河池历年中考数学应用题

合集下载

广西河池市2020年中考数学试题【word精校精析版】

广西河池市2020年中考数学试题【word精校精析版】

2020年广西河池市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项符合题目要求.请用2B 铅笔将答题卡上对应题目的答案标号涂黑.)1. 如果收入10元记作10+元,那么支出10元记作( )A. 10+元B. 10-元C. 20+元D. 20-元【答案】B【解析】【分析】根据正负数的含义,可得:收入记作“+”,则支出记作“-”,据此求解即可.【详解】如果收入10元记作+10元,那么支出10元记作-10元.故选:B .【点睛】此题主要考查了正负数在实际生活中的应用,要熟练掌握,解答此题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2. 如图,直线a ,b 被直线c 所截,则∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 邻补角【答案】A【解析】【分析】 根据三线八角的概念,以及同位角的定义作答即可.【详解】解:如图所示,∠1和∠2两个角都在两被截直线直线b 和a 同侧,并且在第三条直线c (截线)的同旁,故∠1和∠2是直线b 、a 被c 所截而成的同位角.故选:A .【点睛】本题考查了同位角、内错角、同旁内角的定义.在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系.两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角.3. 若y 2x x 的取值范围是( )A. x >0B. x ≥0C. x >2D. x ≥2【答案】B【解析】【分析】根据二次根式有意义的条件:被开方数应大于或等于0,列式计算即可得解.【详解】解:由题意得,2x≥0,解得x≥0.故选:B.【点睛】本题主要考查了二次根式有意义的条件:被开方数应大于或等于0.4. 下列运算,正确的是()A.a(﹣a)=﹣a2B. (a2)3=a5C. 2a﹣a=1D. a2+a=3a 【答案】A 【解析】【分析】利用单项式乘单项式、积的乘方的运算法则,合并同类项的运算法则分别计算后即可确定正确的选项.【详解】解:A、a(﹣a)=﹣a2,原计算正确,故此选项符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、2a﹣a=a,原计算错误,故此选项不符合题意;D、a2与a不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:A.【点睛】本题考查了单项式乘单项式、积的乘方,合并同类项.解题的关键是能够熟练掌握有关的运算法则,难度不大.5. 下列立体图形中,主视图是矩形的是()A. B. C. D.【答案】B【解析】【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【详解】A.此几何体的主视图是等腰三角形;B .此几何体的主视图是矩形;C .此几何体的主视图是等腰梯形;D .此几何体的主视图是圆;故选B .【点睛】此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.6. 不等式组1224x x x +>⎧⎨-⎩的解集在数轴上表示正确的是( ) A. B. C.D.【答案】D【解析】【分析】 首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解:1224x x x +>⎧⎨-≤⎩①②, 由①得:x >1,由②得:x ≤4,不等式组的解集为:1<x ≤4,故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确确定两个不等式的解集.7. 在Rt △ABC 中,∠C =90°,BC =5,AC =12,则sinB 的值是( ) A. 512B. 125C. 513D. 1213【答案】D【解析】【分析】直接利用勾股定理得出AB 的长,再利用锐角三角函数得出答案.【详解】解:如图所示:∵∠C =90°,BC =5,AC =12,∴2251213 AB=+=,∴12 sin13ACBAB==.故选:D.【点睛】本题考查勾股定理的应用和锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,解题的关键是理解三角函数的定义.8. 某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A. 85,85B. 85,88C. 88,85D. 88,88【答案】B【解析】【分析】将题目中的数据按照从小到大排列,即可得到这组数据的众数和中位数,本题得以解决.【详解】解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98,故这组数据的众数是85,中位数是88,故选:B.【点睛】本题主要考查的是众数和中位数;众数:一组数据中出现次数最多的数;中位数:把所有数据按照从小到大排列,位于中间的数或中间两个数的平均数为中位数.9. 观察下列作图痕迹,所作CD为△ABC的边AB上的中线是()A. B.C. D.【答案】B【分析】根据题意,CD为△ABC的边AB上的中线,就是作AB边的垂直平分线,交AB于点D,点D即为线段AB 的中点,连接CD即可判断.【详解】解:作AB边的垂直平分线,交AB于点D,连接CD,∴点D即为线段AB的中点,∴CD为△ABC的边AB上的中线.故选:B.【点睛】本题主要考查三角形一边的中线的作法;作该边的中垂线,找出该边的中点是解题关键.10. 某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A. 6B. 7C. 8D. 9【答案】D【解析】【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x队,根据题意得:1x(x﹣1)=36,2化简,得x2﹣x﹣72=0,解得x1=9,x2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.11. 如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A. 2B. 2C. 5D. 5【答案】C【解析】根据平行四边形的性质和角平分线的定义可得AD=BC=EB=5,根据勾股定理的逆定理可得∠AED=90°,再根据平行四边形的性质可得CD=AB=8,∠EDC=90°,根据勾股定理可求CE的长.【详解】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE=22ED DC+=2248+=45.故选:C.【点睛】此题主要考查了平行四边形的性质和角平分线的性质,勾股定理的逆定理,勾股定理,关键是掌握平行四边形对边平行且相等.12. 如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC 的长是()A. 522B.352C.453D.523【答案】B 【解析】连接BC,因为AB是直径,根据圆周角定理得到∠ACB=90°,可证△ACE∽△CBF,根据相似三角形的判定和性质定理可得AC CE=BC BF,并用勾股定理求出BC的长度,代入公式,求出AC的长度,即可得到结论.【详解】解:如图所示,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BCF=90°,∵BF⊥CD,∴∠CFB=90°,∴∠CBF+∠BCF=90°,∴∠ACE=∠CBF,∵AE⊥CD,∴∠AEC=∠CFB=90°,∴△ACE∽△CBF,∴AC CE=BC BF,∵FB=FE=2,FC=1,∴CE=CF+EF=3,BC2222CF BF=12=5++,235,∴35 AC=2,故选:B.【点睛】本题主要考察了圆周角定理的应用、相似三角形的性质、勾股定理,解题的关键在于找出一对相似的三角形,其线段互相成比例,并求出各线段的长度.二、填空题(本大题共6小题,每小题3分,共18分.请把答案写在答题卡上对应的答题区域内.)13. 计算:3﹣(﹣2)=_____.【答案】5【解析】【分析】根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【详解】解:3﹣(﹣2)=3+2=5.故答案为:5.【点睛】本题主要考查了有理数的减法运算,熟练掌握有理数减法运算法则是解题的关键.14. 方程121x+=12x-的解是x=_____.【答案】-3【解析】【分析】根据解分式方程的步骤解答即可,注意求出x的值后记得要代入原方程进行检验,看是否有意义.【详解】解:方程的两边同乘(2x+1)×(x﹣2),得:x﹣2=2x+1,解这个方程,得:x=﹣3,经检验,x=﹣3是原方程的解,∴原方程的解是x=﹣3.故答案为:﹣3.【点睛】本题主要考查了分式的求解,首先需要注意要给等式两边同时乘以最简公分母,其次计算结束后要对方程的解进行检验,要求熟练掌握分式方程的解题规则.15. 如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE的长是_____.【答案】2【解析】【分析】由菱形的性质得出AB=4,由三角形中位线定理即可得出OE的长.【详解】解:∵菱形ABCD的周长为16,∴AB=BC=CD=AD=4,OA=OC,∵OE∥AB,且O点是AC的中点,∴OE是△ABC的中位线,∴OE=12AB=2,故答案为:2.【点睛】本题考察了菱形的性质、三角形中位线的应用过,解题的关键在于找出OE是△ABC的中位线.16. 不透明的袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到相同颜色的小球的概率是_____.【答案】1 2【解析】【分析】画树状图展示所有4种等可能的结果,找出两次都摸到相同颜色的小球的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有4种等可能的结果,其中两次都摸到相同颜色的小球的结果数为2,所以两次都摸到相同颜色的小球的概率=24=12.故答案为12.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.17. 如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=_____°.【答案】35【解析】【分析】如图(见解析),连接AD ,先根据圆周角定理可得90ADB ∠=︒,从而可得290ADE ∠+∠=︒,再根据圆周角定理可得1ADE ∠=∠,由此即可得.【详解】如图,连接AD∵AB 是⊙O 的直径∴90ADB ∠=︒,即290ADE ∠+∠=︒又由圆周角定理得:1ADE ∠=∠∵155∠=︒∴55ADE ∠=︒290905535ADE ∴∠=︒-∠=︒-︒=︒故答案为:35.【点睛】本题考查了圆周角定理,熟记圆周角定理是解题关键.18. 如图,在Rt △ABC 中,∠B =90°,∠A =30°,AC =8,点D 在AB 上,且BD =3,点E 在BC 上运动.将△BDE 沿DE 折叠,点B 落在点B ′处,则点B ′到AC 的最短距离是_____.3如图,过点D作DH⊥AC于H,过点B′作B′J⊥AC于J.在Rt△ACB中,根据三角函数知识可得DB′+B′J≥DH,DB′=DB=3,当D,B′,J共线时,B′J的值最小,此时求出DH,DB′,即可解决问题.【详解】解:如图,过点D作DH⊥AC于H,过点B′作B′J⊥AC于J.在Rt△ACB中,∵∠ABC=90°,AC=8,∠A=30°,∴AB=AC•cos30°=3∵BD3∴AD=AB﹣BD=3∵∠AHD=90°,∴DH=12AD33,∵B′D+B′J≥DH,DB′=DB3∴B′J≥DH﹣DB′,∴B′J≥32,∴当D,B′,J共线时,B′J的值最小,最小值为32;3【点睛】本题主要考查了图形的折叠,特殊锐角三角函数的知识.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或运算步骤.请将解答写在答题卡上对应的答题区域内.)19. 计算:(﹣3)08+(﹣3)2﹣42.【分析】先根据零指数幂的意义计算,再进行乘方运算,然后化简后合并即可.【详解】解:(﹣3)0(﹣3)2﹣4×2=1++9﹣=10.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20. 先化简,再计算:221211a aa a a-+-+-,其中a=2.【答案】11aa+-;3【解析】【分析】先把分子分母因式分解,再约分得到同分母的加法运算,从而得到原式=11aa+-,然后把a的值代入计算即可.【详解】解:221211a a a a a-+-+-=2(1)1+(1)1a a a a---=1+11a a a--=11a a+-,当a=2时,原式=2121+-=3.【点睛】本题考查了分式的化简求值:把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21. 如图,在平面直角坐标系xOy中,A(﹣1,2).(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是 . (2)点C 与点A 关于原点O 对称,则点C 的坐标是 .(3)反比例函数的图象经过点B ,则它的解析式是 .(4)一次函数的图象经过A ,C 两点,则它的解析式是 .【答案】(1)(2,3);(2)(1,-2);(3)6y x =;(4)2y x =- 【解析】【分析】(1)根据“上加下减,左减右加”法则判断即可确定出B 的坐标;(2)根据关于原点对称的点的坐标特征判断即可;(3)设反比例函数解析式为y =k x ,把B 坐标代入确定出k ,即可求出解析式; (4)设一次函数解析式为y =mx +n ,把A 与C 坐标代入求出m 与n 的值,即可求出解析式.【详解】解:(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是(2,3);(2)点C 与点A 关于原点O 对称,则点C 的坐标是(1,﹣2);(3)设反比例函数解析式为y =k x , 把B (2,3)代入得:k =6,∴反比例函数解析式为y =6x; (4)设一次函数解析式为y =mx +n ,把A (﹣1,2)与C (1,﹣2)代入得:22m n m n -+=⎧⎨+=-⎩, 解得:20m n =-⎧⎨=⎩,则一次函数解析式为2y x =-.故答案为:(1)(2,3);(2)(1,﹣2);(3)y=6x;(4)y =﹣2x . 【点睛】本题主要考查了一次函数图象上点的坐标特征;待定系数法求一次函数解析式;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化﹣平移以及关于原点对称的点的坐标.22. (1)如图(1),已知CE 与AB 交于点E ,AC =BC ,∠1=∠2.求证:△ACE ≌△BCE .(2)如图(2),已知CD 的延长线与AB 交于点E ,AD =BC ,∠3=∠4.探究AE 与BE 的数量关系,并说明理由.【答案】(1)证明见解析;(2)AE=BE ;理由见解析【解析】【分析】(1)根据SAS 可得出答案;(2)在CE 上截取CF =DE ,证明△ADE ≌△BCF (SAS ),可得出AE =BF ,∠AED =∠CFB ,则可得出BE =BF .结论得证.【详解】(1)证明:在△ACE 和△BCE 中,∵12AC BC CE CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCE (SAS );(2)AE =BE .理由如下:在CE 上截取CF =DE ,在△ADE 和△BCF 中,∵34AD CB CF DE =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCF (SAS ),∴AE =BF ,∠AED =∠CFB ,∵∠AED +∠BEF =180°,∠CFB +∠EFB =180°,∴∠BEF =∠EFB ,∴BE =BF ,∴AE =BE .【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是解题的关键.23. 某校举行了主题为“防溺水,保安全”的知识竞赛活动.赛后随机抽取了50名参赛学生的成绩进行相关统计,整理得尚未完整的频数分布表和扇形统计图.现累计了40名参赛学生的成绩,余下10名参赛学生的成绩尚未累计,这10名学生成绩如下(单位:分):75,63,76,87,69,78,82,75,63,71. 频数分布表组别分数段 划记 频数 A60<x ≤70 正 B70<x ≤80 正正 C80<x ≤90 正正正正 D90<x ≤100 正(1)在频数分布表中补全各组划记和频数;(2)求扇形统计图中B 组所对应的圆心角的度数;(3)该校有2000名学生参加此次知识竞赛,估计成绩在80<x ≤100的学生有多少人?【答案】(1)8,15,22,5;(2)108°;(3)1080人【解析】【分析】(1)用“划记”统计10名学生的成绩,并统计频数填入表格;(2)B组人数占调查人数的1550,因此相应的圆心角度数为360°的1550;(3)样本中,成绩在80~100的人数占调查人数的22550+,因此估计总体2000人的是22550+成绩在“80<x≤100”人数.【详解】解:(1)用“划记”统计10名学生的成绩,并统计频数填入表格;故答案为:8,15,22,5;(2)360°×1550=108°,答:扇形统计图中B组所对应的圆心角的度数为108°;(3)2000×22550+=1080(人),答:该校2000名学生中,成绩在80<x≤100的有1080人.【点睛】本题主要考查了用样本估计总体,频数(率)分布表及扇形统计图的知识.24. 某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg;乙店的香蕉价格为5元/kg,若一次购买6kg以上,超过6kg部分的价格打7折.(1)设购买香蕉xkg,付款金额y元,分别就两店的付款金额写出y关于x的函数解析式;(2)到哪家店购买香蕉更省钱?请说明理由.【答案】(1)y=4x;5,(6)560.75(6),(6)x xyx x⎧=⎨⨯+⨯->⎩;(2)见解析【解析】【分析】(1)根据题意分别找出甲乙两店的销售模式,根据"销售额=销售量×销售数量"列出函数关系式即可求出答案.(2)根据(1)函数关系以及x的取值范围即可列出不等式分三情况进行判断.【详解】解:(1)甲商店:y=4x乙商店:5,(6)560.75(6),(6)x xyx x⎧=⎨⨯+⨯->⎩.(2)当x<6时,此时甲商店比较省钱,当x≥6时,令4x=30+3.5(x﹣6),解得:x=18,此时甲乙商店的费用一样,当x<18时,此时甲商店比较省钱,当x>18时,此时乙商店比较省钱.【点睛】本题主要考查了一次函数的应用及一元一次不等式的应用.25. 如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是BD的中点,EF∥BC,交OC的延长线于点F.(1)求证:EF是⊙O的切线;(2)CG∥OD,交AB于点G,求CG的长.【答案】(1)见解析;(2)17 3【解析】【分析】(1)由垂径定理可得OE⊥BD,BH=DH,由平行线的性质可得OE⊥EF,可证EF是⊙O的切线;(2)由勾股定理可求BC的长,由面积法可求OH的长,由锐角三角函数可求BH的长,由平行线分线段成比例可求解.【详解】证明:(1)连接OE,交BD于H,∵点E 是BD 的中点,OE 是半径,∴OE ⊥BD ,BH =DH ,∵EF ∥BC ,∴OE ⊥EF ,又∵OE 是半径,∴EF 是⊙O 的切线;(2)∵AB 是⊙O 的直径,AB =6,OC ⊥AB ,∴OB =3,∴BC =,∵S △OBC =12×OB ×OC =12×BC ×OH ,∴OH =34, ∵cos ∠OBC =OB BH BC OB =,3BH =,∴BH =34,∴BD =2BH =, ∵CG ∥OD , ∴OD BD CG BC=,∴3CG =, ∴CG =173. 【点睛】本题主要考查了垂径定理,圆周角定理及切线的判定与性质.26. 在平面直角坐标系xOy 中,抛物线与x 轴交于(p ,0),(q ,0),则该抛物线的解析式可以表示为:y =a (x ﹣p )(x ﹣q )=ax 2﹣a (p +q )x +apq .(1)若a =1,抛物线与x 轴交于(1,0),(5,0),直接写出该抛物线的解析式和顶点坐标;(2)若a=﹣1,如图(1),A(﹣1,0),B(3,0),点M(m,0)在线段AB上,抛物线C1与x轴交于A,M,顶点为C;抛物线C2与x轴交于B,M,顶点为D.当A,C,D三点在同一条直线上时,求m的值;(3)已知抛物线C3与x轴交于A(﹣1,0),B(3,0),线段EF的端点E(0,3),F(4,3).若抛物线C3与线段EF有公共点,结合图象,在图(2)中探究a的取值范围.【答案】(1)y=x2﹣6x+5;(3,﹣4);(2)13;(3)a≥35或a≤﹣34【解析】【分析】(1)结合题意,利用配方法解决问题即可.(2)求出两个抛物线的顶点坐标,根据A,C,D三点在同一条直线上,构建方程求解即可.(3)求出两种特殊情形a的值,结合图象判断即可解决问题.【详解】解:(1)由题意抛物线的解析式为y=(x﹣1)(x﹣5)=x2﹣6x+5=(x﹣3)2﹣4,∴y=x2﹣6x+5,抛物线的顶点坐标为(3,﹣4).(2)如图1中,过点C作CE⊥AB于E,过点D作DF⊥AB于F.由题意抛物线C1为y=﹣(x+1)(x﹣m)=﹣(x﹣12m-)2+2214m m++,∴C(12m-,2214m m++),抛物线C2为y=﹣(x﹣m)(x﹣3)=﹣(x﹣32m+)2+2694m m-+,∴D(32m+,2694m m-+),∵A,C,D共线,CE∥DF,∴CEAE=DFAF,∴2214112m mm++-+=26943+12m mm-++,解得m=13,经检验,m=13是分式方程的解,∴m=13.(3)如图2﹣1,当a>0时,设抛物线的解析式为y=a((x+1)(x﹣3),当抛物线经过F(4,3)时,3=a×5×1,∴a=35,观察图象可知当a≥35时,满足条件.如图2﹣2中,当a<0时,顶点在线段EF上时,顶点为(1,3),把(1,3)代入y=a(x+1)(x﹣3),可得a=﹣34,观察图象可知当a≤﹣34时,满足条件,综上所述,满足条件的a的范围为:a≥35或a≤﹣34.【点睛】本题属于二次函数综合题,考查了二次函数的性质,待定系数法等知识,解题的关键是理解题意,学会利用参数解决问题,属于中考常压轴题.衡石量书整理。

中考数学专题复习--应用题行程问题

中考数学专题复习--应用题行程问题

行程问题应用题
1.一列队伍长120米,在队伍行进时,通讯员从队尾赶到队首又立即返回队尾,若这段时间内队伍向前进了288米,队伍及通讯员速度始终不变,那么这段时间通讯员行走路程是多少?
2.某铁路桥长1000米,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间共40S,求火车的速度和长度。

3.甲乙二人分别从AB两地同时出发,相向而行,他们第一次相遇时距离A地60千米,然后两人继续前行,分别到达BA后调头继续前行。

当他们第二次相遇时距离B地30千米。

问AB两地的距离是多少?
4.在复线铁路上,快车和慢车分别从两个车站开出,相向而行。

快车车身长是180米,速度为每秒钟9米;慢车车身长210米,车速为每秒钟6米。

从两车头相遇到两车的尾部离开,需要几秒钟?
5.甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。

二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。

从开始走到第二次相遇,共用了6小时。

A、B两地相距多少千米?
6.一排解放军从驻地出发去执行任务,每小时行5千米。

离开驻地3千米时,排长命令通讯员骑自行车回驻地取地图。

通讯员以每小时10千米的速度回到驻地,取了地图立即返回。

通讯员从驻地出发,几小时可以追上队伍?。

【2019中考数学】广西河池数学中考真题(含解析)【2019中考真题+数学】

【2019中考数学】广西河池数学中考真题(含解析)【2019中考真题+数学】

2019年广西河池市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.计算3-4,结果是()A. B. C. 1 D. 72.如图,∠ = 20°,要使a∥b,则∠2的大小是()A. 0B. 0C. 00D. 203.下列式子中,为最简二次根式的是()A.2B. 2C.D. 24.某几何体的三视图如图所示,该几何体是()A. 圆锥B. 圆柱C. 三棱锥D. 球5.不等式组22的解集是()A. 2B.C. 2D. 26.某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A. 53,53B. 53,56C. 56,53D. 56,567.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A. ∠ ∠B. ∠ ∠C.D.8.函数y=x-2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是()A. 1B. 2C. 3D. 410.如图,在正六边形ABCDEF中,AC=2,则它的边长是()A. 1B. 2C.D. 211.如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是()A. 0B. 20C. 2 0D. 012.如图,△ABC为等边三角形,点P从A出发,沿A→B→C→A作匀速运动,则线段AP的长度y与运动时间x之间的函数关系大致是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)的解为______.13.分式方程214.如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则=______.15.掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是______.16.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB= °,则∠P=______°.17.如图,在平面直角坐标系中,A(2,0),B(0,1),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是______.18.a1,a2,a3,a4,a5,a6,…,是一列数,已知第1个数a1=4,第5个数a5=5,且任意三个相邻的数之和为15,则第2019个数a2019的值是______.三、计算题(本大题共1小题,共6.0分)19.计算:30+-()-2+|-3|.2四、解答题(本大题共7小题,共60.0分)20.分解因式:(x-1)2+2(x-5).21.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.22.如图,在河对岸有一棵大树A,在河岸B点测得A在北偏东 0°方向上,向东前进120m到达C点,测得A在北偏东 0°方向上,求河的宽度(精确到0.1m).参考数据:2≈ . ,≈ . 2.23.某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?24.在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?25.如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F.(1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F= 5°,求CF的长.26.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=2与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.答案和解析1.【答案】A【解析】解:3-4=-1.故选:A.有理数减法法则:减去一个数,等于加上这个数的相反数.依此即可求解.考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).2.【答案】D【解析】解:如果∠2=∠ = 20°,那么a∥b.所以要使a∥b,则∠2的大小是 20°.故选:D.根据同位角相等,两直线平行即可求解.本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.3.【答案】B【解析】解:A、原式=,不符合题意;B、是最简二次根式,符合题意;C、原式=2,不符合题意;D、原式=2,不符合题意;故选:B.利用最简二次根式定义判断即可.此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.4.【答案】A【解析】解:由已知三视图得到几何体是以圆锥;故选:A.由已知三视图得到几何体是圆锥.本题考查了几何体的三视图;熟记常见几何体的三视图是解答的关键.5.【答案】D【解析】解:,解①得:x≤2,解②得:x>1.则不等式组的解集是:1<x≤2.故选:D.首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【答案】D【解析】解:将数据重新排列为51,53,53,56,56,56,58,所以这组数据的中位数为56,众数为56,故选:D.根据众数和中位数的定义求解可得.本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【答案】B【解析】解:∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE AC.A、根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B、根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选:B.利用三角形中位线定理得到DE AC,结合平行四边形的判定定理进行选择.本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.8.【答案】B【解析】解:一次函数y=x-2,∵k=1>0,∴函数图象经过第一三象限,∵b=-2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选:B.根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.本题考查了一次函数的性质,对于一次函数y=kx+b,k>0,函数经过第一、三象限,k <0,函数经过第二、四象限.9.【答案】B【解析】证明:∵四边形ABCD是正方形,∴AB∥BC,AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BFC=∠AEB,∴∠BFC=∠ABF,故图中与∠AEB相等的角的个数是2.故选:B.根据正方形的性质,利用SAS即可证明△ABE≌△BCF,再根据全等三角形的性质可得∠BFC=∠AEB,进一步得到∠BFC=∠ABF,从而求解.本题考查正方形的性质、全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】D【解析】解:如图,过点B作BG⊥AC于点G.正六边形ABCDEF中,每个内角为(6-2)× 0°÷ = 20°,∴∠ABC= 20°,∠BAC=∠BCA= 0°,∴AG=AC=,∴GB=1,AB=2,即边长为2.故选:D.过点B作BG⊥AC于点G.,正六边形ABCDEF中,每个内角为(6-2)× 0°÷ = 20°,即∠ABC= 20°,∠BAC=∠BCA= 0°,于是AG=AC=,AB=2,本题考查了正多边形,熟练运用正多边形的内角和公式是解题的关键.11.【答案】C【解析】解:A、由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上,可得c>0,因此ac<0,故本选项正确,不符合题意;B、由抛物线与x轴有两个交点,可得b2-4ac>0,故本选项正确,不符合题意;C、由对称轴为x=-=1,得2a=-b,即2a+b=0,故本选项错误,符合题意;D、由对称轴为x=1及抛物线过(3,0),可得抛物线与x轴的另外一个交点是(-1,0),所以a-b+c=0,故本选项正确,不符合题意.故选:C.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.12.【答案】B【解析】解:根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选:B.根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B 符合题意,选项A不合题意.本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.13.【答案】x=3【解析】解:去分母得:x-2=1,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.【答案】25【解析】解:∵以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,∴===.故答案为:.直接利用位似图形的性质进而分析得出答案.此题主要考查了位似变换,正确得出对应边的比值是解题关键.15.【答案】2【解析】解:掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是=,故答案为:.利用随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数进行计算即可.此题主要考查了概率公式,关键是掌握概率的计算方法.16.【答案】76【解析】解:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°-∠OAB=90°- °=52°,∴∠P= 0°-52°-52°= °;故答案为:76.由切线的性质得出PA=PB,PA⊥OA,得出∠PAB=∠PBA,∠OAP=90°,由已知得出∠PBA=∠PAB=90°-∠OAB=52°,再由三角形内角和定理即可得出结果.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形内角和定理;利用切线的性质来解答问题时,解此类问题的一般思路是利用直角来解决问题.17.【答案】y=2x-4【解析】解:∵A(2,0),B(0,1)∴OA=2,OB=1过点C作CD⊥x轴于点D,则易知△ACD≌△BAO(AAS)∴AD=OB=1,CD=OA=2∴C(3,2)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得∴∴直线AC的解析式为y=2x-4.故答案为:y=2x-4.过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(2,0),B(0,1),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.本题是几何图形旋转与待定系数法求一次函数解析式的综合题,难度中等.18.【答案】6【解析】解:由任意三个相邻数之和都是15可知:a1+a2+a3=15,a2+a3+a4=15,a3+a4+a5=15,…a n+a n+1+a n+2=15,可以推出:a1=a4=a7=…=a3n+1,a2=a5=a8=…=a3n+2,a3=a6=a9=…=a3n,所以a5=a2=5,则4+5+a3=15,解得a3=6,∵20 9÷ = ,因此a2017=a3=6.故答案为:6.由任意三个相邻数之和都是15,可知a1、a4、a7、…a3n+1相等,a2、a5、a8、…a3n+2相等,a3、a6、a9、…a3n相等,可以得出a5=a2=5,根据a1+a2+a3=15得4+5+a3=15,求得a3,进而按循环规律求得结果.此题主要考查了规律型:数字的变化类,关键是找出第1、4、 …个数之间的关系,第2、5、 …个数之间的关系,第3、6、9…个数之间的关系.问题就会迎刃而解.19.【答案】解:原式=1+22-4+3=22【解析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:原式=x2-2x+1+2x-10=x2-9=(x+3)(x-3).【解析】直接利用完全平方公式化简,进而利用平方差公式分解因式即可.此题主要考查了公式法分解因式,正确运用公式是解题关键.21.【答案】解:(1)如图所示;AC.(2)OE∥AC,OE=2理由如下:∵AD平分∠BAC,∴∠BAD=∠BAC,2∠BOD,∵∠BAD=2∴∠BOD=∠BAC,∴OE∥AC,∵OA=OB,∴OE为△ABC的中位线,AC.∴OE∥AC,OE=2【解析】(1)利用基本作图作AD平分∠BAC,然后连接OD得到点E;(2)由AD平分∠BAC得到∠BAD=∠BAC,由圆周角定理得到∠BAD=∠BOD,则∠BOD=∠BAC,再证明OE为△ABC的中位线,从而得到OE∥AC,OE=AC.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了圆周角定理.22.【答案】解:过点A作AD⊥直线BC,垂足为点D,如图所示.在Rt△ABD中,tan∠BAD=,∴BD=AD•tan 0°=AD;在Rt △ACD 中,tan ∠CAD =,∴CD =AD •tan 0°= AD .∴BC =BD -CD =2 AD =120, ∴AD =103.9.∴河的宽度为103.9米.【解析】过点A 作AD ⊥直线BC ,垂足为点D ,在Rt △ABD 和Rt △ACD 中,通过解直角三角形可求出BD ,CD 的长,结合BC=BD-CD=120,即可求出AD 的长.本题考查了解直角三角形的应用-方向角问题,利用解直角三角形结合BC=BD-CD=120,找出关于AD 的长的一元一次方程是解题的关键.23.【答案】解:(1)本次调查的样本容量 0÷ 0%= 00(人),b =100-10-30-20=40(人),a = 0÷ 00= 0%,c =20÷ 00=20%;(2)折线图补充如下:(3)估计该校参加音乐兴趣班的学生2000×20%= 00(人)答:估计该校参加音乐兴趣班的学生400人.【解析】(1)本次调查的样本容量 0÷ 0%= 00(人),b=100-10-30-20=40(人),a= 0÷ 00= 0%,c=20÷ 00=20%;(2)根据(1)补充折线图;(3)估计该校参加音乐兴趣班的学生2000×20%= 00(人).本题考查统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.24.【答案】解:(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,可得:0 0 20 0 50 0, 解得:, 答:跳绳的单价为16元/条,毽子的单件为5元/个;(2)设该店的商品按原价的x 折销售,可得:( 00× + 00× )× 0=1800, 解得:x =9,答:该店的商品按原价的9折销售.【解析】(1)设跳绳的单价为x元/条,毽子的单件为y元/个,根据:购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元,列方程组求解即可;(2)设该店的商品按原价的x折销售,根据:购买100根跳绳和100个毽子只需1800元,列出方程求解可得.本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.25.【答案】(1)证明:∵AE=DC,∴,∴∠ADE=∠DBC,在△ADE和△DBC中,∠ ∠∠ ∠ ,∴△ADE≌△DBC(AAS),∴DE=BC;(2)解:连接CO并延长交AB于G,作OH⊥AB于H,如图所示:则∠OHG=∠OHB=90°,∵CF与⊙O相切于点C,∴∠FCG=90°,∵∠F= 5°,∴△CFG、△OGH是等腰直角三角形,∴CF=CG,OG=2OH,∵AB=BD=DA,∴△ABD是等边三角形,∴∠ABD= 0°,∴∠OBH= 0°,∴OH=2OB=1,∴OG=2,∴CF=CG=OC+OG=2+2.【解析】(1)由圆心角、弧、弦之间的关系得出,由圆周角定理得出∠ADE=∠DBC,证明△ADE≌△DBC,即可得出结论;(2)连接CO并延长交AB于G,作OH⊥AB于H,则∠OHG=∠OHB=90°,由切线的性质得出∠FCG=90°,得出△CFG、△OGH是等腰直角三角形,得出CF=CG,OG=OH,由等边三角形的性质得出∠OBH= 0°,由直角三角形的性质得出OH=OB=1,OG=,即可得出答案.本题考查了切线的性质,圆周角定理,圆心角、弧、弦之间的关系,全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质;熟练掌握切线的性质和圆周角定理是解题的关键.26.【答案】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y= 2.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=-x+8,∵C,C′关于BD对称,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,2).∴C′(0,2(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.综上所述,满足条件的m的值为3或12.【解析】(1)利用中点坐标公式求出点E坐标即可.(2)由点M,N在反比例函数的图象上,推出DN•AD=BM•AB,因为BC=AD,AB=CD,推出DN•BC=BM•CD,推出=,可得MN∥BD,由此即可解决问题.(3)分两种情形:①当AP=AE时.②当EP=AE时,分别构建方程求解即可.本题属于反比例函数综合题,考查了中点坐标公式,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。

广西河池市中考数学试卷(含答案、解析版)

广西河池市中考数学试卷(含答案、解析版)

2017年广西河池市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数中,为无理数的是()A.﹣2 B.C.2 D.4【考点】26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣2是整数,是有理数,选项不符合题意;B、是无理数,选项符合题意;C、2是整数,是有理数,选项不符合题意;D、4是整数,是有理数,选项不符合题意.故选B.2.如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120°D.150°【考点】IF:角的概念.【分析】根据点O在直线AB上,∠BOC=60°,即可得出∠AOC的度数.【解答】解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=60°,∴∠AOC=120°,故选:C.3.若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠1【考点】E4:函数自变量的取值范围.【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.4.如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看得到的视图解答.【解答】解:从正面看,从左向右共有2列,第一列是1个正方形,第二列是1个正方形,且下齐.故选D.5.下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a2【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】依据合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则进行判断即可.【解答】解:A.a3与a2不是同类项不能合并,故A错误;B.a3•a2=a5,故B错误;C.(a2)3=a6,故C正确;D.a6÷a3=a2,故D错误.故选:C.6.点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可得答案.【解答】解:∵点P(﹣3,1)在双曲线y=上,∴k=﹣3×1=﹣3,故选:A.7.在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,96【考点】W5:众数;W4:中位数.【分析】先将数据重新排列,再根据中位数、众数的定义就可以求解.【解答】解:这组数据重新排列为:88、92、93、94、95、95、96,∴这组数据的中位数为94,众数为95,故选:B.8.如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°【考点】M5:圆周角定理;M2:垂径定理.【分析】根据垂径定理推出=,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD即可解决问题.【解答】解:∵AB是直径,AB⊥CD,∴=,∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选B.9.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【考点】K3:三角形的面积;K2:三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.10.若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.4【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式可得出关于a的一元一次方程,解方程即可得出结论.【解答】解:∵方程x2+2x﹣a=0有两个相等的实数根,∴△=22﹣4×1×(﹣a)=4+4a=0,解得:a=﹣1.故选A.11.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.12.已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9【考点】KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】设AD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠ADF=∠DEB=∠EFC=90°,解直角三角形即可得到结论.【解答】解:设AD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠ADF=∠DEB=∠EFC=90°,∴AF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴BE=12﹣CE=4x﹣12,∴BD=2BE=8x﹣24,∵AD+BD=AB,∴x+8x﹣24=12,∴x=4,∴AD=4.故选B.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.分解因式:x2﹣25=(x+5)(x﹣5).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解即可.【解答】解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).14.点A(2,1)与点B关于原点对称,则点B的坐标是(﹣2,﹣1).【考点】R6:关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵点A(2,1)与点B关于原点对称,∴点B的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).15.在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是90.【考点】W1:算术平均数.【分析】根据算术平均数的计算公式,把这5个分数加起来,再除以5,即可得出答案.【解答】解:这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分);故答案为:90.16.如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是x>1.【考点】G8:反比例函数与一次函数的交点问题.【分析】根据函数的图象即可得到结论.【解答】解:∵直线y=ax与双曲线y=(x>0)交于点A(1,2),∴不等式ax>的解集是x>1,故答案为:x>1.17.圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是10.【考点】MP:圆锥的计算.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设该半圆的半径长为x,根据题意得:2πx÷2=2π×5,解得x=10.故答案为:10.18.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.【考点】LB:矩形的性质.【分析】根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∴,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.计算:|﹣1|﹣2sin45°+﹣20.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣1|﹣2sin45°+﹣20=1﹣2×+2﹣1=20.解不等式组:.【考点】CB:解一元一次不等式组.【分析】先求出每个不等式的解集,再找出不等式组的解集即可.【解答】解:∵解不等式①得:x>0.5,解不等式②得:x<2,∴不等式组的解集为0.5<x<2.21.直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=﹣2x+6.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD=.【考点】F9:一次函数图象与几何变换;F3:一次函数的图象.【分析】(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l的解析式;(2)将直线向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其解析式;(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO=可得答案.【解答】解:(1)当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),当x=0时,y=2,即点B(0,2),如图,直线AB即为所求;(2)如图,直线l1即为所求,直线l1的解析式为y=﹣2x+2+4=﹣2x+6,故答案为:y=﹣2x+6;(3)如图,直线l2即为所求,∵直线l绕点A顺时针旋转90°得到l2,∴由图可知,点B(0,2)的对应点坐标为(3,1),设直线l2解析式为y=kx+b,将点A(1,0)、(3,1)代入,得:,解得:,∴直线l2的解析式为y=x﹣,当x=0时,y=﹣,∴直线l2与y轴的交点E(0,﹣),∴tan∠CAD=tan∠EAO===,故答案为:.22.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AB=BC,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AB=BC.23.九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表分数段频数(人数)60≤x<70a70≤x<801680≤x<902490≤x<100b请解答下列问题:(1)完成频数分布表,a=4,b=4.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)将余下的8位同学按60≤x<70、90≤x<100分组可得a、b的值;(2)根据(1)中所得结果补全即可得;(3)将样本中成绩90≤x<100范围内的学生所占比例乘以总人数600可得答案;(4)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由题意知,60≤x<70的有60、63、67、68这4个数,90≤x<100的有90、99、99、99这4个,即a=4、b=4,故答案为:4,4;(2)补全频数分布直方图如下:(3)600×=50(人),故答案为:估计该校成绩90≤x<100范围内的学生有50人.(4)画树状图得:∵共有6种等可能的结果,甲、乙被选中的有2种情况,∴甲、乙被选中的概率为=.24.某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?【考点】B7:分式方程的应用;95:二元一次方程的应用.【分析】(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解即可得出答案.【解答】解:设排球单价为x元,则足球单价为(x+30)元,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+30=80.答:排球单价是50元,则足球单价是80元;(2)设设恰好用完1200元,可购买排球m个和购买足球n个,由题意得:50m+80n=1200,整理得:m=24﹣n,∵m、n都是正整数,∴①n=5时,m=16,②n=10时,m=8;∴有两种方案:①购买排球5个,购买足球16个;②购买排球10个,购买足球8个.25.如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO 的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理.【分析】(1)利用切线长定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切线的性质得OB⊥BC,则∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)连接OD,如图,利用切线长定理和切线的性质得到CD=CB=6,OD⊥CE,则CE=10,利用勾股定理可计算出BE=8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,根据勾股定理得r2+42=(8﹣r)2,解得r=3,所以OE=5,OC=3,然后证明△OEF∽△OCB,利用相似比可计算出EF的长.【解答】(1)证明:∵CB,CD分别切⊙O于点B,D,∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,∴∠BCO+∠COB=90°,∵EF⊥OG,∴∠FEB+∠FOE=90°,而∠COB=∠FOE,∴∠FEB=∠ECF;(2)解:连接OD,如图,∵CB,CD分别切⊙O于点B,D,∴CD=CB=6,OD⊥CE,∴CE=CD+DE=6+4=10,在Rt△BCE中,BE==8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,∴OE=8﹣3=5,在Rt△OBC中,OC==3,∵∠COB=∠FOE,∴△OEF∽△OCB,∴=,即=,∴EF=2.26.抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.【考点】HF:二次函数综合题.【分析】(1)由抛物线解析式可求得B、C的坐标,利用待定系数法可求得直线BC的解析式;(2)由直线BC解析式可知∠APB=∠ABC=45°,设抛物线对称轴交直线BC于点D,交x轴于点E,结合二次函数的对称性可求得PD=BD,在Rt△BDE中可求得BD,则可求得PE的长,可求得P点坐标;(3)设Q(x,﹣x2+2x+3),当∠OCQ=∠OCA时,利用两角的正切值相等可得到关于x的方程,可求得Q点的横坐标,再结合图形可比较两角的大小.【解答】解:(1)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,令x=0可得y=3,∴B(3,0),C(0,3),∴可设直线BC的解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BC解析式为y=﹣x+3;(2)∵OB=OC,∴∠ABC=45°,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为x=1,设抛物线对称轴交直线BC于点D,交x轴于点E,当点P在x轴上方时,如图1,∵∠APB=∠ABC=45°,且PA=PB,∴∠PBA==67.5°,∠DPB=∠APB=22.5°,∴∠PBD=67.5°﹣45°=22.5°,∴∠DPB=∠DBP,∴DP=DB,在Rt△BDE中,BE=DE=2,由勾股定理可求得BD=2,∴PE=2+2,∴P(1,2+2);当点P在x轴下方时,由对称性可知P点坐标为(1,﹣2﹣2);综上可知P点坐标为(1,2+2)或(1,﹣2﹣2);(3)设Q(x,﹣x2+2x+3),当点Q在x轴下方时,如图2,过Q作QF⊥y轴于点F,当∠OCA=∠OCQ时,则△QEC∽△AOC,∴==,即=,解得x=0(舍去)或x=5,∴当Q点横坐标为5时,∠OCA=∠OCQ;当Q点横坐标大于5时,则∠OCQ逐渐变小,故∠OCA>∠OCQ;当Q点横坐标小于5且大于0时,则∠OCQ逐渐变大,故∠OCA<∠OCQ.。

历年广西河池市中考数学试卷(含答案)

历年广西河池市中考数学试卷(含答案)

2017年广西河池市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列实数中,为无理数的是()A.﹣2 B.C.2 D.42.(3分)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120° D.150°3.(3分)若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠14.(3分)如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.5.(3分)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a26.(3分)点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.7.(3分)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,968.(3分)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°9.(3分)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线10.(3分)若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.411.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.1212.(3分)已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)分解因式:x2﹣25=.14.(3分)点A(2,1)与点B关于原点对称,则点B的坐标是.15.(3分)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是.16.(3分)如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是.17.(3分)圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是.18.(3分)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|﹣1|﹣2sin45°+﹣20.20.(6分)解不等式组:.21.(8分)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan ∠CAD=.22.(8分)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF 于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.23.(8分)九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表分数段频数(人数)60≤x<70a70≤x<801680≤x<902490≤x<100b请解答下列问题:(1)完成频数分布表,a=,b=.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.24.(8分)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?25.(10分)如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA 的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.26.(12分)抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.2017年广西河池市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•河池)下列实数中,为无理数的是()A.﹣2 B.C.2 D.4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣2是整数,是有理数,选项不符合题意;B、是无理数,选项符合题意;C、2是整数,是有理数,选项不符合题意;D、4是整数,是有理数,选项不符合题意.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2017•河池)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120° D.150°【分析】根据点O在直线AB上,∠BOC=60°,即可得出∠AOC的度数.【解答】解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=60°,∴∠AOC=120°,故选:C.【点评】本题主要考查了角的概念以及平角的定义的运用,解题时注意:平角等于180°.3.(3分)(2017•河池)若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠1【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.【点评】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.4.(3分)(2017•河池)如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据主视图是从正面看得到的视图解答.【解答】解:从正面看,从左向右共有2列,第一列是1个正方形,第二列是1个正方形,且下齐.故选D.【点评】本题考查了三视图,主视图是从正面看得到的视图,要注意分清所看到的正方形的排列的列数与每一列的正方形的排列情况.5.(3分)(2017•河池)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a2【分析】依据合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则进行判断即可.【解答】解:A.a3与a2不是同类项不能合并,故A错误;B.a3•a2=a5,故B错误;C.(a2)3=a6,故C正确;D.a6÷a3=a2,故D错误.故选:C.【点评】本题主要考查的是幂的运算性质,熟练掌握合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则是解题的关键.6.(3分)(2017•河池)点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.【分析】根据反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k 可得答案.【解答】解:∵点P(﹣3,1)在双曲线y=上,∴k=﹣3×1=﹣3,故选:A.【点评】此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数y=图象上的点,横纵坐标的积是定值k.7.(3分)(2017•河池)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,96【分析】先将数据重新排列,再根据中位数、众数的定义就可以求解.【解答】解:这组数据重新排列为:88、92、93、94、95、95、96,∴这组数据的中位数为94,众数为95,故选:B.【点评】本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.8.(3分)(2017•河池)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°【分析】根据垂径定理推出=,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD 即可解决问题.【解答】解:∵AB是直径,AB⊥CD,∴=,∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选B.【点评】本题考查垂径定理、圆周角定理等知识,解题的关键是熟练掌握垂径定理、圆周角定理,属于中考常考题型.9.(3分)(2017•河池)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.【点评】本题考查了三角形的面积,主要利用了“三角形的中线把三角形分成两个等底同高的三角形”的知识,本知识点是中学阶段解三角形的面积经常使用,一定要熟练掌握并灵活应用.10.(3分)(2017•河池)若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.4【分析】根据方程的系数结合根的判别式可得出关于a的一元一次方程,解方程即可得出结论.【解答】解:∵方程x2+2x﹣a=0有两个相等的实数根,∴△=22﹣4×1×(﹣a)=4+4a=0,解得:a=﹣1.故选A.【点评】本题考查了根的判别式以及解一元一次方程,根据根的判别式找出关于a的一元一次方程是解题的关键.11.(3分)(2017•河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.12.(3分)(2017•河池)已知等边△ABC的边长为12,D是AB上的动点,过D 作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9【分析】设BD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠BDF=∠DEA=∠EFC=90°,解直角三角形即可得到结论.【解答】解:如图,设BD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠BDF=∠DEA=∠EFC=90°,∴BF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴AE=12﹣CE=4x﹣12,∴AD=2AE=8x﹣24,∵AD+BD=AB,∴8x﹣24+x=12,∴x=4,∴AD=8x﹣24=32﹣24=8.故选C.【点评】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)(2017•河池)分解因式:x2﹣25=(x+5)(x﹣5).【分析】直接利用平方差公式分解即可.【解答】解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).【点评】本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.14.(3分)(2017•河池)点A(2,1)与点B关于原点对称,则点B的坐标是(﹣2,﹣1).【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵点A(2,1)与点B关于原点对称,∴点B的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.15.(3分)(2017•河池)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是90.【分析】根据算术平均数的计算公式,把这5个分数加起来,再除以5,即可得出答案.【解答】解:这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分);故答案为:90.【点评】此题考查了平均数的求法,平均数是指在一组数据中所有数据之和再除以数据的个数,熟记平均数的公式是解决本题的关键.16.(3分)(2017•河池)如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是x>1.【分析】根据函数的图象即可得到结论.【解答】解:∵直线y=ax与双曲线y=(x>0)交于点A(1,2),∴不等式ax>的解集是x>1,故答案为:x>1.【点评】本题考查了一次函数与反比例函数的交点问题,正确的识别图象是解题的关键.17.(3分)(2017•河池)圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是10.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设该半圆的半径长为x,根据题意得:2πx÷2=2π×5,解得x=10.故答案为:10.【点评】本题考查了圆锥的计算,关键是明白侧面展开后得到一个半圆就是底面圆的周长.18.(3分)(2017•河池)如图,在矩形ABCD中,AB=,E是BC的中点,AE ⊥BD于点F,则CF的长是.【分析】根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∴,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)(2017•河池)计算:|﹣1|﹣2sin45°+﹣20.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣1|﹣2sin45°+﹣20=1﹣2×+2﹣1=【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(6分)(2017•河池)解不等式组:.【分析】先求出每个不等式的解集,再找出不等式组的解集即可.【解答】解:∵解不等式①得:x>0.5,解不等式②得:x<2,∴不等式组的解集为0.5<x<2.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.21.(8分)(2017•河池)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=﹣2x+6.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan ∠CAD=.【分析】(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l的解析式;(2)将直线向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其解析式;(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO=可得答案.【解答】解:(1)当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),当x=0时,y=2,即点B(0,2),如图,直线AB即为所求;(2)如图,直线l1即为所求,直线l1的解析式为y=﹣2x+2+4=﹣2x+6,故答案为:y=﹣2x+6;(3)如图,直线l2即为所求,方法一、∵直线l绕点A顺时针旋转90°得到l2,∴∠BAD=90°,∴∠CAD+∠OAB=90°,又∵∠OAB+∠ABO=90°,∴∠CAD=∠ABO,∴tan∠CAD=tan∠ABO==;方法二:∵直线l绕点A顺时针旋转90°得到l2,∴由图可知,点B(0,2)的对应点坐标为(3,1),设直线l2解析式为y=kx+b,将点A(1,0)、(3,1)代入,得:,解得:,∴直线l2的解析式为y=x﹣,当x=0时,y=﹣,∴直线l2与y轴的交点E(0,﹣),∴tan∠CAD=tan∠EAO===,故答案为:.【点评】本题主要考查一次函数图象与几何变换及一次函数图象,熟练掌握平移变换和旋转变换的性质及待定系数法求函数解析式是解题的关键.22.(8分)(2017•河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM 与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AE=BF,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AE=BF.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.23.(8分)(2017•河池)九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表分数段频数(人数)60≤x<70a70≤x<801680≤x<902490≤x<100b请解答下列问题:(1)完成频数分布表,a=4,b=4.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.【分析】(1)将余下的8位同学按60≤x<70、90≤x<100分组可得a、b的值;(2)根据(1)中所得结果补全即可得;(3)将样本中成绩90≤x<100范围内的学生所占比例乘以总人数600可得答案;(4)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由题意知,60≤x<70的有60、63、67、68这4个数,90≤x <100的有90、99、99、99这4个,即a=4、b=4,故答案为:4,4;(2)补全频数分布直方图如下:(3)600×=50(人),故答案为:估计该校成绩90≤x<100范围内的学生有50人.(4)画树状图得:∵共有6种等可能的结果,甲、乙被选中的有2种情况,∴甲、乙被选中的概率为=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力及.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.24.(8分)(2017•河池)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?【分析】(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解即可得出答案.【解答】解:设排球单价为x元,则足球单价为(x+30)元,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+30=80.答:排球单价是50元,则足球单价是80元;(2)设设恰好用完1200元,可购买排球m个和购买足球n个,由题意得:50m+80n=1200,整理得:m=24﹣n,∵m、n都是正整数,∴①n=5时,m=16,②n=10时,m=8;∴有两种方案:①购买排球5个,购买足球16个;②购买排球10个,购买足球8个.【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.25.(10分)(2017•河池)如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.【分析】(1)利用切线长定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切线的性质得OB⊥BC,则∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)连接OD,如图,利用切线长定理和切线的性质得到CD=CB=6,OD⊥CE,则CE=10,利用勾股定理可计算出BE=8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,根据勾股定理得r2+42=(8﹣r)2,解得r=3,所以OE=5,OC=3,然后证明△OEF∽△OCB,利用相似比可计算出EF的长.【解答】(1)证明:∵CB,CD分别切⊙O于点B,D,∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,∴∠BCO+∠COB=90°,∵EF⊥OG,∴∠FEB+∠FOE=90°,而∠COB=∠FOE,∴∠FEB=∠ECF;(2)解:连接OD,如图,∵CB,CD分别切⊙O于点B,D,∴CD=CB=6,OD⊥CE,∴CE=CD+DE=6+4=10,在Rt△BCE中,BE==8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,∴OE=8﹣3=5,在Rt△OBC中,OC==3,∵∠COB=∠FOE,∴△OEF∽△OCB,∴=,即=,∴EF=2.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了勾股定理和相似三角形的判定与性质.26.(12分)(2017•河池)抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.【分析】(1)由抛物线解析式可求得B、C的坐标,利用待定系数法可求得直线BC的解析式;(2)由直线BC解析式可知∠APB=∠ABC=45°,设抛物线对称轴交直线BC于点D,交x轴于点E,结合二次函数的对称性可求得PD=BD,在Rt△BDE中可求得BD,则可求得PE的长,可求得P点坐标;(3)设Q(x,﹣x2+2x+3),当∠OCQ=∠OCA时,利用两角的正切值相等可得到关于x的方程,可求得Q点的横坐标,再结合图形可比较两角的大小.【解答】解:(1)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,令x=0可得y=3,∴B(3,0),C(0,3),∴可设直线BC的解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BC解析式为y=﹣x+3;(2)∵OB=OC,∴∠ABC=45°,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为x=1,设抛物线对称轴交直线BC于点D,交x轴于点E,当点P在x轴上方时,如图1,∵∠APB=∠ABC=45°,且PA=PB,∴∠PBA==67.5°,∠DPB=∠APB=22.5°,∴∠PBD=67.5°﹣45°=22.5°,∴∠DPB=∠DBP,∴DP=DB,在Rt△BDE中,BE=DE=2,由勾股定理可求得BD=2,∴PE=2+2,∴P(1,2+2);当点P在x轴下方时,由对称性可知P点坐标为(1,﹣2﹣2);综上可知P点坐标为(1,2+2)或(1,﹣2﹣2);(3)设Q(x,﹣x2+2x+3),当点Q在x轴下方时,如图2,过Q作QF⊥y轴于点F,当∠OCA=∠OCQ时,则△QEC∽△AOC,∴==,即=,解得x=0(舍去)或x=5,∴当Q点横坐标为5时,∠OCA=∠OCQ;当Q点横坐标大于5时,则∠OCQ逐渐变小,故∠OCA>∠OCQ;当Q点横坐标小于5且大于0时,则∠OCQ逐渐变大,故∠OCA<∠OCQ.【点评】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的判定和性质、勾股定理、相似三角形的判定和性质、方程思想和分类讨论思想等知识.在(1)中求得B、C坐标是解题的关键,在(2)中构造等腰三角形求得P到x轴的距离是解题的关键,在(3)中确定出两角相等时Q点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

中考数学应用题(各类应用题汇总练习)

中考数学应用题(各类应用题汇总练习)

中考数学应用题(各类应用题汇总练习)中考数学应用题是考察学生在解决实际问题中应用数学知识和思维方法的能力。

这类题目通常涉及到数学与日常生活、生产劳动、科学技术等方面的联系,要求学生能够理解问题背景,运用数学知识去解决问题。

一、人民币兑换问题题目要求学生计算将一种货币兑换成另一种货币的数目。

例如,将人民币兑换成美元,或者将美元兑换成欧元等。

题目可设计如下:甲有5000人民币,最近他打算去美国旅行,需要将人民币兑换成美元。

已知1美元兑换成6.5人民币,甲打算兑换多少美元?二、购物打折问题题目要求学生计算购物时的打折优惠,例如满减、折扣等。

题目可设计如下:小明去商场购买一条裤子,这条裤子原价280元,商场正在举行活动,凡是购买满300元的商品都可以打8折。

小明购买这条裤子需要支付多少钱?三、完全平方数问题题目要求学生判断一个数是否为完全平方数,并计算它的平方根。

题目可设计如下:已知某个数的平方根是16,请计算这个数是多少?四、速度和距离问题题目要求学生根据给定的速度和时间,计算距离。

题目可设计如下:甲以每小时60千米的速度骑自行车,乙以每小时80千米的速度骑自行车,他们同时从相距200千米的地方出发相向而行。

请问他们相遇需要多少时间?五、平均数问题题目要求学生计算一组数的平均数,并应用平均数解决实际问题。

题目可设计如下:小明参加了五次考试,分别得到60分、70分、80分、90分和100分,请问他的平均分是多少?以上是中考数学应用题中的一些常见类型。

通过解答这些问题,学生们可以理解数学知识在实际生活中的应用,培养数学思维和解决问题的能力。

2020年广西河池中考数学试卷-答案

2020年广西河池中考数学试卷-答案

2020年广西省河池市初中学业水平考试数学答案解析一、1.【答案】C【解析】如果收入10元记作10+元,那么支出10元记作10-元.故选:C .2.【答案】A【解析】如图所示,1∠和2∠两个角都在两被截直线b 和a 同侧,并且在第三条直线c (截线)的同旁,故1∠和2∠是直线b a 、被c 所截而成的同位角.故选:A .3.【答案】B【解析】由题意得,20x ≥,解得0x ≥.故选:B .4.【答案】A【解析】A 、()2a a a -=-,原计算正确,故此选项符合题意;B 、()632a a =,原计算错误,故此选项不符合题意;C 、2a a a -=,原计算错误,故此选项不符合题意;D 、2a 与a 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:A .5.【答案】C【解析】球体的主视图是圆形,圆台的主视图是等腰梯形,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:C .6.【答案】D【解析】120 24 x x x +⎧⎨-⎩>①≤②,由①得:1x >,由②得:x ≤4,不等式组的解集为:x 1<≤4,故选:D . 7.【答案】D【解析】如图所示:90C ︒∠= ,5BC =,12AC =,13AB ∴=,12sin 13AC B AB ∴==,故选:D .8.【答案】B【解析】解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98, 故这组数据的众数是85,中位数是88.故选:B .9.【答案】B【解析】作AB 边的垂直平分线,交AB 于点D ,连接CD ,所以CD 为ABC △的边AB 上的中线;故选:B .10.【答案】D【解析】设参加此次比赛的球队数为x 队,根据题意得:1(1)362x x -=,化简,得2720x x --=,解得129,8x x ==-(舍去),答:参加此次比赛的球队数是9队故选:C . 11.【答案】C【解析】CE 平分BCD ∠,BCE DCE ∴∠=∠, 四边形ABCD 是平行四边形,AB CD ∴=,AD BC =,AB CD ∥,BEC DCE ∴∠=∠,BEC BCE =∠∴∠,5BC BE ∴==,5AD ∴=,3,4EA ED == ,在AED△中,222345+=,即222EA ED AD +=,90AED ︒∴∠=,358CD AB ∴==+=,90EDC ︒∠=,在Rt EDC △中,CE ===.故选:C .12.【答案】B【解析】如图所示,连接BC ,AB 是O 的直径,90ACB ︒∴∠=,90ACE BCP ︒∴∠+∠=,BF CD ⊥ ,90CPB ︒∴∠=,90CBF BCP ︒∴∠+∠=,ACE CBF ∴∠=∠,AE CD ⊥ ,90AEC CPB ︒∴∠=∠=,ACD CBF ∴ △△,AC CEBC BF ∴=,2FB FE == ,1FC =,3CB CP EF ∴=+=,BC ===32=,AC ∴=,故选:B . 二、13.【答案】5【解析】解:()32--=3+2=5.故答案为:5.14.【答案】3-【解析】方程的两边同乘()()212x x +-,得:221x x -=+,解这个方程,得:3x =-,经检验,3x =-是原方程的解,∴原方程的解是3x =-.故答案为:3-.15.【答案】2【解析】 菱形ABCD 的周长为16,4AB BC CD AD ∴====,OA OC =,OE AB ∥,OE ∴是ABC △的中位线,122OE AB ∴==,故答案为:2. 16.【答案】12【解析】解:画树状图为:共有4种等可能的结果,其中两次都摸到相同颜色的小球的结果数为2,所以两次都摸到相同颜色的小球的概率为2142=.故答案为12. 17.【答案】35【解析】如图,连接AD .AB 是直径,90ADB ︒∴∠=,1ADE ∠=∠ ,1290︒∴∠+∠=,155︒∠= ,235︒∴∠=,故答案为35.18【解析】如图,过点D 作DH AC ⊥于H ,过点'B 作'B J AC ⊥于J .在Rt ACB △中,90ABC ︒∠= ,8AC =,30A ︒∠=,cos30AB AC ︒∴=⋅=,BD = ,AD AB BD ∴=-=,90AHD ︒∠= ,12DH AD ∴==,'B D BJ DH + ≥,'DB DB ==,''B D D J H B ∴-≥,'B J ∴∴当,',D B J 共线时,'B J . 三、19.【答案】解:原式=1910++-=.【解析】根据根号的运算法则即可求出答案.20.【答案】解:原式2(1)1=1(1)a a a a -+-- 1=11a a a +-- 1=1a a +-, 当2a =时,原式21=321+=-. 【解析】根据分式的运算法则即可求出答案.具体解题过程参照答案.21.【答案】(1)()2,3(2)()1,2-(3)6y x= (4)2y x =-.【解析】(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是()2,3.(2)点C 与点A 关于原点O 对称,则点C 的坐标是()1,2-.(3)设反比例函数解析式为y x k =,把()2,3B 代入得:6k =,∴反比例函数解析式为6y x=. (4)设一次函数解析式为y mx n =+,把()1,2A -与()1,2C -代入得:22m n m n -+=⎧⎨+=-⎩,解得:20m n =-⎧⎨=⎩,则一次函数解析式为2y x =-.22.【答案】(1)证明:在ACE △和BCE △中,12AC BC CE CE =⎧⎪∠=∠⎨⎪=⎩,()ACE BCE SAS △≌△;(2)AE BE =.理由如下:在CE 上截取CF DE =,在ADE △和BCF △中,34AD CB CP DE =⎧⎪∠=∠⎨⎪=⎩,()ADE BCF SAS ∴△≌△,AE BF ∴=,AED CPB =∠∠,180AED BEF ︒∠+∠= ,180CPB EPB ︒+∠=∠,BEF EFB ∠=∠∴,BE BF ∴=,AE BE ∴=.23.【答案】(1)用“划记”统计10名学生的成绩,并统计频数填入表格;故答案为:8,15,22,5.(2)15 36010850︒︒⨯=,答:扇形统计图中组所对应的圆心角的度数为108︒.(3)2252000108050+⨯=(人),答:该校2000名学生中,成绩在80100x <≤的有1080人. 24.【答案】(1)甲商店:4y x =,乙商店:5,(6)560.75(6),(6)x x y x x ⎧=⎨⨯+⨯-⎩≤>. (2)当6x <时,此时甲商店比较省钱,当6x ≥时,令()430 3.56x x =+-,解得:18x =,此时甲乙商店的费用一样,当18x <时,此时甲商店比较省钱,当18x >时,此时乙商店比较省钱. 25.【答案】(1)证明:连接OE ,交BD 于H ,点E 是 BD的中点,OE 是半径,OE BD ∴⊥,BH DH =,EF BC ∥,OE EP ∴⊥,又OE 是半径,EF ∴是O 的切线.(2)AB 是O 的直径,6AB =,OC AB ⊥,=3OB ∴,BC ==∴,1122DBC S OB OC BC OH =⨯⨯=⨯⨯ △,OH ==∴,cos OB BH OBC BC OB ∠==,3BH =,BH ∴=,2BD BH ∴==,CG OD ∥,OD BD CG BC ∴=,3CG ∴=,173CG ∴=. 26.【答案】(1)由题意抛物线的解析式为22(1)(5)65(3)4y x x x x x =--=-+=--,265y x x =-+,抛物线的顶点坐标为()34-,. (2)如图1中,过点C 作CE AB ⊥于E ,过点D 作DF AB ⊥于F .由题意抛物线1C 为22121(1)()24m m m y x x m x -++⎛⎫=-+-=--+ ⎪⎝⎭,2121,24m m m C ⎛⎫-++∴ ⎪⎝⎭,抛物线2C 为22369()(3)24m m m y x m x x +-+⎛⎫=---=--+ ⎪⎝⎭,2369,24m m m D ⎛⎫+-+ ⎪⎝⎭,,,A C D 共线,CE DF ∥,CE DF AE AF ∴=,22216944131122m m m m m m ++-+∴=-+++,解得13m =,经检验,13m = 是分式方程的解,13m ∴=. (3)如图2-1,当0a >时,设抛物线的解析式为()()13y a x x =+-,当抛物线经过()4,3F 时,351a =⨯⨯,35a ∴=,观察图象可知当35a ≥时,满足条件.如图2-2中,当0a <时,顶点在线段EF 上时,顶点为()1,3,把()1,3代入()()13y a x x =+-,可得34a =-,观察图象可知当34a -≤时,满足条件,综上所述,满足条件的a 的范围为:35a ≥或34a -≤.。

专题19 应用题(函数、不等式、方程)-2022年中考数学真题分项汇编(第2期)试题及答案

专题19 应用题(函数、不等式、方程)-2022年中考数学真题分项汇编(第2期)试题及答案

专题19 应用题(函数、不等式、方程)一.解答题1.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.2.(2022·黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A 种跳绳和5根B种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?3.(2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?4.(2022·福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.5.(2022·湖北恩施)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?6.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.7.(2022·黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A 种跳绳和5根B种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?8.(2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.(2022·福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.10.(2022·湖北恩施)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?11.(2022·广西河池)为改善村容村貌,阳光村计划购买一批桂花树和芒果树.已知桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元.(1)桂花树和芒果树的单价各是多少元?(2)若该村一次性购买这两种树共60棵,且桂花树不少于35棵.设购买桂花树的棵数为n,总费用为w元,求w关于n的函数关系式,并求出该村按怎样的方案购买时,费用最低?最低费用为多少元?12.(2022·辽宁锦州)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?13.(2022·内蒙古呼和浩特)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?14.(2022·广西)打油茶是广西少数民族特有的一种民俗,某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图像如图所示.(1)求y 与x 的函数解析式,并写出..自变量x 的取值范围; (2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.15.(2022·辽宁)某文具店购进一批单价为12元的学习用品,按照相关部门规定其销售单价不低于进价,且不高于进价的1.5倍,通过分析销售情况,发现每天的销售量y (件)与销售单价x (元)满足一次函数关系,且当15x =时,50y =;当17x =时,30y =.(1)求y 与x 之间的函数关系式;(2)这种学习用品的销售单价定为多少时,每天可获得最大利润,最大利润是多少元?16.(2022·黑龙江大庆)果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg .在确保每棵果树平均产量不低于40kg 的前提下,设增种果树x (0x >且x 为整数)棵,该果园每棵果树平均产量为kg y ,它们之间的函数关系满足如图所示的图象.(1)图中点P 所表示的实际意义是________________________,每增种1棵果树时,每棵果树平均产量减少____________kg ;(2)求y 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(3)当增种果树多少棵时,果园的总产量(kg)w 最大?最大产量是多少?17.(2022·湖北武汉)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始2减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.18.(2022·山东青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?19.(2022·贵州铜仁)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?20.(2022·浙江金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量1y (吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为21y ax c =+,部分对应值如表:②该蔬菜供给量2y (吨)关于售价x (元/千克)的函数表达式为21y x =-,函数图象见图1. ③1~7月份该蔬菜售价1x (元/千克),成本2x (元/千克)关于月份t 的函数表达式分别为11=22x t +,2213342x t t =-+,函数图象见图2.请解答下列问题:(1)求a ,c 的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.21.(2022·辽宁营口)某文具店最近有A ,B 两款纪念册比较畅销,该店购进A 款纪念册5本和B 款纪念册4本共需156元,购进A 款纪念册3本和B 款纪念册5本共需130元.在销售中发现:A 款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B 款纪念册售价为22元/本时,每天的销售量为80本,B 款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:该店准备降低每本A 款纪念册的利润,同时提高每本B 款纪念册的利润,且这两款纪念册每天销售总数不变,设A 款纪念册每本降价m 元.①直接写出B 款纪念册每天的销售量(用含m 的代数式表示);②当A 款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?22.(2022·内蒙古包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x 天(x 取整数)时,日销售量y (单位:千克)与x 之间的函数关系式为12010,203201016,x x y x x ≤≤⎧=⎨-+<≤⎩()()草莓价格m (单位:元/千克)与x 之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当412x ≤≤时,草莓价格m 与x 之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?23.(2022·湖北武汉)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y (千克)与销售单价x (元/千克)有如下表所示的关系:(1)根据表中的数据在下图中描点(),x y ,并用平滑曲线连接这些点,请用所学知识求出y 关于x 的函数关系式;(2)设该超市每天销售这种商品的利润为w (元)(不计其它成本), ①求出w 关于x 的函数关系式,并求出获得最大利润时,销售单价为多少; ②超市本着“尽量让顾客享受实惠”的销售原则,求240=w (元)时的销售单价.24.(2022·广东深圳)某学校打算购买甲乙两种不同类型的笔记本. 已知甲种类型的电脑的单价比乙种类型的要便宜10元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.(1)求甲乙两种类型笔记本的单价.(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少?25.(2022·广西贺州)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品,某商家以每套34元的价格购进一批冰墩墩和雪容融套件,若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?26.(2022·江苏无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为362m,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?27.(2022·湖南湘潭)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅰ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度1mAE 的水池且需保证总种植面积为232m,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?28.(2022·山东威海)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.专题19 应用题(函数、不等式、方程)一.解答题1.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.【答案】(1)龙眼干的售价应不低于36元/kg(2)11,(100)50361700,(100)50aawaa⎧<⎪⎪=⎨⎪-≥⎪⎩【分析】(1)设龙眼干的售价应不低于x元/kg,新鲜龙眼共3a千克,得到总收益为12×3a=36a 元;加工成龙眼干后总收益为ax元,再根据龙眼干的销售收益不低于新鲜龙眼的销售收益得到不等式ax≥36a,解出即可;(2)设龙眼干的售价为y元/千克,当100a<千克时求出新鲜龙眼的销售收益为12a元,龙眼干的销售收益为47150ay元,根据“龙眼干的销售收益不低于新鲜龙眼的销售收益,且龙眼干的定价取最低整数价格”得到4712150ay a,解出39y=;然后再当100a≥千克时同样求出新鲜龙眼收益与龙眼干收益,再相减即可求解.(1)解:设龙眼干的售价应不低于x元/kg,设新鲜龙眼共3a千克,总销售收益为12×3a=36a (元),加工成龙眼干后共a千克,总销售收益为x×a=ax(元),∵龙眼干的销售收益不低于新鲜龙眼的销售收益,∴ax≥36a,解出:x≥36,故龙眼干的售价应不低于36元/kg.(2)解:a千克的新鲜龙眼一共可以加工成147(16%)3150a a千克龙眼干,设龙眼干的售价为y元/千克,则龙眼干的总销售收益为47150ay元,当100a ≤千克时,新鲜龙眼的总收益为12a 元,∵龙眼干的销售收益不低于新鲜龙眼的销售收益, ∴4712150ay a ,解出12150180038.34747y 元, 又龙眼干的定价取最低整数价格,∴39y =, ∴龙眼干的销售总收益为476113915050a a , 此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差61111125050a w a a 元; 当100a >千克时,新鲜龙眼的总收益为121005(100)(5700)a a 元, 龙眼干的总销售收益为61150a 元, 此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差 611361(5700)(700)5050a w a a 元, 故w 与a 的函数关系式为()11,10050361700,(100)50a a w a a ⎧≤⎪⎪=⎨⎪->⎪⎩. 【点睛】本题考查了一元一次不等式的应用、一次函数的实际应用等,本题的关键是读懂题意,明确题中的数量关系,正确列出函数关系式或不等式求解.2.(2022·黑龙江)学校开展大课间活动,某班需要购买A 、B 两种跳绳.已知购进10根A 种跳绳和5根B 种跳绳共需175元:购进15根A 种跳绳和10根B 种跳绳共需300元.(1)求购进一根A 种跳绳和一根B 种跳绳各需多少元?(2)设购买A 种跳绳m 根,若班级计划购买A 、B 两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?【答案】(1)购进一根A 种跳绳需10元,购进一根B 种跳绳需15元(2)有三种方案:方案一:购买A 种跳绳23根,B 种跳绳22根;方案二:购买A 种跳绳24根,B 种跳绳21根;方案三:购买A 种跳绳25根,B 种跳绳20根(3)方案三需要费用最少,最少费用是550元【分析】(1)设购进一根A 种跳绳需x 元,购进一根B 种跳绳需y 元,可列方程组1051751510300x y x y +=⎧⎨+=⎩, 解方程组即可求得结果;(2)根据题意可列出不等式组()()101545560101545548m m m m ⎧+-≤⎪⎨+-≥⎪⎩,解得:2325.4m ≤≤,由此即可确定方案;(3)设购买跳绳所需费用为w 元,根据题意,得()1015455675w m m m =+-=-+,结合函数图像的性质,可知w 随m 的增大而减小,即当25m =时525675550=-⨯+=.(1)解:设购进一根A 种跳绳需x 元,购进一根B 种跳绳需y 元,根据题意,得1051751510300x y x y +=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩, 答:购进一根A 种跳绳需10元,购进一根B 种跳绳需15元;(2)根据题意,得()()101545560101545548m m m m ⎧+-≤⎪⎨+-≥⎪⎩, 解得2325.4m ≤≤,∵m 为整数,∴m 可取23,24,25.∴有三种方案:方案一:购买A 种跳绳23根,B 种跳绳22根;方案二:购买A 种跳绳24根,B 种跳绳21根;方案三:购买A 种跳绳25根,B 种跳绳20根;(3)设购买跳绳所需费用为w 元,根据题意,得()1015455675w m m m =+-=-+∵50-<,∴w 随m 的增大而减小,∴当25m =时,w 有最小值,即w 525675550=-⨯+=(元)答:方案三需要费用最少,最少费用是550元.【点睛】本题主要考查的是不等式应用题、二元一次方程组应用题、一次函数相关应用题,根据题意列出对应的方程是解题的关键.3.(2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【答案】(1)m=10;(2)11种;(3)购进甲种运动鞋95双,购进乙种运动鞋105双,可获得最大利润【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可.(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答.(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【详解】解:(1)依题意得,30002400m m20=-,去分母得,3000(m﹣20)=2400m,解得m=100.经检验,m=100是原分式方程的解.∴m=100.(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,()()()()240100x16080(200x)21700{240100x16080(200x)22300 -+--≥-+--≤①②,解不等式①得,x≥95,解不等式②得,x≤105,∴不等式组的解集是95≤x≤105.∵x是正整数,105﹣95+1=11,∴共有11种方案.(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,∴当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样.③当60<a<70时,60﹣a<0,W随x的增大而减小,∴当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.4.(2022·福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.【答案】(1)购买绿萝38盆,吊兰8盆(2)369元【分析】(1)设购买绿萝x盆,购买吊兰y盆,根据题意建立方程组4696390x yx y+=⎧⎨+=⎩,解方程组即可得到答案;(2)设购买绿萝x 盆,购买吊兰y 盆,总费用为z ,得到关于z 的一次函数3414z y =-+,再建立关于y 的不等式组,解出y 的取值范围,从而求得z 的最小值.(1)设购买绿萝x 盆,购买吊兰y 盆∵计划购买绿萝和吊兰两种绿植共46盆∴46x y +=∵采购组计划将预算经费390元全部用于购买绿萝和吊兰,绿萝每盆9元,吊兰每盆6元 ∴96390x y +=得方程组4696390x y x y +=⎧⎨+=⎩解方程组得388x y =⎧⎨=⎩∵38>2×8,符合题意∴购买绿萝38盆,吊兰8盆;(2)设购买绿萝x 盆,购买吊兰吊y 盆,总费用为z∴46x y +=,96z x y =+∴4143z y =-∵总费用要低于过390元,绿萝盆数不少于吊兰盆数的2倍∴41433902y x y -<⎧⎨≥⎩将46x y =-代入不等式组得4143390462y y y-<⎧⎨-≥⎩ ∴4683y <≤∴y 的最大值为15 ∵3414z y =-+为一次函数,随y 值增大而减小∴15y =时,z 最小∴4631x y =-=∴96369z x y =+=元故购买两种绿植最少花费为369元.【点睛】本题考查二元一次方程组、一次函数、不等式组的性质,解题的关键是数量掌握二元一次方程组、一次函数、不等式组的相关知识.5.(2022·湖北恩施)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?【答案】(1)甲种客车每辆200元,乙种客车每辆300元(2)租用甲种客车5辆,乙种客车3辆,租车费用最低为1900元【分析】(1)可设甲种客车每辆x 元,乙种客车每辆y 元,根据等量关系:一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元,列出方程组求解即可;(2)设租车费用为w 元,租用甲种客车a 辆,根据题意列出不等式组,求出a 的取值范围,进而列出w 关于a 的函数关系式,根据一次函数的性质求解即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)分别写出方案一,二中,月话费(月租费与通 话费的总和) (单位:元)与通话时间 (单位: 分)的函数关系式; (2)画出(1)中两个函数的图象; (3)若小明月通话时间为200分钟左右,他应该选 择哪种资费方案最省钱.
答案:解:(1)方案一: 方案二: (2)略; (3)当x =200时,
,
…………………………………(8分)
解得 2 m 4 ………………………(9分 又m 为整数,∴m=2或3或4,安排甲乙两种货车时有3种方案. 设计方案分别为: ①甲车2辆,乙车6辆; ②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆. (10分)
(3)3种方案的运费分别为: ①2×400+6×360=2960元; ②3×400+5×360=3000元; ③4×400+4×360=3040元. ∴方案①运费最少,最少运费是2960元
答案:
解:(1)太阳花:y=6x; 绣球花:①一次购买不超过20盆时, y=10x(x≤20); ②一次购买超过20盆时, y=10×20+10×0.8×(x﹣20)=8x+40 综上,可得
y=
(2)根据题意,可得太阳花数量不超过:90× , 所以绣球花的数量不少于:90﹣30=60(盆), 设太阳花的数量是x盆,则绣球花的数量是90﹣x盆,购买两种花 的总费用是y元, 则x≤30, 则y=6x+[8(90﹣x)+40]=760﹣2x 因为x≤30, 所以当x=30时,ymin=760﹣2×30=700(元), 即太阳花30盆,绣球花60盆时,总费用最少,最少费用是700 元. 答:太阳花30盆,绣球花60盆时,总费用最少,最少费用是700 元.
(米)
2100 900 O 图9 6 10 (分钟)
解:(1)设 s1 k1t 0 t 6 ………………………………………(1分) ∵ 图象经过点 6,900 ∴ 900 6k1 …………………(2分) 得 k1 150 ∴ s1 150t 0 t 6 …………… …………………(3分) 设 s2 k2t b 6 t 10 ………… ………… ………………………………………(4分) ∵ 图象经过点 6,900 ,10,2100 ∴ 6k2 b 900 …… …… (5分) 解得
.
(元), (元), ∴选择方案二这种资费方案最省钱.
2015年第22、24题 22.(8分)(2015•河池)联华商场以150元/台 的价格购进某款电风扇若干台,很快售完.商 场用相同的货款再次购进这款电风扇,因价格 提高30元,进货量减少了10台. (1)这两次各购进电风扇多少台? (2)商场以250元/台的售价卖完这两批电风扇, 商场获利多少元?
………………………………(9分)
答: 李明返回时所用时间为11分钟.
24. (本小题满分12分) 去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无 情人有情”.某单位给某乡中小学捐献一批饮用水和 蔬菜共320件,其中饮用水比蔬菜多80件. (1)求饮用水和蔬菜各有多少件? (2)现计划租用甲、乙两种货车共8辆,一次性将这批 饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货 车最多可装饮用水40件和蔬菜10件,每辆乙种货车最 多可装饮用水和蔬菜各20件.则运输部门安排甲、乙 两种货车时有几种方案?请你帮助设计出来; (3)在(2)的条件下,如果甲种货车每辆需付运费 400元,乙种货车每辆需付运费360元.运输部门应选 择哪种方案可使运费最少?最少运费是多少元?
2010年第23、24题
23. (本小题满分9分)
李明骑自行车去上学途中,经过先上坡后下坡的一条路段, 在这段路上所走的路程(米)与时间 (分钟)之间的函数关 系如图9所示.根据图象,解答下列问题: (1)求李明上坡时所走的路程 (米)与时间t(分钟)之间的函 数关系式和下坡时所走的路程 (米)与时间t(分钟)之间的 函数关系式; (2)若李明放学后按原路返回,且往返过程中,上坡的速度相 同,下坡的速度也相同,问李明返回时走这段路所用的时间 为多少分钟?
答案:
解:(1)设安装1个温馨提示牌需x元,安装1个垃圾箱 需y元, 得 ,解得 。
答;安装1个温馨提示牌需50元,安装1个垃圾箱需80元。
(2)∵ , ∴安装8个温馨提示牌和15个垃圾箱共需1600元。
24.华联超市欲购进A、B两种品牌的书包共400个。已 知两种书包的进价和售价如下表所示。设购进A种书 包x个,且所购进的两种书包能全部卖出,获得的总 利润为w元。
24.(8分)(2015•河池)丽君花卉基地出售两 种盆栽花卉:太阳花6元/盆,绣球花10元/ 盆.若一次购买的绣球花超过20盆时,超过20 盆部分的绣球花价格打8折. (1)分别写出两种花卉的付款金额y(元)关于 购买量x(盆)的函数解析式; (2)为了美化环境,花园小区计划到该基地购 买这两种花卉共90盆,其中太阳花数量不超过 绣球花数量的一半.两种花卉各买多少盆时, 总费用最少,最少费用是多少元?
k2 300 ∴ s2 300t 900 6 t 10 b 900
10k2 b 2100
…… …………………… (6分)
(2)李明返回时所用时间为
2100 900 900 6 900 2100 900 10 6 8 3 11 分钟……(8分)
答案:解:(1)设家庭电动自行车拥有量的年平均增长率为x, 则125 =180, 解得 =0.2=20%, =﹣2.2(不合题意,舍去) ∴180(1+20%)=216(辆), 答:该小区到2012年底家庭电动自行车将达到216辆; (2)设该小区可建室内车位a个,露天车位b个,则
由①得b=150﹣5a,代入②得20≤a≤ ∵a是正Байду номын сангаас数, ∴a=20或21 当a=20时b=50,当a=21时b=45. ∴方案一:建室内车位20个,露天车位50个; 方案二:室内车位21个,露天车位45个.
某网络公司看中了这种商机,推出了两种手机上网的计费方式:方式A以 每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外,再以每分 钟0.06元的价格按上网时间计费.假设某客户月手机上网的时间为x分钟, 上网费用为y元. (1)分别写出该客户按A、B两种方式的上网费y(元)与每月上网时间x(分 钟)的函数关系式,并在右图的坐标系中画出这两个函数的图象; (2)如何选择计费方式能使该客户上网费用更合算?
解(1)解法一: 设饮用水有x件,则蔬菜有(x-80)件. (1分)
x ( x 80) 320 得 ………………………………(3分) 解得 x 200 x 80 120 …………… …………(4分) 答:饮用水和蔬菜分别为200件和120件. …………………………(5分)
解法二:设饮用水有x件,蔬菜有 y 件. ………(1分) x y 320 得 ………………………(3分) x y 80 解得
x 200 y 120
……………………(4分)
答:饮用水和蔬菜分别为200件和120件. ……………………(5分) (注:用算术方法解答正确同样本小题给满分.)
(2)设租用甲种货车 m 辆,则租用乙种货车8 m辆. …(6分)
40m 20(8 m) ≥ 200 得 10m 20(8 m) ≥120
答案:解:(1)方式A:y=0.1x,
方式B:y=0.06x+20, 方式A,当x=100时,y=10, 所以y=0.1x经过点坐标原点与(100,10), 方式B,当x=0时,y=20, 当x=500时,y=0.06×500+20=50, 所以经过点(0,20),(500,50), 作出图象如图; (2)当0.1x=0.06x+20时,解得x=500, 所以,当x<500时,选择方式A上网更合算, 当x=500时,选择方式A与方式B上网一样合算, 当x>500时,选择方式B上网更合算.
25.(10分)(2012•河池)随着人们环保意识的不断 增强,我市家庭电动自行车的拥有量逐年增加.据统 计,某小区2009年底拥有家庭电动自行车125辆, 2011年底家庭电动自行车的拥有量达到180辆. (1)若该小区2009年底到2012年底家庭电动自行车拥 有量的年平均增长率相同,则该小区到2012年底电动 自行车将达到多少辆? (2)为了缓解停车矛盾,该小区决定投资3万元再建若 干个停车位,据测算,建造费用分别为室内车位1000 元/个,露天车位200元/个.考虑到实际因素,计划 露天车位的数量不少于室内车位的2倍,但不超过室 内车位的2.5倍,则该小区最多可建两种车位各多少 个?试写出所有可能的方案.
(2)根据题意,得 , 解得 。 由(1) 得,w随x的增大而增大, ∴当x=320时,w最大,为5840。 ∴该商场购进A种品牌的书包320个,B两种品牌的书包 80个,才能获得最大利润,最大利润为5840元。
2014年第22、24题
22.(8分)乔丹体育用品商店开展“超级星期 六”促销活动:运动服8折出售,运动鞋每双 减20元.活动期间,标价为480元的某款运动 服装(含一套运动服和一双运动鞋)价格为 400元.问该款运动服和运动鞋的标价各是多 少元?
(1)求w关于x的函数关系式; (2)如果购进两种书包的总费不超过18000元,那么该 商场如何进货才能获得最大利润?并求出最大利润。 (提示利润= 售价-进价)
答案:解:(1)设购进A种书包x个,则购进B种书包 ( 400-x)个。 得 w=(65-47)x+(50-37)( 400-x)=2x+5200 , ∴w关于x的函数关系式为 w= 2x+5200 。
2013年第22、24题 22.为响应“美丽河池 清洁乡村 美化校园”的号 召,红水河中学计划在学校公共场所安装温馨 提示牌和垃圾箱。已知,安装5个温馨提示牌 和6个垃圾箱需730元,安装7个温馨提示牌和 12个垃圾箱需1310元。 (1)安装1个温馨提示牌和1个垃圾箱各需多少 元? (2)安装8个温馨提示牌和15个垃圾箱共需多少 元?
相关文档
最新文档