厦门理工学院 复变函数 作业答案第二章 学长只能帮你到这了
复变函数试题与答案

复变函数试题与答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-第一章 复数与复变函数一、 选择题1.当i i z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+-3.复数)2(tan πθπθ<<-=i z 的三角表示式是( )(A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( )(A )z z z z 222≥- (B )z z z z 222=-(C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线(D )抛物线 6.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数(D )实数8.设z 为复数,则方程i z z +=+2的解是( )(A )i +-43 (B )i +43 (C )i -43 (D )i --43 9.满足不等式2≤+-iz i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为( )(A )221=+-z z (B )433=--+z z (C ))1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( )(A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.00)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为( ) (A )3- (B )2- (C )1-(D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z 2.设)2)(32(i i z +--=,则=z arg3.设43)arg(,5π=-=i z z ,则=z 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为 6.不等式522<++-z z 所表示的区域是曲线 的内部 7.方程1)1(212=----zi i z 所表示曲线的直角坐标方程为 8.方程i z i z +-=-+221所表示的曲线是连续点 和 的线段的垂直平分线 9.对于映射zi=ω,圆周1)1(22=-+y x 的像曲线为10.=+++→)21(lim 421z z iz 三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围.四、设0≥a ,在复数集C 中解方程a z z =+22.五、设复数i z ±≠,试证21z z +是实数的充要条件为1=z 或0)(=z IM . 六、对于映射)1(21z z +=ω,求出圆周4=z 的像.七、试证1.)0(0221≠≥z z z 的充要条件为2121z z z z +=+; 2.)),,2,1,,,0(021n j k j k z z z j =≠≠≥的充要条件为 n n z z z z z z +++=+++ 2121.八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 21)(>. 九、设iy x z +=,试证y x z yx +≤≤+2.十、设iy x z +=,试讨论下列函数的连续性: 1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xy z f 2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f .第二章 解析函数一、选择题:1.函数23)(z z f =在点0=z 处是( )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析(D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析4.下列函数中,为解析函数的是( )(A )xyi y x 222-- (B )xyi x +2(C ))2()1(222x x y i y x +-+- (D )33iy x + 5.函数)Im()(2z z z f =在0=z 处的导数( )(A )等于0 (B )等于1 (C )等于1- (D )不存在6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常数=a ( )(A )0 (B )1 (C )2(D )2-7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( )(A )0 (B )1 (C )1- (D )任意常数8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数(B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数(C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数9.设22)(iy x z f +=,则=+')1(i f ( )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.i i 的主值为( )(A )0 (B )1 (C )2πe (D )2π-e11.z e 在复平面上( )(A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的 13.设α为任意实数,则α1( )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( )(A )3)1(i - (B )i cos (C )i ln (D )i e23π- 15.设α是复数,则( )(A )αz 在复平面上处处解析 (B )αz 的模为αz(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim 02.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是3.导函数xv i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数i i 的模为 9.=-)}43Im{ln(i10.方程01=--z e 的全部解为三、设),(),()(y x iv y x u z f +=为iy x z +=的解析函数,若记)2,2()2,2(),(iz z z z iv i z z z z u z z w -++-+=,则0=∂∂z w . 四、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -= 2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f x x ++-=五、设023=+-z e zw w ,求22,dz w d dz dw .六、设⎪⎩⎪⎨⎧=≠++=0,00,)()(422z z y x iy x xy z f 试证)(z f 在原点满足柯西-黎曼方程,但却不可导.七、已知22y x v u -=-,试确定解析函数iv u z f +=)(.八、设s 和n 为平面向量,将s 按逆时针方向旋转2π即得n .如果ivu z f +=)(为解析函数,则有s v n u n v s u ∂∂-=∂∂∂∂=∂∂,(s∂∂与n ∂∂分别表示沿s ,n 的方向导数).九、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析. 十、解方程i z i z 4cos sin =+.第三章 复变函数的积分一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰c dz iy x )(2( )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( ) (A )2i π (B )2iπ- (C )0 (D )(A)(B)(C)都有可能3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( ) (A ) i π2- (B )0 (C )i π2 (D )i π44.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ( ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( ) (A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( )(A )i π2- (B )1- (C )i π2 (D )17.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c⎰+'+'')()()(2)( ( )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定8.设c 是从0到i 21π+的直线段,则积分=⎰c z dz ze ( )(A )21eπ- (B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( ) (A )i π22(B )i π2 (C )0 (D )i π22-10.设c 为正向圆周i a i z ≠=-,1,则=-⎰cdz i a zz 2)(cos ( ) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )(A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( ) (A )积分⎰=--ra z dz az 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x ,其中c 为连接i -到i 的线段(C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( )(A)c iz +2 (B ) ic iz +2 (C )c z +2 (D )ic z +214.下列命题中,正确的是( )(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v = (B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v - (C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰c dz z 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(233.设⎰=-=2)2sin()(ξξξξπd zz f ,其中2≠z ,则=')3(f 4.设c 为正向圆周3=z ,则 5.设c 为负向圆周4=z ,则=-⎰c zdz i z e 5)(π 6.解析函数在圆心处的值等于它在圆周上的 7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内8.调和函数xy y x =),(ϕ的共轭调和函数为9.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a=+⎰cdz zzz10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为 三、计算积分 1.⎰=+-R z dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; 2.⎰=++22422z z z dz. 四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-.试证 1.在B 内处处有0)(≠z f ;2.对于B 内任意一条闭曲线c ,都有0)()(=''⎰cdz z f z f 五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f ra z <<==-,则),2,1()(!)()( =≤n rr M n a f nn . 六、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e . 七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数b a ,,试求极限⎰=+∞→--Rz R dz b z a z z f ))(()(lim 并由此推证)()(b f a f =(刘维尔Liouville 定理).八、设)(z f 在)1(><R R z 内解析,且2)0(,1)0(='=f f ,试计算积分⎰=+122)()1(z dz z z f z 并由此得出⎰πθθθ202)(2cos d e f i 之值.九、设iv u z f +=)(是z 的解析函数,证明222222222))(1()(4))(1ln())(1ln(z f z f yz f xz f +'=∂+∂+∂+∂.十、若)(22y x u u +=,试求解析函数iv u z f +=)(.第四章 级 数一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( ) (A )等于0 (B )等于1 (C )等于i (D )不存在2.下列级数中,条件收敛的级数为( )(A )∑∞=+1)231(n ni (B )∑∞=+1!)43(n n n i(C ) ∑∞=1n n n i (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为( )(B ) ∑∞=+1)1(1n n in(B )∑∞=+-1]2)1([n n n i n (C)∑∞=2ln n n n i (D )∑∞=-12)1(n nnn i 4.若幂级数∑∞=0n n n z c 在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( )(A )绝对收敛 (B )条件收敛 (C )发散 (D )不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为 (A ))1ln(z + (B ))1ln(z - (D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n nn z c ,那么幂级数∑∞=0n n n z c 的收敛半径=R ( )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++22111z z z z的收敛域是( ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的 11.函数21z在1-=z 处的泰勒展开式为( ) (A ))11()1()1(11<++-∑∞=-z z n n n n (B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n n n(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n n n13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 2)()(( )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若⎩⎨⎧--==-+= ,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n nn z c 的收敛域为( )(A )3141<<z (B )43<<z(C )+∞<<z 41(D )+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( )(A )1 (B )2 (C )3 (D )4二、填空题1.若幂级数∑∞=+0)(n n n i z c 在i z =处发散,那么该级数在2=z 处的收敛性为 .2.设幂级数∑∞=0n nn z c 与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是 .3.幂级数∑∞=+012)2(n n n z i 的收敛半径=R4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=00)()(n n n z z c z f 成立,其中=n c .5.函数z arctan 在0=z 处的泰勒展开式为 . 6.设幂级数∑∞=0n nn z c 的收敛半径为R ,那么幂级数∑∞=-0)12(n n n n z c 的收敛半径为 .7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 .8.函数zze e 1+在+∞<<z 0内洛朗展开式为 .9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R . 10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 .三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式. 四、试证明1.);(11+∞<≤-≤-z e z e e zz z2.);1()1(1)3(<-≤-≤-z ze e z e z五、设函数)(z f 在圆域R z <内解析,∑==nk kk n z k f S 0)(!)0(试证 1.)()(21)(111R r z d z z f iz S n rn n n <<--=+=++⎰ξξξξξπξ.2.)()()(2)((11R r z d z f iz z S z f r n n n <<-=-⎰=++ξξξξπξ)。
复变函数习题答案第2章习题详解

第二章习题详解1. 利用导数定义推出: 1)()1-=n n nzz '(n 为正整数)解: ()()()()()z z z z z n n z nz z z z z z z nn n n n z n n z n∆∆∆∆∆∆∆∆-⎥⎦⎤⎢⎣⎡++-++=-+=--→→ 22100121limlim '()()11210121----→=⎥⎦⎤⎢⎣⎡++-+=n n n n z nz z z z n n nz ∆∆∆ lim 2) 211z z -=⎪⎭⎫⎝⎛'解: ()()2000111111z zz z z z z z z z z z z z z z z -=+-=+-=-+=⎪⎭⎫ ⎝⎛→→→∆∆∆∆∆∆∆∆∆lim lim lim '2. 下列函数何处可导?何处解析? 1)()iy x z f -=2解:设()iv u z f +=,则2x u =,y v -=x x u 2=∂∂,0=∂∂y u ,0=∂∂xv,1-=∂∂y v 都是连续函数。
只有12-=x ,即21-=x 时才满足柯西—黎曼方程。
()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。
2)()3332y i x z f +=解:设()iv u z f +=,则32x u =,33y v =26x x u =∂∂,0=∂∂y u ,0=∂∂xv ,29y y v =∂∂都是连续函数。
只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。
()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。
3)()y ix xy z f 22+=解:设()iv u z f +=,则2xy u =,y x v 2=2y x u =∂∂,xy y u 2=∂∂,xy xv 2=∂∂,2x y v =∂∂都是连续函数。
复变函数习题及答案解释

第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。
复变函数作业答案

=-251
8.化简
(1 i)n (1 i)n2
解:原式
(1
i)
2
1 1
i i
n
2ie
n 2
i
2i n1
第二次作业
教学内容:1.2 平面点集的一般概念 1.3 复变函数
1. 填空题
(1)连接点1 i 与 1 4i 的直线断的参数方程为 z 1 i (2 5i)t 0 t 1
(2) 以 原 点 为 中 心 , 焦 点 在 实 轴 上 , 长 轴 为 a , 短 轴 为 b 的 椭 圆 的 参 数 方 程 为 z a cos t ib sin t 0 t 2
华东理工大学
复 变 函 数 与 积 分 变 换 作 业 (第 1 册)
班级____________学号_____________姓名_____________任课教师_____________
第一次作业
教学内容:1.1 复数及其运算
1.2 平面点集的一般概念
1.填空题:
(1)
3 2
,
5 2
,
3 2
5 2
(2)1 cos i sin (0 )
解:1 cos i sin
2 sin
2
[cos(2
2
)
i sin(2
2
)]
2 sin
2
ei(
2
2
)
1
(3)
(cos 5 (cos 3
i sin 5)2 i sin 3)3
.
解:
(cos (cos
5 3
i i
sin sin
5 3
arg( z
2i)
2
且
复变函数课后习题答案(全)

习题一谜底之勘阻及广创作2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此, 31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此, 35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此, Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6= 5.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-, 所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++, 那时0,1,2,3k =, 对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 7. 证明下列各题:(1)设,z x iy =+则z x y ≤≤+证明:首先,显然有z x y =≤+;其次, 因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥. (2)对任意复数12,,z z 有2221212122Re()z z z z z z +=++证明:验证即可, 首先左端221212()()x x y y =+++,而右端2222112211222Re[()()]x y x y x iy x iy =+++++-2222112212122()x y x y x x y y =+++++221212()()x x y y =+++, 由此, 左端=右端, 即原式成立.(3)若a bi +是实系数代数方程101100n n n a z a z a z a --++++=的一个根, 那么a bi -也是它的一个根.证明:方程两端取共轭, 注意到系数皆为实数, 而且根据复数的乘法运算规则, ()n n z z =, 由此获得:10110()()0n n n a z a z a z a --++++=由此说明:若z 为实系数代数方程的一个根, 则z 也是.结论得证.(4)若1,a =则,b a ∀≠皆有1a b a ab-=- 证明:根据已知条件, 有1aa =, 因此:11()a b a b a b a ab aa ab a a b a---====---, 证毕. (5)若1, 1a b <<, 则有11a b ab -<- 证明:222()()a b a b a b a b ab ab -=--=+--,2221(1)(1)1ab ab ab a b ab ab -=--=+--,因为1, 1a b <<, 所以, 2222221(1)(1)0a b a b a b +--=--< ,因而221a b ab -<-, 即11a b ab-<-, 结论得证. 7.设1,z ≤试写出使n z a +到达最年夜的z 的表达式, 其中n 为正整数, a 为复数.解:首先, 由复数的三角不等式有1n n z a z a a +≤+≤+, 在上面两个不等式都取等号时n z a +到达最年夜, 为此, 需要取n z 与a 同向且1n z =, 即n z 应为a 的单元化向量, 由此, n a z a=, 8.试用123,,z z z 来表述使这三个点共线的条件.解:要使三点共线, 那么用向量暗示时, 21z z -与31z z -应平行, 因而二者应同向或反向, 即幅角应相差0或π的整数倍, 再由复数的除法运算规则知2131z z Argz z --应为0或π的整数倍, 至此获得: 123,,z z z 三个点共线的条件是2131z z z z --为实数. 9.写出过1212, ()z z z z ≠两点的直线的复参数方程.解:过两点的直线的实参数方程为:121121()()x x t x x y y t y y =+-⎧⎨=+-⎩, 因而, 复参数方程为:其中t 为实参数.10.下列参数方程暗示什么曲线?(其中t 为实参数)(1)(1)z i t =+ (2)cos sin z a t ib t =+ (3)i z t t=+ 解:只需化为实参数方程即可.(1),x t y t ==, 因而暗示直线y x =(2)cos ,sin x a t y b t ==, 因而暗示椭圆22221x y a b+= (3)1,x t y t==, 因而暗示双曲线1xy = 11.证明复平面上的圆周方程可暗示为 0zz az az c +++=, 其中a 为复常数, c 为实常数证明:圆周的实方程可暗示为:220x y Ax By c ++++=, 代入, 22z z z z x y i+-==, 并注意到222x y z zz +==, 由此 022z z z z zz A B c i+-+++=, 整理, 得 022A Bi A Bi zz z z c -++++= 记2A Bi a +=, 则2A Bi a -=, 由此获得 0zz az az c +++=, 结论得证.12.证明:幅角主值函数arg z 在原点及负实轴上不连续. 证明:首先, arg z 在原点无界说, 因而不连续.对00x <, 由arg z 的界说不难看出, 当z 由实轴上方趋于0x 时, arg z π→, 而当z 由实轴下方趋于0x 时, arg z π→-, 由此说明0lim arg z x z →不存在, 因而arg z 在0x 点不连续, 即在负实轴上不连续, 结论得证.13.函数1w z=把z 平面上的曲线1x =和224x y +=分别映成w 平面中的什么曲线?解:对1x =, 其方程可暗示为1z yi =+, 代入映射函数中,得211111iy w u iv z iy y-=+===++, 因而映成的像曲线的方程为 221, 11y u v y y-==++, 消去参数y , 得 2221,1u v u y +==+即22211()(),22u v -+=暗示一个圆周. 对224x y +=, 其方程可暗示为2cos 2sin z x iy i θθ=+=+代入映射函数中, 得因而映成的像曲线的方程为 11cos , sin 22u v θθ==-, 消去参数θ, 得2214u v +=, 暗示一半径为12的圆周. 14.指出下列各题中点z 的轨迹或所暗示的点集, 并做图: 解:(1)0 (0)z z r r -=>, 说明动点到0z 的距离为一常数, 因而暗示圆心为0z , 半径为r 的圆周.(2)0,z z r -≥是由到0z 的距离年夜于或即是r 的点构成的集合, 即圆心为0z 半径为r 的圆周及圆周外部的点集.(3)138,z z -+-=说明动点到两个固定点1和3的距离之和为一常数, 因而暗示一个椭圆.代入,z x iy ==化为实方程得(4),z i z i +=-说明动点到i 和i -的距离相等, 因而是i 和i -连线的垂直平分线, 即x 轴.(5)arg()4z i π-=, 幅角为一常数, 因而暗示以i 为极点的与x 轴正向夹角为4π的射线. 15.做出下列不等式所确定的区域的图形, 并指出是有界还是无界, 单连通还是多连通.(1)23z <<, 以原点为心, 内、外圆半径分别为2、3的圆环区域, 有界, 多连通(2)arg (02)z αβαβπ<<<<<, 极点在原点, 两条边的倾角分别为,αβ的角形区域, 无界, 单连通(3)312z z ->-, 显然2z ≠, 而且原不等式等价于32z z ->-, 说明z 到3的距离比到2的距离年夜, 因此原不等式暗示2与3 连线的垂直平分线即x =x =2后的点构成的集合, 是一无界, 多连通区域.(4)221z z --+>,显然该区域的鸿沟为双曲线221z z --+=, 化为实方程为 2244115x y -=, 再注意到z 到2与z 到-2的距离之差年夜于1, 因而不等式暗示的应为上述双曲线左边一支的左侧部份, 是一无界单连通区域.(5)141z z -<+, 代入z x iy =+, 化为实不等式, 得 所以暗示圆心为17(,0)15-半径为815的圆周外部, 是一无界多连通区域.习题二谜底1.指出下列函数的解析区域和奇点, 并求出可导点的导数.(1)5(1)z - (2)32z iz + (3)211z + (4)13z z ++ 解:根据函数的可导性法则(可导函数的和、差、积、商仍为可导函数, 商时分母不为0), 根据和、差、积、商的导数公式及复合函数导数公式, 再注意到区域上可导一定解析, 由此获得:(1)5(1)z -处处解析, 54[(1)]5(1)z z '-=-(2)32z iz +处处解析, 32(2)32z iz z i '+=+(3)211z +的奇点为210z +=, 即z i =±, (4)13z z ++的奇点为3z =-, 2.判别下列函数在何处可导, 何处解析, 并求出可导点的导数.(1)22()f z xy x yi =+ (2)22()f z x y i =+(3)3223()3(3)f z x xy i x y y =-+- (4)1()f z z= 解:根据柯西—黎曼定理:(1)22, u xy v x y ==,四个一阶偏导数皆连续, 因而,u v 处处可微, 再由柯西—黎曼方程, x y y x u v u v ==-解得:0x y ==,因此, 函数在0z =点可导, 0(0)0x x z f u iv ='=+=, 函数处处不解析.(2)22, u x v y ==,四个一阶偏导数皆连续, 因而,u v 处处可微, 再由柯西—黎曼方程, x y y x u v u v ==-解得:x y =,因此, 函数在直线y x =上可导,()2x x y x f x ix u iv x ='+=+=,因可导点集为直线, 构不成区域, 因而函数处处不解析.(3)32233, 3u x xy v x y y =-=-,四个一阶偏导数皆连续, 因而 ,u v 处处可微, 而且 ,u v 处处满足柯西—黎曼方程 , x y y x u v u v ==-因此, 函数处处可导, 处处解析, 且导数为(4)2211()x iy f z x iy x yz +===-+, 2222, x y u v x y x y ==++, 2222222222, ()()x y y x x y u v x y x y --==++, 22222222, ()()y x xy xy u v x y x y --==++, 因函数的界说域为0z ≠, 故此, ,u v 处处不满足柯西—黎曼方程, 因而函数处处不成导, 处处不解析.3.当,,l m n 取何值时3232()()f z my nx y i x lxy =+++在复平面上处处解析?解:3232, u my nx y v x lxy =+=+22222, 2, 3, 3x y y x u nxy v lxy u my nx v x ly ===+=+, 由柯西—黎曼方程得:由(1)得 n l =, 由(2)得3, 3n m l =-=-, 因而, 最终有4.证明:若()f z 解析, 则有 222(())(())()f z f z f z x y∂∂'+=∂∂ 证明:由柯西—黎曼方程知, 左端22=+222222()()x x x x uu vv uu vv uv vu u v +++-=+=+ 2()f z '==右端, 证毕. 5.证明:若()f z u iv =+在区域D 内解析, 且满足下列条件之一, 则()f z 在D 内一定为常数.(1)()f z 在D 内解析 , (2)u 在D 内为常数,(3)()f z 在D 内为常数, (4)2v u = (5)231u v +=证明:关键证明,u v 的一阶偏导数皆为0!(1)()f z u iv =-, 因其解析, 故此由柯西—黎曼方程得 , x y y x u v u v =-= ------------------------(1)而由()f z 的解析性, 又有, x y y x u v u v ==- ------------------------(2)由(1)、(2)知, 0x y x y u u v v ===≡, 因此12, ,u c v c ≡≡即 12()f z c ic ≡+为常数(2)设1u c ≡, 那么由柯西—黎曼方程得 0, 0x y y x v u v u =-≡=≡,说明v 与,x y 无关, 因而 2v c ≡, 从而12()f z c ic ≡+为常数.(3)由已知, 2220()f z u v c =+≡为常数, 等式两端分别对,x y 求偏导数, 得 220220x x y y uu vv uu vv +=+=----------------------------(1)因()f z 解析, 所以又有 , x y y x u v u v ==--------------------------(2)求解方程组(1)、(2), 得 0x y x y u u v v ===≡, 说明,u v 皆与,x y 无关, 因而为常数, 从而()f z 也为常数. (4)同理, 2v u =两端分别对,x y 求偏导数, 得 再联立柯西—黎曼方程, x y y x u v u v ==-, 仍有(5)同前面一样, 231u v +=两端分别对,x y 求偏导数, 得 考虑到柯西—黎曼方程, x y y x u v u v ==-, 仍有0x y x y u u v v ===≡, 证毕.6.计算下列各值(若是对数还需求出主值)(1)2i eπ- (2)()Ln i - (3)(34)Ln i -+(4)sin i (5)(1)i i + (6)2327解:(1)2cos()sin()22i ei i πππ-=-+-=-(2)1()ln arg()2(2)2Ln i i i k i k i ππ-=-+-+=-+,k 为任意整数,主值为:1()2ln i i π-=-(3)(34)ln 34arg(34)2Ln i i i k i π-+=-++-++ 4ln5(arctan 2)3k i ππ=+-+, k 为任意整数主值为:4ln(34)ln5(arctan )3i i π-+=+-(4)..1sin 22i i i i e e e e i i i ----== (5)(2)2(1)44(1)i i k i k iiLn i i eeeππππ++--++===24(cosln sin k ei ππ--=+, k 为任意整数(6)22224427(272)27333333279Ln ln k i ln k i k i e e e e e πππ+====, 当k 分别取0, 1, 2时获得3个值:9, 4399(1)2i e π=-+, 8399(1)2i e π=-+7.求2z e 和2z Arge 解:2222z x y xyie e-+=, 因此根据指数函数的界说, 有2z e22x y e-=, 222z Arge xy k π=+, (k 为任意整数)8.设i zre θ=, 求Re[(1)]Ln z -解:(1)ln 1[arg(1)2]Ln z z i z k i π-=-+-+, 因此9.解下列方程:(1)1ze =+ (2)ln 2z i π=(3)sin cos 0z z += (4)shz i =解:(1)方程两端取对数得:1(1)ln 2(2)3z Ln k i π=+=++(k 为任意整数)(2)根据对数与指数的关系, 应有(3)由三角函数公式(同实三角函数一样), 方程可变形为 因此,4z k ππ+= 即 4z k ππ=-, k 为任意整数(4)由双曲函数的界说得 2z ze e shz i --==, 解得 2()210z z e ie --=, 即z e i =, 所以(2)2z Lni k i ππ==+ , k 为任意整数10.证明罗比塔法则:若()f z 及()g z 在0z 点解析, 且000()()0, ()0f z g z g z '==≠, 则000()()lim()()z z f z f z g z g z →'=', 并由此求极限 00sin 1lim ; lim z z z z e z z→→-证明:由商的极限运算法则及导数界说知000000000000()()()()lim ()lim lim ()()()()()lim z z z z z z z z f z f z f z f z z z z z f z g z g z g z g z g z z z z z →→→→----==----00()()f zg z '=', 由此, 00sin cos lim lim 11z z z zz →→==11.用对数计算公式直接验证:(1)22Lnz Lnz ≠ (2)12Lnz =解:记i z re θ=, 则(1)左端22()2ln (22)i Ln r e r k i θθπ==++,右端2[ln (2)]2ln (24)r m i r m i θπθπ=++=++, 其中的,k m 为任意整数.显然, 左端所包括的元素比右真个要多(如左端在1k =时的值为2ln (22)r i θπ++, 而右端却取不到这一值), 因此两端不相等.(2)左端221]ln (2)22m i Ln rer m k i θπθππ+==+++右端11[ln (2)]ln ()222r n i r n i θθππ=++=++其中,k n 为任意整数, 而 0,1m =不难看出, 对左端任意的k , 右端n 取2k 或21k +时与其对应;反之, 对右端任意的n , 当2n l =为偶数时, 左端可取,0k l m ==于其对应, 而当21n l =+为奇数时, 左端可取2,1k l m ==于其对应.综上所述, 左右两个集合中的元素相互对应, 即二者相等.12.证明sin sin , cos cos z z z z == 证明:首先有(cos sin )(cos sin )z x x x iy z e e y i y e y i y e e -=+=-== , 因此sin 2i z i z e e z i--==, 第一式子证毕.同理可证第二式子也成立.13.证明Im Im sin z z z e ≤≤ (即sin yy z e ≤≤) 证明:首先, sin 222iz izizizy y ye e e e e e z e i ---+-+=≤=≤, 右端不等式获得证明.其次, 由复数的三角不等式又有sin 2222iz izy yy yiz ize e e e e ee e z i--------=≥==,根据高等数学中的单调性方法可以证明0x ≥时2x xe e x --≥, 因此接着上面的证明, 有sin 2y y e ez y --≥≥, 左端不等式获得证明.14.设z R ≤, 证明sin , cos z chR z chR ≤≤证明:由复数的三角不等式, 有sin 2222iz iz y y iz iz y y e e e e e e e ez ch y i ----+-++=≤===,由已知, y z R ≤≤, 再主要到0x ≥时chx 单调增加, 因此有sin z ch y chR ≤≤,同理,cos 2222iz izy yizizy y e e e e e e e ez ch y chR----++++=≤===≤ 证毕.15.已知平面流场的复势()f z 为(1)2()z i + (2)2z (3)211z +试求流动的速度及流线和等势线方程.解:只需注意, 若记()(,)(,)f z x y i x y ϕψ=+, 则 流场的流速为()v f z '=, 流线为1(,)x y c ψ≡, 等势线为2(,)x y c ϕ≡, 因此, 有(1)2222()[(1)](1)2(1)z i x y i x y x y i +=++=-+++ 流速为()2()2()v f z z i z i '==+=-,流线为1(1)x y c +≡, 等势线为 222(1)x y c -+≡ (2)333223()3(3)z x iy x xy x y y i =+=-+- 流速为22()33()v f z z z '===,流线为2313x y y c -≡, 等势线为 3223x xy c -≡(3)22221111()112z x iy x y xyi==+++-++ 流速为222222()(1)(1)z zv f z z z --'===++, 流线为 122222(1)4xyc x y x y ≡-++, 等势线为 222222221(1)4x y c x y x y-+≡-++ 习题三谜底 1.计算积分2()cx y ix dz -+⎰, 其中c 为从原点到1i +的直线段解:积分曲线的方程为, x t y t ==, 即z x iy t ti =+=+, :01t →, 代入原积分表达式中, 得2.计算积分z ce dz ⎰, 其中c 为 (1)从0到1再到1i +的折线 (2)从0到1i +的直线解:(1)从0到1的线段1c 方程为:, :01z x iy x x =+=→,从1到1i +的线段2c 方程为:1, :01z x iy iy y =+=+→, 代入积分表达式中, 得11(sin1cos1)(cos1sin1)11i e ei i i e i e +=-+-+=+-=-;(2)从0到1i +的直线段的方程为z x iy t ti =+=+, :01t →, 代入积分表达式中, 得1100()(1)(cos sin )zt titce dz e t ti dt i e t i t dt +'=+=++⎰⎰⎰,对上述积分应用分步积分法, 得3.积分2()cx iy dz +⎰, 其中c 为(1)沿y x =从0到1i + (2)沿2y x =从0到1i + 解:(1)积分曲线的方程为z x iy t ti =+=+, :01t →, 代入原积分表达式中, 得(2)积分曲线的方程为 2z x iy x x i =+=+, :01t →, 代入积分表达式中, 得4.计算积分cz dz ⎰, 其中c 为(1)从-1到+1的直线段 (2)从-1到+1的圆心在原点的上半圆周解:(1)c 的方程为z x =, 代入, 得(2)c 的方程为cos sin , :0z x iy i θθθπ=+=+→, 代入, 得5.估计积分212c dz z +⎰的模,其中c 为+1到-1的圆心在原点的上半圆周.解:在c 上, z =1, 因而由积分估计式得222111222c c c cdz ds ds ds z z z ≤≤=++-⎰⎰⎰⎰c =的弧长π= 6.用积分估计式证明:若()f z 在整个复平面上有界, 则正整数1n >时其中R c 为圆心在原点半径为R 的正向圆周. 证明:记()f z M ≤, 则由积分估计式得122n n M M R R Rππ-==, 因1n >, 因此上式两端令R →+∞取极限, 由夹比定理, 得()lim 0Rn R c f z dz z →+∞=⎰, 证毕. 7.通过分析被积函数的奇点分布情况说明下列积分为0的原因, 其中积分曲线c 皆为1z =.(1)2(2)c dzz +⎰ (2)224cdzz z ++⎰(3)22cdzz +⎰(4)cos c dzz ⎰ (5)z cze dz ⎰解:各积分的被积函数的奇点为:(1)2z =-, (2)2(1)30z ++=即1z =-±, (3)z = (4), 2z k k ππ=+为任意整数,(5)被积函数处处解析, 无奇点不难看出, 上述奇点的模皆年夜于1, 即皆在积分曲线之外, 从而在积分曲线内被积函数解析, 因此根据柯西基本定理, 以上积分值都为0. 8.计算下列积分:(1)240ize dz π⎰ (2)2sin iizdz ππ-⎰(3)10sin z zdz ⎰解:以上积分皆与路径无关, 因此用求原函数的方法:(1)4220240111()(1)222ii izz e dz ee e i πππ==-=-⎰ (2)21cos2sin 2sin []224iiii i iz z zzdz dz ππππππ----==-⎰⎰(3)111100sin cos cos cos z zdz zd z z z zdz =-=-+⎰⎰⎰9.计算22cdzz a-⎰, 其中c 为不经过a ±的任一简单正向闭曲线.解:被积函数的奇点为a ±, 根据其与c 的位置分四种情况讨论:(1)a ±皆在c 外, 则在c 内被积函数解析, 因而由柯西基本定理(2)a 在c 内, a -在c 外, 则1z a+在c 内解析, 因而由柯西积分公式:22112z a c c dz z a dz i i z a z a a z a ππ=+===-+-⎰⎰ (3)同理, 当a -在c 内, a 在c 外时, (4)a ±皆在c 内此时, 在c 内围绕,a a -分别做两条相互外离的小闭合曲线12,c c , 则由复合闭路原理得:注:此题若分解221111()2a z a z a z a=--+-, 则更简单! 10. 计算下列各积分解:(1)11()(2)2z dz i z z =-+⎰, 由柯西积分公式 (2)23221izz i e dz z -=+⎰, 在积分曲线内被积函数只有一个奇点i , 故此同上题一样:(3)2232(1)(4)z dzz z =++⎰在积分曲线内被积函数有两个奇点i ±, 围绕,i i -分别做两条相互外离的小闭合曲线12,c c , 则由复合闭路原理得:(4)4221z zdz z -=-⎰, 在积分曲线内被积函数只有一个奇点1,故此 (5)221sin 41z zdz z π=-⎰, 在积分曲线内被积函数有两个奇点1±, 围绕1,1-分别做两条相互外离的小闭合曲线12,c c , 则由复合闭路原理得:(6)22, (1)nnz z dz n z =-⎰为正整数, 由高阶导数公式 11. 计算积分312(1)zc e dz i z z π-⎰, 其中c 为 (1)12z = (2)112z -= (3)2z =解:(1)由柯西积分公式 (2)同理, 由高阶导数公式 (3)由复合闭路原理30(1)z z e z ==-11()2!z z e z =''+12e=-, 其中, 12,c c 为2z =内分别围绕0, 1且相互外离的小闭合曲线.12.积分112z dz z =+⎰的值是什么?并由此证明012cos 054cos d πθθθ+=+⎰解:首先, 由柯西基本定理, 1102z dz z ==+⎰, 因为被积函数的奇点在积分曲线外.其次, 令(cos sin )z r i θθ=+, 代入上述积分中, 得 考察上述积分的被积函数的虚部, 便获得2012cos 054cos d πθθθ+==+⎰, 再由cos θ的周期性, 得 即012cos 054cos d πθθθ+=+⎰, 证毕.13. 设(),()f z g z 都在简单闭曲线c 上及c 内解析, 且在c 上 ()()f z g z =, 证明在c 内也有()()f z g z =. 证明:由柯西积分公式, 对c 内任意点0z ,00001()1()(), ()22c c f z g z f z dz g z dz i z z i z z ππ==--⎰⎰, 由已知, 在积分曲线c 上, ()()f z g z =, 故此有 再由0z 的任意性知, 在c 内恒有()()f z g z =, 证毕. 14. 设()f z 在单连通区域D 内解析, 且()11f z -<, 证明(1)在D 内()0f z ≠;(2)对D 内任一简单闭曲线c , 皆有()0()cf z dz f z '=⎰ 证明:(1)显然, 因为若在某点处()0,f z =则由已知 011-<, 矛盾!(也可直接证明:()1()11f z f z -<-<, 因此1()11f z -<-<, 即0()2f z <<, 说明()0f z ≠)(3)既然()0f z ≠, 再注意到()f z 解析, ()f z '也解析, 因此由函数的解析性法则知()()f z f z '也在区域D 内解析, 这样,根据柯西基本定理, 对D 内任一简单闭曲线c , 皆有()0()cf z dz f z '=⎰, 证毕. 15.求双曲线22y x c -= (0c ≠为常数)的正交(即垂直)曲线族.解:22u y x =-为调和函数, 因此只需求出其共轭调和函数(,)v x y , 则(,)v x y c =即是所要求的曲线族.为此, 由柯西—黎曼方程2x y v u y =-=-, 因此(2)2()v y dx xy g y =-=-+⎰, 再由 2y x v u x ==-知, ()0g y '≡, 即0()g y c =为常数, 因此02v xy c =-+, 从而所求的正交曲线族为xy c ≡(注:实际上, 本题的谜底也可观察出, 因极易想到 222()2f z z y x xyi =-=--解析)16.设sin px v e y =, 求p 的值使得v 为调和函数. 解:由调和函数的界说2sin (sin )0px px xx yy v v p e y e y +=+-=,因此要使v 为某个区域内的调和函数, 即在某区域内上述等式成立, 必需210p -=, 即1p =±.17.已知22255u v x y xy x y +=-+--, 试确定解析函数 解:首先, 等式两端分别对,x y 求偏导数, 得225x x u v x y +=+-----------------------------------(1)225y y u v y x +=-+- -------------------------------(2)再联立上柯西—黎曼方程x y u v =------------------------------------------------------(3)y x u v =-----------------------------------------------------(4)从上述方程组中解出,x y u u , 得这样, 对x u 积分, 得25(),u x x c y =-+再代入y u 中, 得 至此获得:2205,u x x y c =--+由二者之和又可解出 025v xy y c =--, 因此200()5f z u iv z z c c i =+=-+-, 其中0c 为任意实常数. 注:此题还有一种方法:由定理知 由此也可很方便的求出()f z .18.由下列各已知调和函数求解析函数()f z u iv =+ 解:(1)22, ()1u x xy y f i i =+-=-+, 由柯西—黎曼方程,2y x v u x y ==+, 对y 积分, 得212()2v xy y c x =++, 再由x y v u =-得2()2y c x x y '+=-+, 因此201(), ()2c x x c x x c '=-=-+, 所以22011222v xy y x c =+-+,因()1f i =-, 说明0,1x y ==时1v =, 由此求出012c =, 至此获得:2222111()(2)222f z u iv x xy y y x xy i =+=+-+-++,整理后可得:211()(1)22f z i z i =-+(2)22yv x y=+, (2)0f = 此类问题, 除上题采纳的方法外, 也可这样:222222222222()1()()()x y xy z i x y x y z zz -=-==++, 所以 1()f z c z=-+,其中c 为复常数.代入(2)0f =得, 12c =, 故此(3)arctan , (0)yv x x=>同上题一样, ()x x y x f z u iv v iv '=+=+22221x y z i zx y x y zz -=+==++, 因此0()ln f z z c =+,其中的ln z 为对数主值, 0c 为任意实常数. (4)(cos sin )x u e x y y y =-, (0)0f =(sin sin cos )x x y v u e x y y y y =-=++, 对x 积分, 得再由y x v u =得()0c x '=, 所以0()c x c =为常数, 由(0)0f =知, 0x y ==时0v =, 由此确定出00c =, 至此获得:()f z u iv =+=(cos sin )x e x y y y -(sin cos )x ie x y y y ++,整理后可得 ()z f z ze =19.设在1z ≤上()f z 解析, 且()1f z ≤, 证明 (0)1f '≤ 证明:由高阶导数公式及积分估计式, 得1112122z ds πππ=≤==⎰, 证毕. 20.若()f z 在闭圆盘0z z R -≤上解析, 且()f z M ≤, 试证明柯西不等式 ()0!()n n n f z M R≤, 并由此证明刘维尔定理:在整个复平面上有界且处处解析的函数一定为常数. 证明:由高阶导数公式及积分估计式, 得11111!!!!()2222n n n n z z n n M n M n M f z ds ds R R R R R ππππ+++===≤==⎰⎰, 柯西不等式证毕;下证刘维尔定理:因为函数有界, 无妨设()f z M ≤, 那么由柯西不等式, 对任意0z 都有0()Mf z R'≤, 又因()f z 处处解析, 因此R 可任意年夜, 这样, 令R →+∞, 得0()0f z '≤, 从而0()0f z '=, 即 0()0f z '=, 再由0z 的任意性知()0f z '≡, 因而()f z 为常数, 证毕.习题四谜底1. 考察下列数列是否收敛, 如果收敛, 求出其极限.(1)1n n z i n=+解:因为lim n n i →∞不存在, 所以lim n n z →∞不存在, 由定理4.1知, 数列{}nz 不收敛.(2)(1)2n n i z -=+解:1sin )22i i θθ+=+, 其中1arctan 2θ=, 则()sin )cos sin nnn z i n i n θθθθ-⎤=+=-⎥⎣⎦.因为lim 0nn →∞=,cos sin 1n i n θθ-=, 所以()lim cos sin 0nn n i n θθ→∞-=由界说4.1知, 数列{}n z 收敛, 极限为0.(3)21n i n z e nπ-=解:因为21n i eπ-=, 1lim 0n n →∞=, 所以21lim 0n i n enπ-→∞= 由界说4.1知, 数列{}n z 收敛, 极限为0. (4)()n n zz z=解:设(cos sin )z r i θθ=+, 则()cos 2sin 2n n z z n i n zθθ==+, 因为lim cos 2n n θ→∞, lim sin 2n n θ→∞都不存在, 所以lim n n z →∞不存在, 由定理4.1知, 数列{}n z 不收敛.2. 下列级数是否收敛?是否绝对收敛?(1)1!nn i n ∞=∑解:1!!n i n n =, 由正项级数的比值判别法知该级数收敛, 故级数1!nn i n ∞=∑收敛, 且为绝对收敛. (2)2ln nn i n∞=∑解:222cos sin 22ln ln ln n n n n n n i i n n n ππ∞∞∞====+∑∑∑, 因为2cos11112ln ln 2ln 4ln 6ln 8n n n π∞==-+-++∑是交错级数, 根据交错级数的莱布尼兹审敛法知该级数收敛, 同样可知,2sin111121ln ln 3ln 5ln 7ln 9n n n π∞==-+-++∑也收敛, 故级数2ln nn i n∞=∑是收敛的. 又22111,ln ln ln 1n n n i n n n n ∞∞===>-∑∑, 因为211n n ∞=-∑发散, 故级数21ln n n ∞=∑发散, 从而级数2ln nn i n ∞=∑条件收敛.(3)0cos 2n n in∞=∑解:1110000cos 2222n n n nn n n n n n n n in e e e e --∞∞∞∞+++====+==+∑∑∑∑, 因级数102nn n e ∞+=∑发散, 故cos 2nn in∞=∑发散. (4)()35!nn i n ∞=+∑解:()035!!nn n i n n ∞∞==+=∑∑, 由正项正项级数比值判别法知该级数收敛, 故级数()035!nn i n ∞=+∑收敛, 且为绝对收敛.3.试确定下列幂级数的收敛半径.(1)()01n n n i z ∞=+∑解:1lim 1n n n c i c +→∞=+=故此幂级数的收敛半径R =. (2)0!n nn n z n∞=∑解:11(1)!11lim lim lim 1(1)!(1)n n n n n n n n c n n c n n e n++→∞→∞→∞+=⋅==++, 故此幂级数的收敛半径R e =.(3)1in n n e z π∞=∑解:11lim lim 1in n n n innc e c e ππ++→∞→∞==, 故此幂级数的收敛半径1R =.(4)221212n nn n z ∞-=-∑解:令2z Z =, 则22111212122n n n n n n n n z Z ∞∞--==--=∑∑112112lim lim 2122n n n n nnn c n c ++→∞→∞+==-, 故幂级数11212n n n n Z ∞-=-∑的收敛域为2Z <, 即22z <, 从而幂级数221212n n n n z ∞-=-∑的收敛域为z <, 收敛半径为R =.4.设级数0n n α∞=∑收敛, 而0n n α∞=∑发散, 证明0n n n z α∞=∑的收敛半径为1. 证明:在点1z =处,nnnn n z αα∞∞===∑∑, 因为0n n α∞=∑收敛, 所以n nn z α∞=∑收敛, 故由阿贝尔定理知, 1z <时, 0n nn z α∞=∑收敛, 且为绝对收敛, 即0n n n z α∞=∑收敛.1z >时, 0nn n n n z αα∞∞==>∑∑, 因为0n n α∞=∑发散, 根据正项级数的比力准则可知, 0nn n z α∞=∑发散, 从而0n n n z α∞=∑的收敛半径为1, 由定理4.6, 0n n n z α∞=∑的收敛半径也为1.5.如果级数0n n n c z ∞=∑在它的收敛圆的圆周上一点0z 处绝对收敛, 证明它在收敛圆所围的闭区域上绝对收敛. 证明:0z z <时, 由阿贝尔定理, 0n n n c z ∞=∑绝对收敛.0z z =时, 00nnn n n n c z c z ∞∞===∑∑, 由已知条件知, 00n n n c z ∞=∑收敛,即0nn n c z ∞=∑收敛, 亦即0n n n c z ∞=∑绝对收敛.6.将下列函数展开为z 的幂级数, 并指出其收敛区域.(1)221(1)z + 解:由于函数221(1)z +的奇点为z i =±, 因此它在1z <内处处解析, 可以在此圆内展开成z 的幂级数.根据例4.2的结果, 可以获得24211(1),11n n z z z z z=-+-+-+<+.将上式两边逐项求导, 即得所要求的展开式221(1)z +='24122211123(1),112n n z z nz z z z +-⋅-=-+++-+<+()(). (2)1(0,0)()()a b z a z b ≠≠-- 解:①a b =时, 由于函数1(0,0)()()a b z a z b ≠≠--的奇点为z a =, 因此它在z a <内处处解析, 可以在此圆内展开成z 的幂级数.='1(1)nn z z a a a⋅++++=111()n n n z a a a -⋅+++=1211,n n n z z a a a -++++<. ②a b ≠时, 由于函数1(0,0)()()a b z a z b ≠≠--的奇点为12,z a z b ==,因此它在min{,}z a b <内处处解析, 可以在此圆内展开成z 的幂级数.=2121111()nnn n z z z z a b a aa b bb ++-----++++-=22111111111[()()],min{,}nn n z z z a b a b b a b a b a ++-+-++-+<-.(3)2cos z解:由于函数2cos z 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.4822cos 1(1),2!4!(2)!nnz z z z z n =-+-+-+<+∞.(4)shz解:由于函数shz 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.321321()()()()sin ((1)),3!(21)!3!(21)!n n niz iz z z shz i iz i iz z z n n ++=-=--++-+=++++<+∞++(5)2sin z解:由于函数2sin z 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.=221(2)(2)(1),22!2(2)!nn z z z n +++-+<+∞⨯⨯.(6)sin z e z解:由于函数sin z e z 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.(1)(1)sin 22iz iz i z i zzze e e e e z e i i-+---=⋅==22221(1)(1)(1)(1)(1(1)1(1))22!!2!!n n n n i z i z i z i z i z i z i n n ++--++++++-------=2122(1)(1)(2)22!!n n n i i i iz z z i n ⋅+--++++=32,3z z z z +++<+∞. 7. 求下列函数展开在指定点0z 处的泰勒展式, 并写出展式成立的区域.(1)0,2(1)(2)zz z z =++解: 21(1)(2)21z z z z z =-++++, 022111(2)222422414nnn z z z z ∞=-==⋅=-+-++∑, 011111(2)212333313nnn z z z z ∞=-==⋅=-+-++∑. 由于函数(1)(2)zz z ++的奇点为121,2z z =-=-, 所以这两个展开式在23z -<内处处成立.所以有:210001(2)1(2)11()(2),23(1)(2)243323n n n n n n nn n n z z z z z z z ∞∞∞+===--=-=---<++∑∑∑.(2)021,1z z = 解:由于2111(1)(1)(1)(1),1111n n z z z z z z ==--+-++--+-<-+ 所以'11211()12(1)(1)(1),11n n z n z z z z --=-=--++--+-<.(3)01,143z i z=+- 解:1111134343(1)33133(1)131(1)13z z i i i z i i z i i===⋅--------------- =100133(1)(1)13(13)(13)n n n n n n n n z i z i i i i ∞∞+==⋅--=-----∑∑.展开式成立的区域:3(1)113z i i--<-, 即13z i --< (4)0tan ,4z z π=解:'2tan sec z z =,''2tan 2sec tan z z z=,'''22tan 2sec (2tan 1)z z z =+, ……,'24tan sec 24z z ππ===, ''244tan 2sec tan 2z z zz zππ====,'''22448tan 2sec (2tan 1)3z z zz z ππ===+=……, 故有因为tan z 的奇点为,2z k k Z ππ=+∈, 所以这个等式在44z ππ-<的范围内处处成立.8. 将下列函数在指定的圆域内展开成洛朗级数.(1)21,12(1)(2)z z z <<+- 解:2221112()(1)(2)5211z z z z z z =--+--++,222222002221212(1)(1)111n nn n n n z z z z z z∞∞+====-=-++∑∑, 故有2121220001112((1)(1))(1)(2)52n nn n n n n n n z z z z z ∞∞∞+++====-+-+-+-∑∑∑(2)21,01,1(1)z z z z z +<<<<+∞- 解:222112(1)(1)z z z z z z +=+--①在01z <<内 ②在1z <<+∞内 (3)1,011,12(1)(2)z z z z <-<<-<+∞--解:①在011z <-<内, ②在12z <-<+∞内20111111111(1)(1)1(1)(2)22122(2)(2)(2)12nnn n n n z z z z z z z z z z ∞∞+===⋅=⋅=-=-----+-----+-∑∑(4)1sin ,011z z<-<+∞- 解:在01z <-<+∞内(5)cos,011zz z <-<+∞- 解:111cos cos(1)cos1cos sin1sin 1111z z z z z =+=----- 在01z <-<+∞内故有9.将221()(1)f z z =+在z i =的去心邻域内展开成洛朗级数.解:因为函数221()(1)f z z =+的奇点为z i =±, 所以它以点z i =为心的去心邻域是圆环域02z i <-<.在02z i <-<内又11001111()()(1)(1)()222(2)(2)12n n n n n n n n z i z i z i z i i i i i i i∞∞++==---=-⋅=--=---++∑∑ 故有222222001111()(1)()(1)()(1)()(2)(2)n n n n n n n n n n f z z i z i z z i i i ∞∞-++==++==⋅--=--+-∑∑ 10.函数()ln f z z =能否在圆环域0(0)z R R <<<<+∞内展开为洛朗级数?为什么?答:不能.函数()ln f z z =的奇点为,0,z z R ≤∈, 所以对,0R R ∀<<+∞, 0z R <<内都有()f z 的奇点, 即()f z 以0z =为环心的处处解析的圆环域不存在, 所以函数()ln f z z =不能在圆环域0(0)z R R <<<<+∞内展开为洛朗级数.习题五谜底1. 求下列各函数的孤立奇点, 说明其类型, 如果是极点, 指出它的级. (1)221(1)z z z -+解:函数的孤立奇点是0,z z i ==±, 因222222221111111(1)(1)()()()()z z z z z z z z z i z z i z i z z i ----=⋅=⋅=⋅++-++- 由性质5.2知, 0z =是函数的1级极点, z i =±均是函数的2级极点. (2)3sin zz 解:函数的孤立奇点是z =, 因32133sin 1((1))3!(21)!n nz z z z z z n +=-++-+, 由极点界说知, 0z =是函数的2级极点. (3)ln(1)z z+ 解:函数的孤立奇点是0z =, 因0ln(1)lim1z z z→+=, 由性质5.1知,0z =是函数可去奇点.(4)21(1)z z e -解:函数的孤立奇点是2z k i π=,①0k =, 即0z =时, 因4223(1)2!!n zz z z e z n +-=++++所以0z =是2(1)z z e -的3级零点, 由性质5.5知, 它是21(1)z z e -的3级极点②2z k i π=, 0k ≠时, 令2()(1)z g z z e =-, '2()2(1)z z g z z e z e =-+, 因(2)0g k i π=, '2(2)(2)0g k i k i ππ=≠, 由界说 5.2知,2(0)z k i k π=≠是()g z 的1级零点, 由性质5.5知, 它是21(1)z z e -的1级极点 (5)2(1)(1)zzz e π++ 解:函数的孤立奇点是(21),z k i k Z =+∈,令2()(1)(1)z g z z e π=++,'2()2(1)(1)z z g z z e e z πππ=+++, ''22()2(1)4(1)z z z g z e ze e z πππππ=++++①0z i =±时, 0()0g z =, '0()0g z =, ''0()0g z ≠, 由界说5.2知,0z i =±是()g z 的2级零点, 由性质5.5知, 它是21(1)(1)z z e π++的2级极点, 故0z i =±是2(1)(1)zzz e π++的2级极点.②1(21),1,2,z k i k =+=±时, 1()0g z =, '1()0g z ≠, 由界说5.2知, 1(21),1,2,z k i k =+=±是()g z 的1级零点, 由性质5.5知, 它是21(1)(1)z z e π++的1级极点, 故是2(1)(1)z zz e π++的1级极点.(6)21sin z解:函数的孤立奇点是0z =, 1,2,z z k ==±= 令2()sin g z z =, '2()2cos g z z z =,①0z =时, 因64222()sin (1)3!(21)!n nz z g z z z n +==-++-++, 所以0z =是()g z 的2级零点, 从而它是21sin z 的2级极点.②1,2,z z k ==±=时, ()0g z =, '()0g z ≠, 由界说5.2知,1,2,z z k ==±=是()g z 的1级零点, 由性质5.5知,它是21sin z的1级极点. 2. 指出下列各函数的所有零点, 并说明其级数.(1)sin z z解:函数的零点是,z k k Z π=∈, 记()sin f z z z =,'()sin cos f z z z z =+①0z =时, 因4222sin (1)3!(21)!n nz z z z z n +=-++-++, 故0z =是sin z z的2级零点.②,0z k k π=≠时, ()0z k f z π==, '()0z k f z π=≠, 由界说5.2知,,0z k k π=≠是sin z z 的1级零点. (2)22z z e解:函数的零点是0z =, 因242222(1)2!!n z z z z e z z n =+++++, 所以由性质5.4知, 0z =是22z z e 的2级零点.(3)2sin (1)z z e z -解:函数的零点是00z =, 1z k π=, 22z k i π=, 0k ≠,记2()sin (1)z f z z e z =-, '22()cos (1)sin [2(1)]z z z f z z e z z e z z e =-++-①0z =时, 0z =是sin z 的1级零点, , 1z e -的1级零点, 2z 的2级零点, 所以0z =是2sin (1)z z e z -的4级零点.②1z k π=, 0k ≠时, 1()0f z =, '1()0f z ≠, 由界说 5.2知, 1z k π=, 0k ≠是()f z 的1级零点.③22z k i π=, 0k ≠时, 1()0f z =, '1()0f z ≠, 由界说 5.2知, 22z k i π=, 0k ≠是()f z 的1级零点.3. 0z =是函数2(sin 2)z shz z -+-的几级极点?答:记()sin 2f z z shz z =+-, 则'()cos 2f z z chz =+-, ''()sin f z z shz =-+,'''()cos f z z chz =-+, (4)()sin f z z shz =+, (5)()cos f z z chz =+, 将0z =代入, 得:''''''(4)(0)(0)(0)(0)(0)0f f f f f =====, (5)()0f z ≠, 由界说5.2知, 0z =是函数()sin 2f z z shz z =+-的5级零点, 故是2(sin 2)z shz z -+-的10级极点.4. 证明:如果0z 是()f z 的(1)m m >级零点, 那么0z 是'()f z 的1m -级零点.证明:因为0z 是()f z 的m 级零点, 所以'''10000()()()()0m f z f z f z f z -=====,0()0m f z ≠, 即''''2000()(())(())0m f z f z f z -====, '10(())0m f z -≠, 由界说5.2知, 0z 是'()f z 的1m -级零点.5. 求下列函数在有限孤立奇点处的留数. (1)212z z z+- 解:函数的有限孤立奇点是0,2z z ==, 且0,2z z ==均是其1级。
复变函数课后习题答案(全)

习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i --(3)131i i i-- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,1232, arg arctan , 3131313z z z i ==-=+(2)3(1)(2)1310i i iz i i i -+===---, 因此,31Re , Im 1010z z =-=,1131, arg arctan , 3101010z z z i π==-=--(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,34535, arg arctan , 232i z z z +==-=(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3zz =-=,10, arg arctan3, 13z z z i π==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5(3)i - (2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin())16(3)66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--2[cos()sin()](cos sin )332[cos()sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-2[cos()sin()](cos2sin 2)1212i i ππθθ=-+-+(2)122[cos(2)sin(2)]21212ii eπθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5)3i 3cossin22i ππ=+11cos (2)sin (2)3232k i k ππππ=+++31, 02231, 122, 2i k i k i k ⎧+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6)1i +2(cossin )44i ππ=+ 4112[cos (2)sin (2)]2424k i k ππππ=+++48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)51,z i += 由此2551k i z i ei π=-=-, (0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), (1), (1), (1)2222a a a ai i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+ 从而222x y z x y +=+≥。
复变函数课后习题答案(全)

创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。
复变函数课后部分答案

1 u v . 4
2 2
7.已知映射 z , 求:
3
2)区域0 arg z
解: 2)设z = re ,
3
3
在平面上的像。
i 3 3 3i
i
w (re ) r e ,
3 映成0 arg z .
映射 z 将区域0 arg z
8.下列函数何处可导?何处解析? 1 )f ( z) x2 yi; 3) f ( z) xy 2 ix 2 y;
3)u xy2 , v x 2 y,
u u v v y2, 2 xy, 2 xy, x 2 , u, v在复平面上可微; x y x y
y 2 x,2 xy 2 xy,
f ( z)在原点(0,0)上满足C R条件;
f ( z)仅在(0,0)上可导,在复平面上处处不解析。
9.指出下列函数的解析性区域,并求其导数。 1 3 1 )z 2iz; 3) 2 ; z 1
解: 1 )在整个复平面上解析 ,f ' ( z ) 3z 2i; 2z 3)除z 1点外处处解析, f ' ( z ) 2 ; 2 ( z 1)
2
11.求下列函数的奇点: z 1 z 3 1 ) 2 ; 2) . 2 2 z ( z 1) ( z 1) ( z 1)
x 1 2 有 , y 3 8
x 1 即 . y 11
3.将下列复数化为三角式和指数式: 1 ) 5i; 3)1 i 3;
解: 1 )z
i 2
;
3) z 2[cos( ) i sin( )] 2e ; 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[
]
(A)等于 0
(B)等于1
(C)小于1
(D)大于1
二、填空题
1.设
f (0) 1,
f (0) 1 i ,则 lim
f (z) 1
z0
z
1+i
。
2.设 f ( z ) z R e z ,则 f (0)
0
。
3.
f
(z)
x3
y3
ix 2 y 2 ,则
f
(
3
i
3 )
27
-i
27 。
22 44
三、解答题。
5
1.设
m y 3 nx 2 y i( x 3 lxy 2 )为 解 析 函 数 , 试 确 定 的 值 。 解 : u ( x, y) my3 nx2 y, v(x, y) x3 lxy 2 ux 2nxy, u y 3my 2 nx2 ; vx 3x 2 ly 2 , vy 2lxy. 由 C.-R.方 程 知 ,
3
m
y
2
2nxy nx2
2lxy =-(3 x 2
, ly 2 )
从 而 n l 3, m 1.
2.下列函数何处可导?何处解析? (1)
f (z) x2 iy;
解 : u x2, v y.
ux 2 x, u y 0; vx 0, vy 1. 由 C.-R.方 程 知 , 2 x 1.
f ( z )。
解 : f (z) u iu 2.
由 C .-R .方 程 知 ,
u x (u 2 ) y
u y
(u 2 )x
2uu y 2uux
,
则 ux u y 0, u C R.
从 而 f (z) C iC 2.
4.设 f ( z ) u ( x, y ) iv ( x, y ) 是 z 的解析函数,证明:
4.设
z
re i
,则 R e
z
1
z 1
r2 1 r 2 2r cos
1
三、解答题。 1.解方程
[
]
(1)
8
sin z i cos z 4i
ln 4 i
cos( z) i sin( z) e 2
2
2
i( z) ln 4 i( 2k )
2
2
x
|
f
(
z
)
|
y
|
f
(z) |
| f ( z ) |2
pf :
2
2
左
边
=
x
u2
v2
y
u2
v2
。
2
2
uux
vvx
uu y
vv y
u2 v2 u2 v2
2
2
f (z) xy 1 x2 1 y2 C i(xy 1 x2 1 y2 C )
2
2
2
2
10
2
2
z i ln 4 2k (k Z )
(2)
e z 1 3i 0
z Ln (1 3i ) ln 2 i( 2 k )
3
2.计算下列复数的值:
(1)
(1 i )i
1
e e e iLn (1 i )
i[ln 2 i ( 2 k )] 4
(1) e z e z ; 正确;错误
(2) eiz ei z
9
4.已知 u v x 2 y 2 ,试确定解析函数 f ( z ) u iv 。 由 C.-R.方程知, u x v y , u y v x
u
v
x2
y2
ux vx 2x
(B) co s i
(C) e 2
(C) L n i
(D) e 2
(D) e 3 2 i
[
]
3.设 f ( z ) sin z ,下列命题中错误的是
[
]
(A) f ( z ) 在复平面内处处解析
(B) f ( z ) 以 2 为周期
(C) f ( z ) e iz e iz 2
(D) | f ( z ) | 是无界的
4. e z 在复平面上
(A)无可导点 (C)有可导点,且在可导点解析 二、填空题。
z
1.函数 f ( z ) e 5 的周期是1 0 k i
(B)有可导点但不解析 (D)处处解析
2. Im {ln(3 4i)} arctan 4 3
3.方程1 e z 0 的全部解为 2 k i(k Z )
( 2 k ) i ln 2
4
2
(2)
L n(1+ i)
1
= ln2+i( 2k )
2
4
(1)
(1 i ) i
1
e e e iLn (1 i )
i[ln 2 i ( 2 k )] 4
2 k i ln 2
4
2
(2)
13 e 3Ln1 e 2 3k i 3.下列关系是否正确?
(B) x 2 xyi
(C) 2( x 1) y i( y 2 x 2 2 x)
(D) x 3 iy 3
3. 若 f ( z ) x 2 2 xy y 2 i( y 2 axy x 2 ) 在复平面内处处解析,则 a
[
]
(A) 0
(B)1
(C) 2
u
y
vy
2 y
vy
v
x
vx vy
2x 2 y
vx
y
x,vy
x
y
v xy 1 x2 ( y) xy 1 y2 (x)
2
2
( y) 1 y2 C v xy 1 x2 1 y2 C
2
2
2
u xy 1 x2 1 y2 C
C. R .方 程
u 2ux2 v2vx2 +u 2vx2 v2ux2 u2 v2
ux2 vx2
=右 边 。
7
一、选择题。
复变函数练习题
第二章 解析函数
系
专业
班级 姓名
学号
§3 初等函数 综合练习题
1. i i 的主值为
[
]
(A) 0
(B)1
2.下列数中为实数的是
(A) (1 i)3
2y2 x2 4xy 2xy
则 u 和 v 在 (0, 0) 点 满 足 C.-R. 方 程 。 又 由 u 和 v 的 一 阶 偏 导
在 (0, 0) 点 连 续 , 则 函 数 f ( z ) 在 (0, 0)点 可 导.
6
3.设 f ( z ) u ( x, y ) iv ( x, y ) 在区域 D 内解析,并且 v u 2 ,试求
(D) 2
4. 函数 f ( z ) z 2 Im ( z ) 在 z 0 处的导数
[
]
(A) 0
(B)1
(C) 1
(D)不存在
5.设 f ( z ) x 2 iy 2 ,则 f (1 i)
[
]
(A) 2
(B) 2 i
(C)1 i
(D) 2 2i
6. 设 z 为非零复数, a , b 为实数,若 z a ib ,则 a 2 b 2 的值 z
一概念
第二章 解析函数
班 姓名
学号
§2 解析函数的充要条件
1.函数 f ( z ) 3 | z |2 在点 z 0 处是
(A)解析的
( B) 可导的
2.下列函数中,为解析函数的是
(C) 不可导的
[
]
(D) 既不解析也不可导
[
]
(A) x 2 y 2 2 xyi
又由 u 和 v 的一阶偏导连续,则函数 f (z) 在
直线
1 x
上 可 导 ,f ( z ) 不 解 析 .
2
(2) f ( z) xy 2 ix2 y
解 : u 2 xy2, v x2 y.
ux 2 y2 ,u y 4xy; vx 2xy, vy x2. 由 C.-R.方 程 知 ,