初中数学人教版七年级第四章《余角和补角》集备稿
七年级(人教版)集体备课教案:4.3.3 余角和补角 (25)

精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
3 .1.2等式的性质教学目标:1、了解等式的两条性质,会用等式的性质解简单的一元一次方程。
2、培养学生观察、分析、概括及逻辑思维能力。
3、渗透“化归”的思想。
重点:等式的性质难点:用等式的性质解简单方程教学过程:一、创设情境,提出问题问题:我们用估算的方法,可以求出简单的一元一次方程的解。
你能用这种方法求出下列方程解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1二、讲授新课1、观察天平实验,探索等式的性质1问题1:仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律。
按课本图3.1-2的方法演示实验。
学生回答:如果在平衡的天平的两边都加上(或减去)同样的重量,那么天平还保持平衡。
问题2:你自己能进行两次不同物体的天平实验吗?(学生回答省略)教师:等式就像天平,它与上面的事实具有同样的性质。
比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去1,就有“8-1=8-1”。
2、总结等式性质1问题1:你能用文字来叙述等式的这个性质吗?等式两边加(或减)同一个数(或式子),结果仍相等。
问题2:等式一般可以用a=b来,怎样用式子来表示这个性质?如果a=b,那么a±c=b±c。
3、探索、总结等式性质2问题:看课本图3.1-3,你能发现什么规律?学生得出规律:把平衡的天平的两边的重量,同时变为原来的几倍或几分之几,天平还保持平衡。
归纳出:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
即:如果如果a=b,那么ac=bc;如果a=b(c≠0),那么ac= b c三、巩固知识讲解例2课本练习四、总结本节主要学习等式的性质,并会用等式的性质解简单的一元一次方程,主要用到的思想是类比思想与转化思想。
七年级(人教版)集体备课教案:4.3.3 余角和补角 (34)

4.1.2 点、线、面、体教学目标:1、了解几何体、平面和曲面的意义,•能正确判定围成几何体的面是平面还是曲面;了解几何图形构成的根本元素是点、线、面、体及其关系,•能正确判定由点、线、面、体经过运动变化形成的简单的几何图形.2、经历探索点、线、面、体的关系的数学活动过程,提高空间想像能力和抽象思维能力,开展运动变化的观念.3、经历本节课的数学活动过程,养成主动探索、求知的学习态度,激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性.重点:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、•体之间的关系是重点难点:探索点、线、面、体运动变化后形成的图形是难点教学过程一、引入新课1、出示一个长方体模型,请同学们认真观察.2、提出问题:这个长方体有几个面?面和面相交成了几条线?•线和线相交成几个点?二、讲授新课1、经过学生的独立思考,然后在小组中进行交流,在小组讨论中,•评价并修正自己的结论.2、各小组学生公布自己小组讨论后的结论.教师活动:在探索问题解决方法和小组讨论过程中,教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价.3、几何体的概念.(1 )长方体是一个几何体,我们学过的正方体、圆柱、圆锥、球、棱柱、•棱锥等都是几何体.(2 )提出问题:观察长方体和圆柱体,说出围成这两个几何体的面有哪些?•这些面有什么区别?4、给出面的分类.通过对上面问题的解决,给出面的分类:平面和曲面.教师活动:板书:平面和曲面.提出问题:在小组活动中,教师指导学生看课本内容,•得出观察图片能发现的结论.师生互动:请学生给出观察结论:点动成线,线动成面,面动成体.教师对学生的答复给出正面评价,并把学生观察结论板书.注:在探索问题解决的方法活动过程中,教师应充分调动学生的想像能力,鼓励学生进行深入探究.思考课后思考题,让学生进行小组讨论,教师给以必要的指导,然后得出合理的解释.5、点、线、面、体与几何图形关系.指导学生阅读课本内容,总结出点、线、面、体与几何图形的关系.三、课堂小结1、本节课我们主要探究了几何体的形成:由平面和曲成围成一个几何体.2、点、线、面、体之间的关系.3、体验了在数学活动过程中小组合作的重要性.四、布置作业教学反思1 、要主动学习、虚心请教,不得偷懒. 老老实实做"徒弟〞,认认真真学经验,扎扎实实搞教研.2 、要勤于记录,善于总结、扬长避短. 记录的过程是个学习积累的过程, 总结的过程就是一个自我提高的过程.通过总结, 要经常反思自己的优点与缺点,从而取长补短,不断进步、不断完善.3 、要突破创新、富有个性,倾心投入. 要多听课、多思考、多改良,要正确处理好模仿与开展的关系,对指导教师的工作不能照搬照抄,要学会扬弃,在原有的根底上,根据自身条件创造性实施教育教学,逐步形成自己的教学思路、教学特色和教学风格, 弘扬工匠精神, 努力追求自身教学的高品位.。
余角和补角人教版七年级数学上优质教案

余角和补角人教版七年级数学上优质教案一、教学内容本节课,我们将在人教版七年级数学上册第四章《角度量》中,深入探讨余角和补角概念。
具体内容包括:理解余角和补角意义,掌握它们之间关系和性质,以及在实际问题中运用这些知识。
二、教学目标1. 知识目标:使学生掌握余角和补角概念,理解它们之间关系,能够运用相关知识解决实际问题。
2. 能力目标:培养学生观察能力、逻辑思维能力和解决问题能力。
3. 情感目标:激发学生学习兴趣,提高合作意识和团队精神。
三、教学难点与重点1. 教学重点:余角和补角概念,以及它们之间关系。
2. 教学难点:在实际问题中运用余角和补角知识。
四、教具与学具准备1. 教具:三角板、量角器、教学课件。
2. 学具:三角板、量角器、练习本。
五、教学过程1. 实践情景引入利用三角板,展示一个直角三角形,引导学生观察直角三角形两个锐角之间关系。
2. 例题讲解(1)余角定义:如果两个角和等于90度,那这两个角互为余角。
(2)补角定义:如果两个角和等于180度,那这两个角互为补角。
3. 随堂练习4. 讲解余角和补角性质(1)余角性质:互为余角两个角相等。
(2)补角性质:互为补角两个角相等。
5. 应用拓展(1)在实际问题中,如何运用余角和补角知识?(2)通过解决实际问题,进一步巩固余角和补角概念。
六、板书设计1. 定义:余角、补角2. 性质:互为余角两个角相等、互为补角两个角相等3. 例题:展示解题过程及答案七、作业设计1. 作业题目:(2)已知一个角度数,求它余角和补角。
2. 答案:(1)30°余角:60°,补角:150°;60°余角:30°,补角:120°;45°余角:45°,补角:135°;135°余角:45°,补角:45°。
(2)根据余角和补角定义,求出答案。
八、课后反思及拓展延伸1. 反思:本节课学生对余角和补角概念掌握程度如何?在实际问题中运用余角和补角知识情况如何?2. 拓展延伸:引导学生思考,如何将余角和补角知识运用到其他数学领域,如几何、三角函数等。
七年级(人教版)集体备课教案:4.3.3 余角和补角 (19)

精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
第二章整式的加减2.1整式(一)教学目标:1、理解单项式及单项式系数、次数的概念。
2、会准确迅速地确定一个单项式的系数和次数。
3、初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4、通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
重点:单项式及其相关的概念难点:区别单项式的系数和次数教学过程:一、创设情境,引入新课请同学们先看课本的引言,举世瞩目的青藏铁路于2006年7月1日建成通车,实现了几代中国人梦寐以求的愿望。
青藏铁路是世界上海拔最高、线路最长的高原铁路。
问题1:列车在土地段的行驶速度是100千米/时,根据速度、时间和路程之间的关系,路程=速度×时间,问列车行驶2小时的路程是多少?3小时行驶的路程是多少?t小时的路程又是多少?学生回答:2小时行驶:100×2=200(千米),3小时行驶:100×3=300(千米),t小时行驶:100×t=100t(千米)。
我们来看第三个式子,在第三个式子中,我们用字母t表示时间,用含有t的式子100t表示路程。
二、讲授新课请同学们思考课本“思考”问题1:以上几个式子有什么共同特点?引导学生对上述几个数式进行观察、分析,让他们自己得出以下结论:都是表示数与字母的积。
在学生回答的基础上,教师进行总结:这就是我们今天所要学习的一种最简单的整式——单项式。
问题2:什么叫做单项式?学生回答,教师归纳。
单项式的概念:表示数或字母的积的代数式,叫做单项式,特别地,单独一个数或一个字母也叫做单项式。
问题3:以上单项式有什么结构特点?学生回答,然后总结出单项式是由数字因数和字母因数两部分组成。
余角和补角的教案

余角和补角的教案一、教学内容本节课选自《初中数学》七年级下册第四章《角的性质与分类》,具体内容为4.3节“余角和补角”。
通过本章学习,学生已经掌握了角的分类和性质,本节将在此基础上,引导学生深入理解余角和补角的概念,并能运用其解决实际问题。
二、教学目标1. 知识与技能:学生能够理解并掌握余角和补角的概念,能够准确找出余角和补角,并运用其进行计算。
2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维能力和空间想象能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作意识和探究精神。
三、教学难点与重点重点:余角和补角的概念及其运用。
难点:找出角的余角和补角,并能熟练进行计算。
四、教具与学具准备三角板、量角器、直尺、圆规等。
五、教学过程1. 实践情景引入教师展示一组图片(如剪刀、钟表等),引导学生观察并找出其中的角,为新课的学习做好铺垫。
2. 新课导入(1)教师引导学生复习角的性质和分类。
(2)教师提出问题:“如果两个角的和等于90度,那么这两个角有什么关系?”引导学生思考。
(3)教师给出余角的概念,并引导学生找出角的余角。
(4)教师通过例题讲解,让学生掌握找出余角的方法。
3. 例题讲解(1)找出下列角的余角:① 30°② 45°③ 60°(2)如果一个角的余角比这个角小30度,求这个角的度数。
4. 随堂练习(1)找出下列角的余角:① 20°② 35°③ 55°(2)已知一个角的度数,求它的余角。
5. 补角的引入(1)教师提出问题:“如果两个角的和等于180度,那么这两个角有什么关系?”引导学生思考。
(2)教师给出补角的概念,并引导学生找出角的补角。
6. 例题讲解(1)找出下列角的补角:① 90°② 60°③ 120°(2)已知一个角的补角,求这个角的度数。
7. 随堂练习(1)找出下列角的补角:① 30°② 45°③ 75°(2)已知一个角的度数,求它的补角。
人教版数学七年级2020年秋集体备课:4-3-3-余角与补角

人教版2020年秋集体备课4.3.3 余角与补角(1)学习目标:1.在具体情境中了解余角、补角的概念.2.了解等角的余角与补角的性质,能运用这个性质解决简单的实际问题.3.学习进行简单的推理,学习有条理的表达.学习重点:等角的余角与补角的性质.学习难点:推导“等角的余角与补角的性质”的过程.一、自主学习:1.①如果∠1=35°,∠2=55°,那么∠1+∠2=_______.如果∠A=42°,那么当∠B=_______时,∠A+∠B=90°.②三角尺中,有一个角是直角(90°),那么另两个角的和是________度.③度量图4.3-13的两个角,∠3=____,∠4=____,计算:∠3+∠4=_____.一般地,如果两个角的和等于90°(直角),我们就说这两个角互为余角,称其中的一个角是另一个角的余角.2.(1)在上面的这些角中,哪两个角是互为余角的?(2)已知∠A=72°,那么∠A的余角是______度.(3)已知∠A的余角是∠A的两倍,你能求出∠A的度数吗?说说你的想法.3.度量图4.3-14的两个角,∠1=____,∠2=____,计算:∠1+∠2=_____.一般地,如果两个角的和等于180°(平角),我们就说这两个角互为补角,称其中一个角是另一个角的补角.(1)上面的∠1与∠2互为补角吗?(2)试举出两个互为补角的例子.(3)①已知∠A=72°,则∠A的补角=______度.②如果∠α=62°23′,则∠α的余角=______,则∠α的补角=______.③已知∠A的补角是∠A的两倍,你还能求出∠A的度数吗?④已知一个角的补角是这个角的余角的3倍,求这个角的度数.二、当堂检测:练习第1、2、3题.三、合作探究:1.如果∠1与∠2互余,∠1与∠3互余,那么∠2与∠3相等吗?为什么?2.如果∠1与∠2互补,∠1与∠3互补,那么∠2与∠3相等吗?为什么?3.如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2与∠4相等吗?4.如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,那么∠2与∠4相等吗?5.余角的性质:补角的性质:四、学习小结:缉私艇可疑船AB 4.3.3 余角与补角(2)学习目标:1.了解用于表现方向的角——方位角的意义.,.2.初步掌握方位角的判别,体会方位角在生活中的应用.学习重点:方位角的判别与应用.学习难点:方位角的判别与应用.一、自主学习:1.海上缉私艇发现离它50海里处停着一艘可疑船只(如图),缉私艇要立即赶往检查.(1)试画出缉私艇的航线. (2)如果是真在海面上,你能确定船的航向吗?2.在航行、测绘等日常生活中,我们经常会碰到上述类似的问题,即如何描述一个物体的方位.描述一个物体的方位,通常要用到表示方位的角——方位角.方位角的表示习惯上以正北、正南方向为基准来描述物体的方向.即用“北偏东多少度”、“北偏西多少度”或者“南偏东多少度”、“南偏西多少度”来表示方向.如图,(1)射线OA 的方向是南偏西40°,或者说点A 在点O 的南偏西40°方向.(2)射线OB 的方向是北偏东45°,或者说点B 在点O 的________方向. 注:北偏东45°的方向又称为“东北方向”.所以,我们也可以称点B 在点O 的________方向.(3)在图中画出北偏西50°方向射线OC .3.在第1个问题中,我们规定“上北下南,左西右东”,试确定缉私艇的航向.二、合作探究:1.已知点O 在点A 的南偏东65°方向,那么点A 应在点O 的______________方向.2.某同学参观展览馆A 后,想去景点B ,但他不知道如何走,你能借助右图,告诉他去景点B 应朝什么方向,大约走多远吗?(图中1厘米代表1千米) 3.如图,A 、B 、C 三点分别代表邮局、商店和学校. 邮局和商店分别在学校的北偏西方向,邮局又在商店的北偏东方向.那么,图中A 点应该是 ,B 点应该是 ,C 点应该是______.4.考察队从P 地出发,沿北偏东60°前进5千米到达A 地,再沿东南方向前进到达C 地,C 恰好在P 地的正东方.(1)用1㎝代表2千米,画出考察队的行进路线图.西北B 北A(2)量得∠PAC=________,∠ACP=_______.(精确到1°)5.灯塔A在灯塔B的南偏西60°,距离20海里,轮船C在灯塔B的西北方向,距离40海里.用1㎝表示10海里画出示意图,试确定货船C在灯塔A的什么方向,距A多远?三、学习小结:四、作业:小结1.注重备课。
七年级(人教版)集体备课教案:4.3.3 余角和补角 (2)

精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
1 .2.1有理数教学目标:1、正确理解有理数的概念及分类,能够准确区分正整数、0、负整数、正分数、负分数。
2、掌握有理数的分类方法,会对有理数进行分类,体验分类是数学上常用的处理问题的方法。
重点:正确理解有理数的概念重点:有理数的分类教学过程:一、知识回顾,导入新课什么是正数,什么是负数?问题1:学习了负数之后,我们对数的认识范围扩大了,你能写出三个不同类型的数吗?(请三位同学上黑板上写出,其他同学在自己的练习本上写出,如果有出现不同类型的数,同学们可上黑板补充。
)问题2:观察黑板上的这么数,并给它们分类。
先让学生独立思考,接着讨论和交流分类的情况,得出数的类型有5类:正整数、0、负整数、正分数、负分数。
二、讲授新课1、有理数的定义引导学生对前面的数进行概括,得出:正整数、零、负整数统称为整数;正分数和负分数统称分数。
整数可以看作分母为1的分数,正整数、零、负整数、正分数和负分数都可以写成分数的形式,这样的数称为有理数,即整数和分数统称有理数。
2、有理数的分类让学生在总结出5类数基础上,进行概括,尝试进行分类,通过交流和讨论,再加上老师适当的指导,逐步得出下面的两种分类方式。
(1)按定义分类: (2)按性质分类:三、巩固知识 练习1:课本练习练习2:把下列各数填入它所属的集合内: -12 ,-7,+2.8,-90,-3.5,913 ,0,4 负数集合:{ ,…}整数集合:{ ,…} 负整数集合:{ ,…}分数集合:{ ,…}四、总结通过本节课,你收获了什么? 可以归纳为以下几点:1、本节主要学习有理数的概念,会将有理数按照一定的标准进行分类;2、主要用到的思想方法是分类思想;3、注意的问题:分类时要做到不重不漏,只要标准统一即可。
七年级数学(人教版)集体备课教案:4.3.3 余角和补角 (14)

1.4.2有理数的除法(二)
教学目标:
1、理解有理数的加、减、乘、除混合运算顺序;正确熟练地进行有理数的混合运算
2、培养学生解题的良好习惯
3、在观察、实践的过程中,获得有理数四则混合运算的初步经验。
重点:运算顺序的确定
重点:灵活运用运算律进行有理数混合运算
教学过程:
一、复习巩固,回顾知识
1、计算:(1)-10×(-3)×0.1×6
(2)8+(-0.5)×(-8)×3 4
(3)(-3)×5
6×(-
9
5)×(-0.25)
2、计算:(1)(-9)÷3 ;
(2)(-64)÷(-8);
(3)1÷(-7);(4)0÷(-5)
二、讲授新课
讲解例7,先让学生观察得出例7中的运算包含了乘除。
师生共同归纳:遇到乘除混运算时,可先确定符号,再将它统一为乘法;另外,既有小数,又有分数时,通常把小数化为分数,以便约分。
教师:接着,我们来看例8,请同学们观察一下例8这个算式,它包含了几种运算。
学生:包含了加、减、乘、除四种运算。
练习1、2题
讲解
例8
教师:有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照“先乘
除,后加减”的顺序进行。
练习
三、巩固知识
例9
四、总结
有理数混合运算的顺序:(1)先算乘除,再算加减;(2)同一级运算按从左到右的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
五、布置作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学人教版七年级第四章《余角和补角》集备稿
【设计与执教者】:广州市天河中学,胡凯迎
【学情分析】:本课时教授余角和补角的概念与性质,学生开始接触初步的逻辑说理,对学生来说是最大的困难是把感性认识规范的语言有条理地表达出来。
但经过前面的几个课时的渗透,学生对概念的几何语言表述已有一定的基础,在教学中要注意引导学生分析题意,强调“文字表述”与“几何语言表达”的互换
【教学目标】:
(1)知识目标:
1、认识余角、补角的概念
2、掌握余角、补角的性质,并能用余角、补角的性质解决简单的问题
(2)过程与方法目标:
1、经历探索图形性质的过程
2、学生通过观察、思考、探究等活动归纳出图形的概念和性质
【教学重点】:余角、补角的概念及余角、补角的性质
【教学难点】:余角、补角的区别;余角、补角的性质应用
【教学突破点】:概念、性质的几何语言表述与文字语言表述的转换
【教学过程设计】:
1
,量得:
图,量得:
①量得∠1=
∠3=
10︒
30︒
80︒
150︒
120︒
100︒
170︒
60︒
(三)、学生易错点的练习设计: (1)错例的估计
1、学生易把“两角相加得90°,这两角互余”简单地迁移为互余即90°
2、在学习性质的时候,用到等式的性质,但由于不是直接地呈现等式的形式,学生难以接受,写不出关系式 (2)针对的测试练习或者分成练习题组 知识检测
1.图中给出的各角中,哪些互为余角?哪些互为补角?
2.(1)已知的余角。
,用量角器画出AOB AOB ∠∠ (2)画出∠AOB 的补角 3.如果∠1+∠2=90°,则∠1与∠2的
关系是___________,如果∠1=60°,则∠2=________ 4. 已知︒=∠40α,求α∠的余角∠β,α∠的补角∠γ; 解:
O
E
D
C
B
A
①∵∠α与∠β互为 角; ∴∠α+∠β= ° ∵︒=∠40α
∴∠β= °- °= ° ②∵∠α与∠γ互为 角;
∴∠α+∠γ= ° ∵︒=∠40α
∴∠γ= °- °= °
5、如果一个角的余角与这个角的补角的和等于这个角的4倍,求这个角
6、如图,∠AOC =∠COB =90°,∠DOE =90°,A 、O 、B 三点在一直线上 (1)写出∠COE 的余角,∠AOE 的补角 (2)找出图中一对相等的角,并说明理由。