408/(tan(13°)+0.408))0.5×csc(62°) = 1.437则边坡稳定性最不利滑动面倾角为:ω0= 34.834°K smin=(2a+tanφ)×ctgα+2×(a(tanφ+a))0.5×cscα=(2×0.408+tan(13°))×ctg(62°)+2×(0.408×(tan(13°) +0.408))0.5×csc(62°)=1.713≥1.3满足要求!。

边坡稳定性计算

边坡稳定性计算
计算方法
采用极限平衡法和数值分析法相结合的方法进行计算。
稳定性分析
通过计算得到安全系数为1.05,表明该边坡处于临界稳定 状态,需采取加固措施进行治理。加固措施包括锚杆格构 护坡、预应力锚索等。
05
CATALOGUE
边坡稳定性加固措施与建议
加固措施类型及原理
支挡结构加固
通过挡土墙、抗滑桩等支挡结构,承担边坡的土压力,阻止边坡 滑动。
研究成果总结
1 2 3
边坡稳定性计算模型
成功构建了考虑多种因素的边坡稳定性计算模型 ,提高了预测精度。
数值分析方法
发展了基于有限元、离散元等数值分析方法的边 坡稳定性计算技术,实现了复杂条件下边坡稳定 性的快速评估。
实时监测技术
将实时监测技术应用于边坡稳定性计算中,实现 了对边坡变形、渗流等过程的实时监测和预警。
排水系统加固
设置排水沟、截水沟等,排除地表水和地下水,降低边坡土体的含 水量,提高边坡稳定性。
加筋土加固
在边坡土体中加入拉筋或加筋材料,提高土体的抗剪强度和整体性 ,增加边坡的稳定性。
加固措施选择与优化
选择原则
根据边坡的地质条件、工程要求 、施工条件等因素,选择经济合 理、技术可行的加固措施。
优化方向
01
边坡类型
ห้องสมุดไป่ตู้
岩质边坡,高度20m,由砂岩和泥岩互层构成,坡度1:1。
02
计算方法
采用数值分析法中的有限元法进行计算。
03
稳定性分析
通过计算得到安全系数为1.15,表明该边坡在天然状态下处于基本稳定
状态,但在开挖或爆破等扰动作用下可能会发生局部失稳或崩塌。
实例三:复杂条件下边坡稳定性计算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。

根据边坡不同破裂面形状而有不同的分析模式。

边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。

这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。

(一)直线破裂面法所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。

为了简化计算这类边坡稳定性分析采用直线破裂面法。

能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。

图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指标为c、φ。

如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。

沿边坡长度方向截取一个单位长度作为平面问题分析。

图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。

对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时当 F s =1时,β=φ,表明边坡处于极限平衡状态。

此时β角称为休止角,也称安息角。

此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。

这类滑坡滑动面的深度与长度之比往往很小。

当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。

图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。

取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。

通过稳定因数可以确定α和φ关系。

当c=0 时,即无粘性土。

α =φ,与前述分析相同。

二圆弧条法根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。

粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。

由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。

根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。

因此,在工程设计中常假定滑动面为圆弧面。

建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。

1. 圆弧滑动法1915 年瑞典彼得森(K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。

图9 -3 表示一均质的粘性土坡。

AC 为可能的滑动面,O为圆心,R 为半径。

假定边坡破坏时,滑体ABC在自重W 作用下,沿AC绕O 点整体转动。

滑动面AC上的力系有:促使边坡滑动的滑动力矩M s =W · d ;抵抗边坡滑动的抗滑力矩,它应该包括由粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里假定φ=0 。

边坡沿AC的安全系数F s 用作用在AC面上的抗滑力矩和下滑力矩之比表示,因此有这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ=0 的情况。

图9-3 边坡整体滑动 2. 瑞典条分法前述圆弧滑动法中没有考虑滑面上摩擦力的作用,这是由于摩擦力在滑面的不同位置其方向和大小都在改变。

为了将圆弧滑动法应用于φ>0 的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者Fellenius 提出了圆弧条分析法,也称瑞典条分法。

条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式(9-5 )求土坡的稳定安全系数。

采用分条法计算边坡的安全系数F ,如图9 -4 所示,将滑动土体分成若干土条。

土条的宽度越小,计算精度越高,为了避免计算过于繁琐,并能满足设计要求,一般取宽为 2 ~6m 并应选择滑体外形变休和土层分界点作为分条的界限。

于任意第i条上的作用力如下。

图9-4 瑞典条分法(1)土条的自。

其中γ 为土的容得,为土条的断面面积。

将沿其断面积的形心作用至圆弧滑面上并分解成垂直滑面的法向分力和切于滑面的切向分力,由图9 -4 ( b )可知:显然,是推动土体下滑的力。

但如果第i 条们于滑弧圆心铅垂线的载侧(坡脚一边),则起抗滑作用。

对于起抗滑作用的切向分力采用符号T ′表示。

因作用线能过滑弧圆心O 点力矩为零,对边坡不起滑动作用,但决定着滑面上抗剪强度的大小。

(2)滑面上的抗滑力S ,方向与滑动方向相反。

根据库仑公式应有S=N i tanφ+cl i 。

式中l i 为第i条的滑弧长。

(3)土条的两个侧面存在着条块间的作用力。

作用在i条块的力,除重力外,条块侧面ac和bd 作用有法向力P i 、P i+1 ,切向力Hi 、H i+1 。

如果考虑这些条间力,则由静力平衡方程可知这是一个超静定问题。

要使问题得解,由两个可能的途径:一是抛弃刚体平衡的概念,把土当做变形体,通过对土坡进行应力变形分析,可以计算出滑动面上的应力分布,因此可以不必用条分法而是用有限元方法。

另一途径是仍以条分法为基础,但对条块间的作用力作一些可以接受的简化假定。

Fellenius 假定不计条间力的影响,就是将土条两侧的条件力的合力近似地看成大小相等、方向相反、作用在同作用面上。

实际上,每一土条两侧的条间力是不平衡的,但经验表明,土条宽度不大时,在土坡稳定分析中,忽略条间力的作用对计算结果的影响不显著。

将作用在各段滑弧上的力对滑动圆心取矩,并分别将抗滑作用、下滑作用的力矩相加得出用在整个滑弧上的抗滑力矩以及滑动力矩的总和,即将抗滑力矩与下滑力矩之比定义为土坡的稳定安全系数,即这就是瑞典条分法稳定分析的计算公式。

该法应用的时间很长,积累了丰富的工程经验,一般得到的安全系数偏低,即偏于安全,故目前仍然是工程上常用的方法。

(三)毕肖普法从前述瑞典条分法可以看出,该方法的假定不是非常精确的,它是将不平衡的问题按极限平衡的方法来考虑并且未能考虑有效应力下的强度问题。

随着土力学学科的不断发展,不少学者致力于条分法的改进。

一是着重探索最危险滑位置的规律,二是对基本假定作些修改和补充。

但直到毕肖普( A.N.Bishop )于1955 年担出了安全系数新定义,条分法这五方法才发生了质的飞跃。

毕肖普将边坡稳定安全系数定义为滑动面上土的抗剪强度τ f 与实际产生的剪应力τ之比,即(9-7)这一安全系数定义的核心在于一是能够充分考虑有效应力下的抗剪总是;二是充分考虑了土坡稳定分析中土的抗剪强度部分发挥的实际情况。

这一概念不公使其物理意义更加明确,而且使用范围更广泛,为以后非圆弧滑动分析及土条分界面上条间力的各种考虑方式提供了有得条件。

由图 9 - 5 所示圆弧滑动体内取出土条i进行分析,则土条的受力如下:1.土条重W i 引起的切向反力T i 和法向反力N i ,分别作用在该分条中心处2.土条的侧百分别作用有法向力P i 、P i+1 和切向力H i 、H i+1 。

由土条的竖向静力平衡条件有∑ F z ,即图9-5 毕肖普法条块作用力分析(9-8)当土条未破坏时,滑弧上土的抗剪强度只发挥了一部分,毕肖普假定其什与滑面上的切向力相平衡,这里考虑安全系数的定义,且ΔH i =H i+1 -H i 即(9-9)将(9 -9 )式代科(9 -8 )式则有(9-10)则(9-11)考虑整个滑动土体的极限平衡条件,些时条间力P i 和H i 成对出现,大小相等、方向相反,相互抵消。

因此只有重力W i 和切向力T i 对圆心产生力矩,由力矩平衡知(9-12)将(9 -11 )式代入(9 -9 )式再代入(9 -12 )式,且d i =Rsinθ i ,此外,土条宽度不大时,b i =l i cosθ i ,经整理简化可行毕肖普边坡稳定安全系数的普遍公式(9-13)式中ΔH i 仍是未知量。

毕肖普进一步假定ΔH i =0 于是上式进一步简化为(9-14)如果考虑滑面上孔隙水压力u 的影响并采用有效应力强度指标,则上式可改写为(9-15)从式中可以看出,参数m θi 包含有安全系数F s ,因此不能接求出安全系数,而需采用试算法迭代求解F s 值。

为了便于迭代计算,已编制成m θ~θ关系曲线,如图9 -6 所示。

试算时,可先假定F s =1.0 ,由图9 -6 查出各θ i所对应的值。

代入(9 -14 )式中,求得边坡的安全系数Fs ′。

若F s ′与F s 之差大于规定的误差,用F s ′查m θi ,再次计算出安全系数F s 值,如是反复迭代计算,直至前后两次计算出安全系数F s ′值,如是反复迭代计算,直至前后两次计算的安全系数非常接近,满足规定精度的要求为止。

通常迭代总是收敛的,一般只要 3 ~4 次即可满足精度。

与瑞典条分法相比,简化毕肖普法是在不考虑条块间切向力的前提下,满足力多边形闭合条件,就是说,隐含着条块间有水平力的作用,虽然在公式中水平作用力并未出现。

所以它的特点是:(1)满足整体力矩平衡条件;(2)满足各条块力的多边形闭合条件,但不满足条块的力矩平衡条件;(4)假设条块间作用力只有法向力没有切向力;(4)满足极限平衡条件。

毕肖普法由于考虑了条块间水平力的作用,得到的安全系数较瑞典条分法略高一些。

二、路堤设计路堤承受着列车和轨道及路堤本身的自重荷载并将这一荷载扩散到地基,因此,必须重视路堤的强度、稳定和地基的承载力。

从路堤的构造可知,基床部分主要承受列车动荷载的动力作用,容易产生强度和变形等总是,因此这一部分须先用强度高的优质填料填筑并提高压实度。

路堤下部也应有足够的强度并选用合适的边坡坡形与坡度,以保持堤身的稳固,防止堤身坍滑和在铺轨时出现过大的沉降。

地基的承载力是保证路堤稳定的基础。

当地基承载力不足,在路堤施工中造成坍滑破坏时,最常用的处理方法包括:(1)放缓路堤堤身的边坡,以改善地基内的应力分布;(2)放缓路堤填筑速度,使地基土在附加应力作用下产生固结并提高强度;(3)对地基进行加固处理和改良。

此外,为了防止大气降水的入渗和水流冲刷等破坏作用,还应做好路堤的排水和防护等措施。

这里将着重介绍一般情况下的路堤。

下面两节将重点介绍路堤设计的两种基本形式.。

相关文档
最新文档