2012年全国硕士研究生入学统一考试数学三试题
历年考研数学三真题及答案解析

2012年全国硕士研究生入学统一考试数学三试题选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xyx+=-渐近线的条数为()(A)0 (B)1 (C)2 (D)3(2)设函数2()(1)(2)x x nxf x e e e n=--…(-),其中n为正整数,则(0)f'=()(A)1(1)(1)!n n---(B)(1)(1)!n n--(C)1(1)!n n--(D)(1)!n n-(3)设函数()f t连续,则二次积分22202cos()d f r rdrπθθ⎰⎰=()(A)222 0() dx x y dy+⎰(B)222 0() dx f x y dy+⎰(C)222 01() dx x y dy+⎰⎰(D)222 01() dx f x y dy++⎰⎰(4)已知级数11(1)ninα∞=-∑绝对收敛,21(1)ninα∞-=-∑条件收敛,则α范围为()(A)0<α12≤(B)12< α≤1(C)1<α≤32(D)32<α<2(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234c c c c ,,,为任意常数,则下列向量组线性相关的是() (A )123ααα,, (B )124ααα,,(C )134ααα,,(D )234ααα,,(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且P-1AP=112⎛⎫⎪ ⎪⎪⎝⎭,123=P ααα(,,),1223=Q αααα(+,,)则1=Q AQ -()(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭(B )112⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭(D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,则+PX Y ≤22{1}()(A )14(B )12(C )8π(D )4π(8)设1234X X X X ,,,为来自总体N σσ>2(1,)(0)的简单随机样本,则统计量1234|+-2|X X X X -的分布( ) (A )N (0,1)(B )(1)t(C )2(1)χ(D )(1,1)F二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)1cos sin 4lim (tan )x xx x π-→(10)设函数0ln1(),(()),21,1xdyxf x y f f xdxx x=⎧≥⎪=⎨-<⎪⎩求___________.(11)函数(,)z f x y=满足1(,)22lim0,xyf x y x y→→-+-=则(0,1)dz=_______.(12)由曲线4yx=和直线y x=及4y x=在第一象限中所围图形的面积为_______.(13)设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=________.(14)设A,B,C是随机事件,A,C互不相容,11 (),(),23P AB P C==则CP AB()=_________.解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)计算222cos4limx x xe ex-→-(16)(本题满分10分)计算二重积分xDe xydxdy⎰⎰,其中D为由曲线y y==所围区域.(17)(本题满分10分)某企业为生产甲、乙两种型号的产品,投入的固定成本为10000(万元),设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且固定两种产品的边际成本分别为20+2x(万元/件)与6+y(万元/件).1)求生产甲乙两种产品的总成本函数(,)C x y(万元)2)当总产量为50件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本. 3)求总产量为50件时且总成本最小时甲产品的边际成本,并解释其经济意义.(18)(本题满分10分)证明:21ln cos1,1 1.12x xx x xx++≥+-<< -(19)(本题满分10分)已知函数()f x满足方程()()2()0f x f x f x"'+-=及()()2x f x f x e '+=1)求表达式() f x2)求曲线的拐点22()()xy f x f t dt =-⎰(20)(本题满分10分)设1001010100100010aaA baa⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,(I)求|A|(II)已知线性方程组Ax b=有无穷多解,求a,并求Ax b=的通解.(21)(本题满分10分)已知1010111001Aaa⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦,二次型123(,,)()f x x x x xT T=A A的秩为2,求实数a的值;求正交变换x=Qy将f化为标准型.(22)(本题满分10分)已知随机变量X,Y 以及XY 的分布律如下表所示:求(1)P(X=2Y); (2)cov(,)XYX Y Y -ρ与.(23)(本题满分10分) 设随机变量X和Y相互独立,且均服从参数为1的指数分布,m in(,),=m ax(,).V X Y U X Y =求(1)随机变量V 的概率密度; (2)()E U V +.2011年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分。
历年考研数学三真题及答案解析

二、填空题: 9~14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上 .
1
lim (tan x ) cos x sin x
x
(9) 4
ln x , x 1
f (x)
,y
( 10 )设函数
2 x 1, x 1
dy f ( f ( x)), 求
dx x0
___________.
(11)函数 z
n
绝对收敛,
n
( 1)
2
n
条件收敛,则
1
1
(A) 0<
2
(B) 2 <
1
范围为( )
3
(C) 1<
2
3 (D) 2 < <2
0
0
1
1
1
0,2
1,3
(5 )设
c1
c2
任意常数,则下列向量组线性相关的是(
)
1, 4 c3
1 c 4 其中 c1, c2, c3, c4 为
(A) 1, 2, 3
(B) 1, 2, 4
设该企业生产甲、 乙两种产品的产量分别为 元/ 件)与 6+y(万元 / 件) .
x( 件 ) 和 y( 件) ,且固定两种产品的边际成本分别为
x 20+ 2 (万
1)求生产甲乙两种产品的总成本函数 C ( x , y ) (万元)
2)当总产量为 50 件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本
|BA*|=________.
P ( AB )
( 14 ) 设 A,B,C 是 随 机 事 件 , A,C 互 不 相 容 ,
1 , P(C )
2012年考研数学试题详解及评分参考

P{X < Y} =
(A)
1 5
(B)
1 3
(C)
2 3
(D)
4 5
【答】 应选 (A) .
【解】 由题设,知 X 与Y 的概率密度分别为
f
X
(
x)
=
ìe- x
í î
0,
,
x > 0, x£0
fY
(
y)
=
ì4e-4
í î
0,
y
,
又 X 与Y 相互独立,所以 X 与 Y 的联合密度函数为
y >0, y£0
æ1 0 0ö
(A)
ç ççè
0 0
2 0
0 1
÷ ÷÷ø
æ1 0 0ö
(B)
ç ççè
0 0
1 0
0 2
÷ ÷÷ø
æ2 0 0ö
(C)
ç ççè
0 0
1 0
0 2
÷ ÷÷ø
æ2 0 0ö
(D)
ç ççè
0 0
2 0
0 1
÷ ÷÷ø
【答】 应选 (B) .
【解法一】 显然 Q 是将 P 的第 2 列加到第 1 列得到的,所以有 Q = PE(1)+(2) ,因而
(A) a1,a2 ,a3
(B) a1,a2 ,a4
(C) a1,a3,a4
(D) a2 ,a3,a4
【答】 应选 (C) .
【解】 由 a1,a2 ,a3 = - c1 ,知 c1 ¹ 0 时,a1,a2 ,a3 线性无关,故排除(A);
同理,由 a1,a2 ,a4 = c1 ,知 c1 ¹ 0 时,a1,a2 ,a4 线性无关,故排除(B);
2012考研数学三真题及答案

2012考研数学三真题及答案2012年考研数学三真题及答案2012年考研数学三真题是考研数学科目中的一道重要题目。
这道题目的出现考察了考生对于数学知识的掌握程度,也是对考生解决实际问题的能力的一种考察。
下面将对2012年考研数学三真题及答案进行详细的分析。
首先,让我们来看一下2012年考研数学三真题的具体内容。
这道题目是一个关于概率论和数理统计的问题。
题目要求考生根据给定的数据,计算出相关的概率和统计量。
通过这道题目,考生需要运用概率论和数理统计的知识,进行数据分析和计算。
接下来,我们来看一下这道题目的答案。
根据题目的要求,考生需要计算出一系列的概率和统计量。
通过对给定的数据进行分析,考生可以得出相应的答案。
在计算过程中,考生需要运用概率论和数理统计的相关公式和方法,进行数据的处理和计算。
在解答这道题目的过程中,考生需要注意以下几点。
首先,要仔细阅读题目,理解题目的要求和条件。
其次,要对给定的数据进行合理的处理和分析,找出相应的规律和关系。
然后,要运用概率论和数理统计的知识,进行计算和推导。
最后,要对计算结果进行合理的解释和说明,确保答案的准确性和可靠性。
通过解答这道题目,考生可以提高对概率论和数理统计的理解和应用能力。
同时,也可以加深对于实际问题的分析和解决能力。
这对于考生在考试中取得好成绩具有重要的意义。
除了解答这道题目,考生还可以通过其他方式来提高对概率论和数理统计的掌握程度。
可以通过阅读相关的教材和参考书籍,深入学习和理解概率论和数理统计的基本概念和方法。
可以通过做一些相关的习题和例题,加强对概率论和数理统计的实践操作能力。
可以参加一些相关的学习班和培训课程,提高对概率论和数理统计的学习效果。
总之,2012年考研数学三真题及答案是考生备考过程中的一道重要题目。
通过解答这道题目,考生可以提高对概率论和数理统计的理解和应用能力。
同时,也可以加深对于实际问题的分析和解决能力。
希望考生能够认真对待这道题目,做好相应的准备工作,取得好成绩。
2019年考研数学三真题及答案详解

2012年全国硕士研究生入学统一考试数学三试题一.选择题订—8小題每小题4分,共32分•下列每题给岀的四个选项中,只有一个选项符合题 目要求的,请将所选项苗的字母填在答题纸指定位置上.• • •(1)曲线丁=匚二渐进线的条为()x 2-l0 (B)1 (C)2 (D) 3(C) x(x + l)l(x + l)(x-l)故limy = x = l 为垂直渐近线;x->r又由limj = l,故》=1为水平渐近线,无斜渐近线,故渐近线的条数为2.⑵设函数/(x)=(e'—lXk-2)・・・0-”),其中"为正整数,则/'(0)=()(A) (_l)i(T! (B) (-1)0-1)! (C) (-1)"%!(D) (-1)5!【答案】(A)【解阳巩。
卜応用2(叽H 」—)(宀2)・十一)\ ・ XT O xXT Ox= lim(沪 _2卜・(0泾_?2)= -1乂(一2)・・・(1_") = (一1广论一1)!⑶设函数/(f)连续,则二次积分建d&J/(F>dr= ()⑷ 恥厲3+>,:/(宀畑(B)『阿爲仗+y 澜©仇£^^7/(宀》沁 (D) J :d 叫笃於+〉讪【答案】(B)【解析】由0S8S 兰,可知积分区域在第一象限,2由 2cos^<r <2,可知工‘ + >' S 4,2工 S X 2 — y 1. (2r cos 6 <r 2) 故 Z = j ,."d.xj^T /(r pF )d )',故选(B)・【答案】⑷己知级数£(-1)月丽sing 绝对收敛,级数£匕工 条件收敛,则 n-l i "0<a<- (B) i<a<l(C) l<a<- (D) ^<a<2 2 2 2 2【答案】【解析】由£(-1)”石血4绝对收敛 心1 wR 1 1 3即收敛,则有a —>1,即a>-, a 严 2 2由£空条件收敛,则有0 <2 — aSl, BPl<a<2.3综上:-<^<2,故选(D)・2(A)(D)J 01-10 ,a z « 1 9 a 、■ -11 •GG L <,其中q c : Q c 4为任意常数,则下列向量组(A) a 】a 2(B)ai a i a(C) 6 3 4【答案】c【解析】0 i -1|內,他,%|= 01 1 一1 =C] X 一1 1=0 9qq(\ ⑹设力为3阶矩阵,P 为3阶可逆矩阵,且严】肿=0、° 0 0、1 ° ,若卩=(6,@,@)0乙0 = (a 】-a :J a 2 4)则 Q'}AQ =()(5)设 q 线性相关的为故a l ;O3.a 4必定线性相关,从而应选C.1}=『/(3嗣=[(1鬧=比=手 D r^r<l4‘1 0 o'‘1 0 o'<2 0 O'<2 0 0、(A) 0 2 0(B) 0 1 0(C) 0 1 0(D)0 2 0、o o l y卫o 2J(0 0 2J、0 0 1)Z1 0 0、"1 0 oO = (c5 + 勺。
2012考研数学三真题及答案解析

,
1 0
a 0 0 1
0
(Ⅰ)计算行列式 A ;
(Ⅱ)当实数 a 为何值时,方程组 Ax 有无穷多解,并求其通解.
1 0 1
(21)已知
A
0 1
1 0
1 a
,二次型
f
x1,
x2 ,
x3
xT
AT A x 的秩为 2,
0
a 1
(Ⅰ)求实数 a 的值;
(Ⅱ)求正交变换 x Qy 将 f 化为标准形.
(13)设 A 为 3 阶矩阵, A 3 , A* 为 A 的伴随矩阵。若交换 A 的第 1 行与第 2 行得矩 阵 B ,则 BA*
(14)设 A 、 B 、 C 是随机事件, A 与 C 互不相容, P( AB) 1 , P(C) 1 ,则 P( AB | C)
2
3
三、解答题:15~23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说 明、证明过程或演算步骤.
0
2
0
0 0 1
(7)设随机变量 X 与 Y 相互独立,且都服从区间(0.1)上的均匀分布,则
P X 2 Y 2 1 ( )
(A) 1 4
(B) 1 2
(C) 8
(D) 4
(8)设 X1, X 2 , X 3 , X 4 为来自总体 N(1, 2 ) ( 0) 的简单随机样本,则统计量
4
2 2
2
(10)
dy dx
xe
(ln
x 1)
xe
1 e
【分析】本题主要考查复合函数求表达式及复合函数求导数。先利用分析法得到
y f ( f (x)) 的表达式,再求导数,或直接根据分段函数的定义用复合函数求导法求导
考研数学三历年真题答案与解析-模拟试题

考研数学三历年真题答案与解析|模拟试题展开全文第一部分历年真题及详解2008年全国硕士研究生入学统一考试考研数学三真题及详解2009年全国硕士研究生入学统一考试考研数学三真题及详解2010年全国硕士研究生入学统一考试考研数学三真题及详解2011年全国硕士研究生入学统一考试考研数学三真题及详解详解2013年全国硕士研究生入学统一考试考研数学三真题及详解2014年全国硕士研究生入学统一考试考研数学三真题及详解2015年全国硕士研究生招生考试考研数学三真题及详解2016年全国硕士研究生招生考试考研数学三真题及详解2017年全国硕士研究生招生考试考研数学三真题及详解2018年全国硕士研究生招生考试考研数学三真题及详解2019年全国硕士研究生招生考试考研数学三真题及详解(2)模拟试题及详解部分:精选了3套模拟试题,且附有详尽解析。
考生可通过模拟试题部分的练习,掌握最新考试动态,提前感受考场实战。
第二部分模拟试题及详解全国硕士研究生招生考试考研数学三模拟试题及详解(一)全国硕士研究生招生考试考研数学三模拟试题及详解(二)全国硕士研究生招生考试考研数学三模拟试题及详解(三)第一部分历年真题及详解解一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求。
)1设函数f(x)在区间[-1,1]上连续,则x=0是函数的()。
A.跳跃间断点B.可去间断点C.无穷间断点D.振荡间断点【答案】B查看答案【考点】函数间断点的类型【解析】首先利用间断点的定义确定该点为间断点,然后利用如下的间断点的类型进行判断。
第一类间断点:x=x0为函数f(x)的间断点,且与均存在,则称x=x0为函数f(x)的第一类间断点,其中:①跳跃型间断点:②可去型间断点:第二类间断点:x=x0为函数f(x)的间断点,且与之中至少有一个不存在,则称x=x0为函数f(x)的第二类间断点,其中:①无穷型间断点:与至少有一个为∞;②振荡型间断点:或为振荡型,极限不存在。
《概率论》考研试题

2005-2012年全国硕士研究生入学统一考试概率论与数理统计部分试题2012考研数学(三)一、选择题(7)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,则+ΡΧΥ≤22{1}()(A)14(B)12(C)8π(D)4π(8)设1234X X X X ,,,为来自总体N σσ>2(1,)(0)的简单随机样本,则统计量1234|+-2|X X X X −的分布()(A)N (0,1)(B)(1)t (C)2(1)χ(D)(1,1)F 二、填空题(14)设,,A B C 是随机事件,,A C 互不相容,11(),(),23P AB P C ==则(C)P ΑΒ=_________.三、解答题(22)已知随机变量X ,Y 以及XY 的分布律如下表所示:X 012P121316Y 012P131313XY 0124P712130112求(1)(2)P X Y =;(2)cov(,)XY X Y Y −ρ与.(23)设随机变量X 和Y 相互独立,且均服从参数为1的指数分布,min(,),=max(,).V X Y U X Y =求(1)随机变量V 的概率密度;(2)()E U V +.2012数学(一)一、选择题(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}=<Y X P (A)51(B)31(C)52(D)54(8)将长为1m 的木棒随机的截成两段,则两段长度的相关系数为()(A)1(B)21(C)-21(D)-1二、填空题(14)设C B A ,,是随机文件,A 与C 互不相容,()()11,,()23P AB P C P AB C ===三、解答题(22)设二维随机变量X 01201/401/4101/3021/121/12(Ⅰ)求{}Y X P 2=(Ⅱ)求()Y Y X Cov ,−.(23)设随机变量X 与Y 相互独立分别服从正态分布()2,σµN 与()22,σµN ,其中σ是未知参数且0>σ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年全国硕士研究生入学统一考试数学三试题
一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...
指定位置上. (1)曲线221
x x y x +=-渐近线的条数为 ( )
(A) 0 (B) 1 (C) 2 (D) 3
(2)设函数2()(1)(2)
()x x nx f x e e e n =---,其中n 为正整数,则'(0)f = ( )
(A) 1(1)(1)!n n --- (B)(1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -
(3)设函数()f t 连续,则二次积分2
220
2cos d ()d f r r r π
θ
θ=⎰⎰
( )
(A) 2
22
d ()d x x y y +⎰
(B) 2
220
d ()d x f x y y +⎰
(C) 2
22
d ()d y x y x +⎰
(D) 2
220
1d ()d y f x y x +⎰
(4)
已知级数1
1
(1)
n n α∞
=-∑绝对收敛,级数21(1)n a n n
∞
-=-∑条件收敛,则 ( )
(A) 102a <≤
(B) 112a <≤ (C) 312a <≤ (D)3 22
a <<
(5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫
⎪= ⎪ ⎪⎝⎭
,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )
(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα
(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫
⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则
1Q AQ -= ( )
(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫
⎪ ⎪ ⎪⎝⎭
(7)设随机变量X 与Y 相互独立,且都服从区间(0.1)上的均匀分布,则{}
221P X Y +≤= ( )
(A)
14 (B) 12 (C) 8π (D)4
π
(8)设1234,,,X X X X 为来自总体2(1,)N σ(σ>0)的简单随机样本,则统计量
12
34|2|
X X X X -+-的分布为 ( )
(A) N (0,1) (B) t(1) (C) 2(1)χ (D)(1,1F ) 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...
指定位置上. (9)()
1
cos sin 4
lim tan x x
x x π
-→
=
(10)设函数(
),1
21,1
x f x x x ⎧≥⎪=⎨-<⎪⎩, ()()y f f x =,则
x e
dy dx ==
(11)设连续函数(,)z f x y =
满足0x y →→=则()0,1d |z =
(12)由曲线4
y x
=
和直线y x =及4y x =在第一象限中围成的平面图形的面积为 (13)设A 为3阶矩阵,3A =,*A 为A 的伴随矩阵。
若交换A 的第1行与第2行得矩阵B ,则*BA =
(14)设A 、B 、C 是随机事件,A 与C 互不相容,1()2P AB =,1
()3
P C =,则(|)P AB C = 三、解答题:15~23小题,共94分.请将解答写在答题纸...
指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)
求极限2
22cos 4
0lim x x
x e e x -→-
(16)
计算二重积分d d x e xy x y ⎰⎰,其中D
是以曲线y y ==
及y 轴为边界的无界区域.
(17)
某企业为生产甲、乙两种型号的产品,投入的固定成本为10000(万元),设该企业生产甲、乙两种产品的产量分别为x (件)和y (件),且定两种产品的边际成本分别为202
x
+(万元/件)与6y +(万元/件)。
(1)求生产甲乙两种产品的总成本函数(,)C x y (万元)
(2)当总产量为50件时,甲乙两种的产量各为多少时可使总成本最小?求最小 成本 (3)求总产量为50件时且总成本最小时甲产品的边际成本,并解释其经济意义。
(18)
证明2
1ln cos 1,(11)12
x x x x x x ++≥+-<<-
(19)
已知函数()f x 满足方程'''()()2()0f x f x f x +-=及
''()()2x f x f x e +=
(1)求()f x 的表达式 (2)求曲线220
()()d x y f x f t t =-⎰的拐点 (20)
设1
000
10001001a a A a a
⎛⎫ ⎪
⎪
= ⎪ ⎪⎝⎭,1100β⎛⎫
⎪
⎪ ⎪=- ⎪
⎪ ⎪⎝⎭
(1)
计算行列式A ; (2)当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解. (21)
已知10101
11001A a a
⎛⎫
⎪
⎪
= ⎪-
⎪-⎝⎭
,二次型()()123,,T T f x x x x A A x =的秩为2, (1)求实数a 的值;
(2)求正交变换x Qy =将f 化为标准形. (22)
设二维离散型随机变量
、的概率分布为
(Ⅰ)求{}2P X Y =; (Ⅱ)求Cov(,)X Y Y -. (23)
设随机变量X 与Y 相互独立,且服从参数为1的指数分布. 记{}max ,U X Y =,{}min ,V X Y = (Ⅰ)求V 的概率密度()V f v ; (Ⅱ)求()E U V +.。