2016年苏科版九年级数学上册(9月份)月考试卷及答案

合集下载

苏科版九年级数学上册月考答案.docx

苏科版九年级数学上册月考答案.docx

初中数学试卷 桑水出品宜兴外国语学校2015—2016学年度第一学期阶段测试一答案 初三数学 (2015、9)一、选择题(每题3分,共30分)1.D2.C3.D4.C5.D6.B7.D8.B9.B 10.A二、填空题(每题2分,共16分)11.x 1=0,x 2=1 12.47 13.2 14.20% 15.2014 16. 5-315或- 17.23 18. 3 三、解答题(共84分)19.(每题4分,共16分)(1)(x+1)2-9=0 (2)0322=--x xx+1=±3 (x-3)(x+1)=0x 1=2,x 2=-4 x 1=3,x 2=-1 (3) 2(x -1)2=3x -3. (4) 32410x x +-=2(x -1)2-3(x -1)=0. △=28(x-1)(2x-5)=0 37-2-x 372-x 21=+=, x 1=1,x 2=25 证明:(1)∵∠ABD =∠C, ∠A=∠A∴△ABD ∽△ACB (4分)(2)∵△ABD ∽△ACB∴AB AD AC AB =, ∴646=AC ∴AC=9(7分)∴CD=AC-AD=5(8分)(1) ∵关于x 的方程x 2-3x+2k-1=0有两个实数根,∴△=(-3)2-4(2k-1)≥0,解得k≤813(3分) (2) 设方程x 2-3x+2k-1=0的两个根为x 1、x 2,则x 1+x 2=3,x 1x 2=2k-1,∵x 12+x 22≥x 1x 2 ,即(x 1+x 2)2-3x 1x 2≥0,∴9-3(2k-1)≥0,解得k≤2,(5分)∵反比例函数y=xk 21+ 的图象的两个分支在各自的象限内y 随x 的增大而减小, ∴1+2k >0,即k >21-,(6分) ∵ k≤813 ∴k 的取值范围为21-<k ≤813(7分)∴k 的最大整数值为1.(8分) (1)5÷0.1=50(人),即被抽查的学生有50人;(2分)(2)m=6.05030=,n=50×0.2=10;(4分)画图(5分) (3)2200×1050510⨯+克=6600克=6.6千克.(7分) 答:这餐晚饭将浪费6.6千克米饭.(8分)解:(1)证明:∵AC 平分∠DAB ,∴∠DAC=∠CAB ,∵∠ADC=∠ACB=90°,∴△ADC ∽△ACB ,∴AD :AC=AC :AB ,∴AC 2=AB?AD ;(3分)(2)证明:∵E 为AB 的中点,∴CE=21AB=AE , ∴∠EAC=∠ECA ,(4分)∵∠DAC=∠CAB ,∴∠DAC=∠ECA ,∴CE ∥AD ;(5分)(3)解: ∵CE ∥AD ,∴△AFD ∽△CFE , (6分)∴AD :CE=AF :CF ,∵CE=21AB , ∴CE=21×6=3, ∵AD=4,∴ ,∴.(8分)24. (本小题满分8分)解:(1)设AB长xm,则BC=(28-x)m,∴x(28-x)=192,(2分)解得:x1=12,x2=16,(3分)答:AB长为12m或16m;(4分)(2)设AB长xm,则BC=(28-2x)m,S=x(28-2x)=-2(x-7)2+98(7分)∴花园面积S的最大值为98m2(8分)25. (本小题满分8分)解:(1)A、C两村间的距离120km,a=120÷[(120﹣90)÷0.5]=2;(2分)(2)设y1=k1x+120,代入(2,0)解得y1=﹣60x+120,y2=k2x+90,代入(3,0)解得y2=﹣30x+90,由﹣60x+120=﹣30x+90解得x=1,则y1=y2=60,P(1,60)(4分)所以P(1,60)表示经过1小时甲与乙相遇且距C村60km.(5分)(3)当y1﹣y2=10,即﹣60x+120﹣(﹣30x+90)=10,解得x=,(6分)当y2﹣y1=10,即﹣30x+90﹣(﹣60x+120)=10,解得x=,(7分)当甲走到C地,而乙距离C地10km时,﹣30x+90=10,解得x=;(8分)综上所知当x=h,或x=h,或x=h乙距甲10km.26. (本小题满分10分)27.(本小题满分10分)(1+3+3+3)(1)25(2)∵∠C=90°,AB=50,AC=30∴根据勾股定理,BC=40由题意可得DE=20,EF=15,PE=20-7t 当△PEF ∽△ACB 时,BC EFAC PE=,401530t7-20=解得t=45;当△PEF ∽△BCA 时,AC EF BC PE =,301540t 7-20=,解得t=0。

苏教版九年级数学上册月考考试题及答案【通用】

苏教版九年级数学上册月考考试题及答案【通用】

苏教版九年级数学上册月考考试题及答案【通用】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2是一个很奇妙的数,大量应用于艺术、建筑和统计决策等1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间 3.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =44.下列各数:-2,0,13,0.020020002…,π( )A .4B .3C .2D .15.已知点A (m ,n )在第二象限,则点B (|m|,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠ 7.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.因式分解:3269a a a-+=_________.3.已知直角三角形的两边长分别为3、4.则第三边长为________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为__________.5.如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1yx=和9yx=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交1yx=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是_________.6.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.先化简,再求值:2211(1)m m m m +--÷,其中m=3+1.3.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?41.如图,在△ABC 中,∠ACB =90°,∠CAB =30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若AB =6,求平行四边形BCFD 的面积.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.某商店以每件40元的价格进了一批商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时销售此商品每月的利润可达到4000元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、D6、A7、D8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、2(3)a a -3、54、﹣2<x <25、k =7或.6、12三、解答题(本大题共6小题,共72分)1、32x =-.2、33、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(1)略;(2).5、(1)34;(2)1256、(1)20%;(2)60元。

九年级上月考数学试卷(9月份)含解析

九年级上月考数学试卷(9月份)含解析

九年级(上)月考数学试卷(9月份)一、选择题(请在答题卡上将正确答案的序号涂黑,每小题3分,共30分)1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.若a>b,则下列式子正确的是()A.﹣4a>﹣4b B.a<b C.4﹣a>4﹣b D.a﹣4>b﹣43.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤34.若凸n边形的内角和为1260°,则n的值是()A.9B.10C.11D.125.反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限6.若ax2﹣5x+3=0是一元二次方程,则不等式3a+6>0的解集是()A.a>﹣2B.a>﹣2且a≠0C.a D.a<﹣27.方程x2﹣kx﹣1=0根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关8.下列各式从左到右的变形是分解因式的是()A.2a2﹣b2=(a+b)(a﹣b)+a2B.2a(b+c)=2ab+2acC.x3﹣2x2+x=x(x﹣1)2D.(x﹣1)(y﹣1)=xy﹣x﹣y+19.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①当x<3时,y1>0;②当x<3时,y2>0;③当x>3时,y1<y2中,正确的个数是()A.0B.1C.2D.310.甲、乙两名工人加工某种零件,已知甲每天比乙多加工5个零件,甲加工80个零件和乙加工70个零件所用的天数相同.设甲每天加工x个零件,则根据题意列出的方程是()A.B.C.D.二.填空题(每小题4分,共20分)11.函数y=的自变量x取值范围是12.x2﹣10x+21可以分解为(x+n)(x﹣7),则n=.13.已知点P(2﹣a,﹣3a)在第四象限,那么a的取值范围是.14.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.15.在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,平行四边形ABCD的周长为40,则平行四边形ABCD的面积为.三、解答题:(16题每小题18分,17、18每题6分,19题10分,20题10分)16.(1)解不等式组(2)分解因式(x﹣1)(x﹣3)﹣8(3)解方程:=+17.当+|b+2|+c2=0时,求ax2+bx+c=0的解.18.先化简,后求值,其中x为0、1、2、4中的一个数.19.如图,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)先将△ABC沿y轴正方向向上平移3个单位长度,再沿x轴负方向向左平移1个单位长度得到△A1B1C1,画出△A1B1C1,点C1坐标是;(2)将△A1B1C1绕点B1逆时针旋转90°,得到△A2B1C2,画出△A2B1C2,并求出点C2的坐标是;(3)我们发现点C、C2关于某点中心对称,对称中心的坐标是.20.如图1,四边形ABCD是菱形,过点A作BC的垂线交CB的延长线于点E,过点C作AD的垂线交AD的延长线于点F.(1)说明△AEB≌△CFD的理由;(2)连接AC、BD,AC与DB交于点O(如图2),若BE=1.①当DC=2时,求FC的长度;②当CD是∠ACF的平分线时,求DB的长度与菱形ABCD的边长.一.填空题(每题4分,共20分)21.如果a+b=8,ab=15,则a2b+ab2的值为.22.关于x的方程的解是非正数,则m的取值范围是.23.如图,点D、E分别在△ABC的边AB,AC上,DE∥BC,点G在边BC上,AG交DE于点H,点O是线段AG的中点,若AD:DB=3:1,则AO:OH=.24.已知=k,则k=.25.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为.二.解答题(26题8分,27题10分,28题12分,共20分)26.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,通过一段时间摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件.(1)将售价定为多少元的时候,使每天利润为700元吗?(2)当售价定为x元时,这天所获利润为y,请写出y与x的关系式.(3)根据(2)问中的关系式,求出这天所获利润y的最大值?27.如图1,在正方形ABCD中,BD是对角线,点E在BD上,△BEG是等腰直角三角形,且∠BEG=90°,点F是DG的中点,连结EF与CF.(1)求证:EF=CF;(2)求证:EF⊥CF;(3)如图2,若等腰直角三角形△BEG绕点B按顺时针旋转45°,其他条件不变,请判断△CEF的形状,并证明你的结论.28.在矩形OABC中,OA=4,OC=2,以点O为坐标原点,OA所在的直线为x轴,建立直角坐标系.(1)将矩形OABC绕点C逆时针旋转至矩形DEFC,如图1,DE经过点B,求旋转角的大小和点D,F 的坐标;(2)将图1中矩形DEFC沿直线BC向左平移,如图2,平移速度是每秒1个单位长度.①经过几秒,直线EF经过点B;②设两矩形重叠部分的面积为S,运动时间为t,写出重叠部分面积S与时间t之间的函数关系式.九年级上月考数学试卷(9月份)参考答案与试题解析一、选择题(请在答题卡上将正确答案的序号涂黑,每小题3分,共30分)1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:C.【点评】本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识,熟记概念是解题的关键.2.若a>b,则下列式子正确的是()A.﹣4a>﹣4b B.a<b C.4﹣a>4﹣b D.a﹣4>b﹣4【分析】根据不等式的性质(①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变)逐个判断即可.【解答】解:A、∵a>b,∴﹣4a<﹣4b,故本选项错误;B、∵a>b,∴a b,故本选项错误;C、∵a>b,∴﹣a<﹣b,∴4﹣a<4﹣b,故本选项错误;D、∵a>b,∴a﹣4>b﹣4,故本选项正确;【点评】本题考查了对不等式的性质的应用,主要考查学生的辨析能力,是一道比较典型的题目,难度适中.3.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【分析】不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.【点评】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.若凸n边形的内角和为1260°,则n的值是()A.9B.10C.11D.12【分析】根据多边形内角和定理列式计算即可.【解答】解:由题意得,(n﹣2)×180°=1260°,解得,n=9,故选:A.【点评】本题考查的是多边形的内角与外角,掌握多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数)是解题的关键.5.反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【分析】因为k=2>0,根据反比例函数性质,可知图象在一、三象限.【解答】解:∵k=2>0,∴图象在一、三象限.【点评】对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.6.若ax2﹣5x+3=0是一元二次方程,则不等式3a+6>0的解集是()A.a>﹣2B.a>﹣2且a≠0C.a D.a<﹣2【分析】由于ax2﹣5x+3=0是一元二次方程,故a≠0;再解不等式即可求得a的取值范围;这样即可求得不等式的解集.【解答】解:不等式移项,得3a>﹣6,系数化1,得a>﹣2;又∵ax2﹣5x+3=0是一元二次方程,∴且a≠0;所以,a>﹣2且a≠0;故选:B.【点评】一元二次方程必须满足三个条件:(1)只含有一个未知数,未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程.同时解不等式时,两边同时乘或除一个负数时,不等号的方向要改变.7.方程x2﹣kx﹣1=0根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关【分析】求出方程的判别式后,根据判别式与0的大小关系来判断根的情况.【解答】解:∵方程的△=k2+4>0,故方程有两个不相等的实数根.故选:A.【点评】总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.下列各式从左到右的变形是分解因式的是()A.2a2﹣b2=(a+b)(a﹣b)+a2B.2a(b+c)=2ab+2acC.x3﹣2x2+x=x(x﹣1)2D.(x﹣1)(y﹣1)=xy﹣x﹣y+1【分析】根据把一个多项式转化成几个整式积的形式,可得答案.【解答】解:∵x3﹣2x2+x=x(x﹣1)2,∴C是因式分解,故选:C.【点评】本题考查了因式分解,因式分解的关键是把多项式转化成几个整式积的形式.9.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①当x<3时,y1>0;②当x<3时,y2>0;③当x>3时,y1<y2中,正确的个数是()A.0B.1C.2D.3【分析】根据一次函数图象的位置进行判断,从函数图象来看,就是确定直线y=kx+b是否在在x 轴上(或下)方.【解答】解:根据图象可知:①当x<3时,一次函数y1=kx+b的图象在x轴上方,故y1>0;②当x<3时,一次函数y2=x+a的图象一部分在x轴上方,一部分在x轴下方,故y2>0或y2=0或y2<0;③当x>3时,一次函数y1=kx+b的图象在一次函数y2=x+a的图象的下方,故y1<y2,所以正确的有①和③.故选:C.【点评】本题主要考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围.10.甲、乙两名工人加工某种零件,已知甲每天比乙多加工5个零件,甲加工80个零件和乙加工70个零件所用的天数相同.设甲每天加工x个零件,则根据题意列出的方程是()A.B.C.D.【分析】根据题意列出乙每天加工零件的个数x﹣5,由等量关系式甲加工80个零件和乙加工70个零件所用的天数相同,列出方程即可.【解答】解:据题意列出方程得,,故选:D.【点评】解决此题的关键是:找对等量关系.二.填空题(每小题4分,共20分)11.函数y=的自变量x取值范围是x≤4且x≠3【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣3≠0且4﹣x≥0,解得x≠3且x≤4.故函数y=的自变量x取值范围是x≤4且x≠3.故答案为:x≤4且x≠3.【点评】本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.x2﹣10x+21可以分解为(x+n)(x﹣7),则n=﹣3.【分析】先多项式x2﹣10x+21分解因式可得n的值.【解答】解:x2﹣10x+21=(x﹣3)(x﹣7),∵x2﹣10x+21可以分解为(x+n)(x﹣7),∴n=﹣3,故答案为:﹣3.【点评】本题考查了因式分解与原多项式的关系,解决此类问题,由于多项式因式分解是恒等变形,根据相同项的系数相等,得到方程并求出其解.13.已知点P(2﹣a,﹣3a)在第四象限,那么a的取值范围是0<a<2.【分析】根据点所在的象限,列不等式组,求解即可.【解答】解:∵点P(2﹣a,﹣3a)在第四象限,∴,由①得a<2,由②得a>0,∴a的取值范围是0<a<2,故答案为0<a<2.【点评】本题考查了象限内点的符号特点,以及不等式组的解法,是基础知识比较简单.14.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.【分析】利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长【解答】解:∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为:1.5.【点评】本题考查了直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.15.在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,平行四边形ABCD的周长为40,则平行四边形ABCD的面积为48.【分析】由平行四边形的对边相等可得一组对边的和为20,设BC为未知数,利用两种方法得到的平行四边形的面积相等,可得BC长,乘以4即为平行四边形的面积.【解答】解:∵平行四边形ABCD的周长为40,∴BC+CD=20,=BC•AE=CD•AF,设BC为x,∵S平行四边形ABCD∴4x=(20﹣x)×6,解得x=12,∴平行四边形ABCD的面积为12×4=48.故答案为48.【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等,面积等于底×高.三、解答题:(16题每小题18分,17、18每题6分,19题10分,20题10分)16.(1)解不等式组(2)分解因式(x﹣1)(x﹣3)﹣8(3)解方程:=+【分析】(1)先求出其中各不等式的解集,再求出这些解集的公共部分即可;(2)先化简整理多项式,再根据十字相乘法进行因式分解即可;(3)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)解不等式①,可得x≥﹣2,解不等式②,可得x<3.5,∴不等式组的解集为:﹣2≤x<3.5;(2)(x﹣1)(x﹣3)﹣8=x2﹣4x+3﹣8=x2﹣4x﹣5=(x﹣5)(x+1);(3)=+方程两边同乘(x+2)(x﹣2),可得(x﹣2)2=(x+2)2+16,解得x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,∴原方程无解.【点评】本题主要考查了解一元一次不等式组,因式分解以及解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验.17.当+|b+2|+c2=0时,求ax2+bx+c=0的解.【分析】先根据算术平方根、绝对值和平方的非负性可得a、b、c的值,代入方程解出即可.【解答】解;当+|b+2|+c2=0时,则,∴,∴4x2﹣2x=0,2x2﹣x=0,x(2x﹣1)=0,x1=0,x2=【点评】本题考查了算术平方根、绝对值和平方的非负性和利用因式分解解一元二次方程,熟练掌握算术平方根、绝对值和平方的非负性是关键.18.先化简,后求值,其中x为0、1、2、4中的一个数.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣•=﹣,当x=0时,原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)先将△ABC沿y轴正方向向上平移3个单位长度,再沿x轴负方向向左平移1个单位长度得到△A1B1C1,画出△A1B1C1,点C1坐标是(﹣2,1);(2)将△A1B1C1绕点B1逆时针旋转90°,得到△A2B1C2,画出△A2B1C2,并求出点C2的坐标是(﹣5,0);(3)我们发现点C、C2关于某点中心对称,对称中心的坐标是(﹣3,﹣1).【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案;(3)直接利用关于点对称的性质得出对称中心即可.【解答】解:(1)如图所示:△A1B1C1,即为所求,点C1坐标是:(﹣2,1);故答案为:(﹣2,1);(2)如图所示:△A2B1C2,即为所求,点C2坐标是:(﹣5,0);故答案为:(﹣5,0);(3)点C、C2关于某点中心对称,对称中心的坐标是:(﹣3,﹣1).故答案为:(﹣3,﹣1).【点评】此题主要考查了旋转变换和平移变换,根据题意得出对应点位置是解题关键.20.如图1,四边形ABCD是菱形,过点A作BC的垂线交CB的延长线于点E,过点C作AD的垂线交AD的延长线于点F.(1)说明△AEB≌△CFD的理由;(2)连接AC、BD,AC与DB交于点O(如图2),若BE=1.①当DC=2时,求FC的长度;②当CD是∠ACF的平分线时,求DB的长度与菱形ABCD的边长.【分析】(1)首先这两个三角形是直角三角形,可根据菱形的性质四边相等,对边平行,可得到AB=DC,AE=CF;(2)因为三角形AEB是直角三角形,可根据勾股定理求解;(3)用角平分线上的点到两边的距离相等的性质以及勾股定理可求出DB的长度与菱形ABCD 的边长.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=CD,AD∥BC,又∵AE⊥CE,CF⊥AF,∴AE=CF,∴在直角三角形AEB和直角三角形CFD中,∴△AEB≌△CFD;(2)①∵△AEB≌△CFD,∴DF=BE=1,∴FC==,②当CD是∠ACF的平分线时∵∠DOC=90°,∠CFD=90°,∴DO=DF=1,∴DB=2,∵CD是∠ACF的平分线,∴∠ECA=∠DCA=∠DCF=30°,∴∠BCD=60°,∴△BCD是等边三角形,∴菱形ABCD的边长为2.【点评】本题考查菱形的性质,勾股定理以及角平分线上的点到两边的距离相等,和直角三角形全等的判定,关键是熟记这些性质定理和判定定理.一.填空题(每题4分,共20分)21.如果a+b=8,ab=15,则a2b+ab2的值为120.【分析】把所求的代数式整理为和所给代数式相关的式子,代入求值即可.【解答】解:a2b+ab2=ab(a+b)=15×8=120.【点评】本题考查因式分解的运用,有公因式时,要先考虑提取公因式;注意运用整体代入法求解.22.关于x的方程的解是非正数,则m的取值范围是m≥.【分析】先解方程求得x,然后根据x≤0,求出m的取值范围即可.【解答】解:去分母得,2(x+m)﹣3(2x﹣1)=6m,去括号得,2x+2m﹣6x+3=6m,移项合并得,﹣4x=4m﹣3,系数化为1得,x=,∵关于x的方程的解是非正数,∴≤0,∴m≥.故答案为:m≥.【点评】本题考查了解一元一次方程以及一元一次不等式,是一道综合题,难度不大.23.如图,点D、E分别在△ABC的边AB,AC上,DE∥BC,点G在边BC上,AG交DE于点H,点O是线段AG的中点,若AD:DB=3:1,则AO:OH=2:1.【分析】根据平行线分线段成比例定理求出,,推出AO=AG,OH=OG﹣HG=AG﹣AG,代入求出即可.【解答】解:∵DE∥BC,AD:DB=3:1,∴===,==,∴OH=OG﹣HG=AG﹣AG,∵点O是线段AG的中点,∴OA=OG=AG,∴AO:OH=(AG):(AG﹣AG)=2:1,故答案为:2:1.【点评】本题考查学生对平行线分线段成比例定理的灵活运用,关键是检查学生能否熟练地运用平行线分线段定理进行推理.24.已知=k,则k=2或﹣1..【分析】先根据比例的性质得出bk=a+c,ck=b+a,ak=c+b,再将这三个式子相加,整理得出(a+b+c)k=2(a+b+c).然后分a+b+c≠0与a+b+c=0两种情况,分别求出k的值即可.【解答】解:∵=k,∴bk=a+c,ck=b+a,ak=c+b,∴bk+ck+ak=a+c+b+a+c+b,∴(a+b+c)k=2(a+b+c).①如果a+b+c≠0,那么k=2;②如果a+b+c=0,那么a+c=﹣b,k==﹣1.故答案为2或﹣1.【点评】本题考查了比例的基本性质:两内项之积等于两外项之积.即若a:b=c:d,则ad=bc.分情况讨论是解题的关键.25.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为.【分析】根据旋转得出∠NCE=75°,求出∠NCO,设OC=a,则CN=2a,根据△CMN也是等腰直角三角形设CM=MN=x,由勾股定理得出x2+x2=(2a)2,求出x=a,得出CD=a,代入求出即可.【解答】解:∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,∴∠ECN=75°,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,设OC=a,则CN=2a,∵等腰直角三角形DCE旋转到△CMN,∴△CMN也是等腰直角三角形,设CM=MN=x,则由勾股定理得:x2+x2=(2a)2,x=a,即CD=CM=a,∴==,故答案为:.【点评】本题考查了等腰直角三角形性质,勾股定理,含30度角的直角三角形性质,旋转性质,三角形的内角和定理等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但有一定的难度.二.解答题(26题8分,27题10分,28题12分,共20分)26.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,通过一段时间摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件.(1)将售价定为多少元的时候,使每天利润为700元吗?(2)当售价定为x元时,这天所获利润为y,请写出y与x的关系式.(3)根据(2)问中的关系式,求出这天所获利润y的最大值?【分析】(1)如果设每件商品提高x元,用x表示出单件的利润以及每天的销售量,然后根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.(2)首先设应将售价提为x元时,才能使得所赚的利润最大为y元,根据题意可得:y=(x﹣8)[200﹣20(x﹣10)];(3)将(2)中关系式化简配方,即可得y=﹣20(x﹣14)2+720,即可求得答案.【解答】解:(1)设每件商品提高x元,则每件利润为(10+x﹣8)=(x+2)元,每天销售量为(200﹣20x)件,依题意,得:(x+2)(200﹣20x)=700.整理得:x2﹣8x+15=0.解得:x1=3,x2=5.∴把售价定为每件13元或15元能使每天利润达到700元;(2)设利润为y:则y=(x﹣8)[200﹣20(x﹣10)]=﹣20x2+560x﹣3200;(3)y=﹣20x2+560x﹣3200,=﹣20(x﹣14)2+720,则当售价定为14元时,获得最大利润;最大利润为720元.【点评】此题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.27.如图1,在正方形ABCD中,BD是对角线,点E在BD上,△BEG是等腰直角三角形,且∠BEG=90°,点F是DG的中点,连结EF与CF.(1)求证:EF=CF;(2)求证:EF⊥CF;(3)如图2,若等腰直角三角形△BEG绕点B按顺时针旋转45°,其他条件不变,请判断△CEF的形状,并证明你的结论.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得EF=DF=DG,CF=DF=DG,从而得证;(2)根据等边对等角可得∠FDE=∠FED,∠FCD=∠FDC,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠EFC=2∠BDC,然后根据正方形的对角线平分一组对角求出∠BDC=45°,求出∠EFC=90°,从而得证;(3)延长EF交CD于H,先求出EG∥CD,再根据两直线平行,内错角相等求出∠EGF=∠HDF,然后利用“角边角”证明△EFG和△HFD全等,根据全等三角形对应边相等可得EG=DH,EF=FH,再求出CE=CH,然后根据等腰三角形三线合一的性质证明即可.【解答】(1)证明:∵∠BEG=90°,点F是DG的中点,∴EF=DF=DG,∵正方形ABCD中,∠BCD=90°,点F是DG的中点,∴CF=DF=DG,∴EF=CF;(2)证明:∵EF=DF,CF=DF,∴∠FDE=∠FED,∠FCD=∠FDC,∴∠EFC=∠EFG+∠CFG=∠FDE+∠FED+∠FCD+∠FDC=2∠FDE+2∠FDC=2∠BDC,在正方形ABCD中,∠BDC=45°,∴∠EFC=2×45°=90°,∴EF⊥CF;(3)解:△CEF是等腰直角三角形.理由如下:如图,延长EF交CD于H,∵∠BEG=90°,∠BCD=90°,∴∠BEG=∠BCD,∴EG∥CD,∴∠EGF=∠HDF,∵点F是DG的中点,∴DF=GF,在△EFG和△HFD中,,∴△EFG≌△HFD(ASA),∴EG=DH,EF=FH,∵BE=EG,BC=CD,∴BC﹣EB=CD﹣DH,即CE=CH,∴EF⊥CF(等腰三角形三线合一),CF=EF=EH,∴△CEF是等腰直角三角形.【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,等腰直角三角形的判定,熟记各性质是解题的关键,(3)作辅助线构造出等腰直角三角形和全等三角形是解题的关键.28.在矩形OABC中,OA=4,OC=2,以点O为坐标原点,OA所在的直线为x轴,建立直角坐标系.(1)将矩形OABC绕点C逆时针旋转至矩形DEFC,如图1,DE经过点B,求旋转角的大小和点D,F 的坐标;(2)将图1中矩形DEFC沿直线BC向左平移,如图2,平移速度是每秒1个单位长度.①经过几秒,直线EF经过点B;②设两矩形重叠部分的面积为S,运动时间为t,写出重叠部分面积S与时间t之间的函数关系式.【分析】(1)根据OA=4,OC=2,BC=OA,因而就可求得BC=2CD,则可以求出∠BCD=60°,则旋转角即可求得;作DM⊥CB于点M,FN⊥CB于点N,根据三角函数即可求得:DM,CM的长,从而求得D的坐标,在Rt△CFN中,根据三角函数即可求得CN,FN的长,即得F的坐标;(2)①HB即为直线EF经过点B时移动的距离.在Rt△C′DH中利用三角函数即可求得DH,从而得到HE,再在△HEB中,利用三角函数求得BH,即可求得时间.②重合的部分可能是四边形,也可能是三角形,应分两种情况进行讨论.【解答】解:(1)如图1.在矩形OABC中,OA=4,OC=2,所以在RT△BCD中,BC=2CD,即所以∠BCD=60°.所以旋转角∠OCD=30°作DM⊥CB于点M,FN⊥CB于点N.在RT△CDM中,CM=CD•cos60°=1,DM=CD•sin60°=.所以点D到x轴的距离为.在RT△CFN中,,所以点F到x轴的距离为4.故D(1,),F((2)①如图2,HB即为直线EF经过点B时移动的距离.在RT△C′DH中,,所以.在RT△BEH中,HE=BHcos30°,则.所以直线EF经过点B时所需的时间秒②过点D作DM⊥BC于点M.在RT△DMC′中,C′M=.在RT△DHC′中,C′D=C′Hcos60°=2.当0<t<1时,重叠部分面积为四边形DGCH,如图2,C′C=t,CG=C′Ctan60°=t..当1≤t<4时,重叠部分的面积为△GCH,如图3,.所以重叠部分的面积S=CG•CH=×(4﹣t)(4﹣t)=t2﹣t+.【点评】本题是三角函数与图形的旋转相结合的题目,注意旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.得到相等关系是解决本题的关键.。

苏教版九年级数学上册月考试卷及答案【精选】

苏教版九年级数学上册月考试卷及答案【精选】

苏教版九年级数学上册月考试卷及答案【精选】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是( )A .2B .12C .12- D .-2 2.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2 B .2 C .−4 D .43.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .984.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1B .1C .-1或1D .1或0 6.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点7.下列图形中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D .8.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .9.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25-的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上10.如图,点A,B在双曲线y=3x(x>0)上,点C在双曲线y=1x(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A2B.2C.4 D.2二、填空题(本大题共6小题,每小题3分,共18分)19=__________.2.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_______.3.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.4.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC ,则∠ABC =__________度.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x-+=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.已知:如图,四边形ABCD 中,AD ∥BC ,AD=CD ,E 是对角线BD 上一点,且EA=EC .(1)求证:四边形ABCD 是菱形;(2)如果BE=BC ,且∠CBE :∠BCE=2:3,求证:四边形ABCD 是正方形.4.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.5.共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、D5、B6、B7、D8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、(y﹣1)2(x﹣1)2.3、04、455、406、4 9三、解答题(本大题共6小题,共72分)1、1x=2、(1)k﹥34;(2)k=2.3、(1)略;(2)略.4、(1)略;(2)2ACπ=5、(1)14;(2)166、(1)4元或6元;(2)九折.。

苏教版九年级数学上册月考考试题及答案【完美版】

苏教版九年级数学上册月考考试题及答案【完美版】

苏教版九年级数学上册月考考试题及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.下列计算正确的是( )A .a 2+a 3=a 5B .1=C .(x 2)3=x 5D .m 5÷m 3=m 24.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <5.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个6.若三点()1,4,()2,7,(),10a 在同一直线上,则a 的值等于( )A .-1B .0C .3D .47.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 2cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.81的算术平方根是____________.2.因式分解:_____________.3.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.已知关于x的一元二次方程220x x k+-=有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等实数根是a,b,求111aa b-++的值.3.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.4.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?5.为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.6.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、D5、A6、C7、A8、A9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、32、3、30°或150°.4、85、12.6、4 9三、解答题(本大题共6小题,共72分)1、4x2、(1)k>-1;(2)13、(1)略;(2)结论:四边形ACDF是矩形.理由略.4、羊圈的边长AB,BC分别是20米、20米.5、(1)120;(2)答案见解析;(3)90°;(4)16.6、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。

苏教版九年级数学上册月考测试卷及答案【完整】

苏教版九年级数学上册月考测试卷及答案【完整】

苏教版九年级数学上册月考测试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .13 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .24.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.已知二次函数224y x x =-++,则下列关于这个函数图象和性质的说法,正确的是( )A .图象的开口向上B .图象的顶点坐标是()1,3C .当1x <时,y 随x 的增大而增大D .图象与x 轴有唯一交点7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD8.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,∠=︒,3BAC90AD=,则CE的长为()A.6 B.5 C.4 D.339.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB cm=,则水的最大深度为()48A.8cm B.10cm C.16cm D.20cm二、填空题(本大题共6小题,每小题3分,共18分)1.2的相反数是__________.2.分解因式:2x+xy=_______.3.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.4.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为_________cm .5.如图,△ABC 内接于☉O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为__________.6.二次函数y =﹣x 2+bx+c 的部分图象如图所示,由图象可知,不等式﹣x 2+bx+c <0的解集为__________.三、解答题(本大题共6小题,共72分)1.解下列方程(1)232x x=- (2)214111x x x +-=--2.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.3.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.4.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.5.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、B6、C7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣22、()x x+y.3、如果两个角是等角的补角,那么它们相等.4、6.56、x<−1或x>5.三、解答题(本大题共6小题,共72分)1、(1)x=6;(2)分式方程无解.2、(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x1=x2=﹣1.3、(1)略;(2)略.4、(1)略(2)菱形5、(1)2、45、20;(2)72;(3)1 66、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)70≤x≤90.。

苏教版九年级数学上册月考考试题及答案【完整】

苏教版九年级数学上册月考考试题及答案【完整】

苏教版九年级数学上册月考考试题及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13119B .13或15C .13D .155.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A .12B .13C .23D .167.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.如图,A ,B 是反比例函数y=4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.因式分解:x 3﹣4x=_______.3.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=__________.5.如图,抛物线y=﹣x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为__________.6.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.3.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别与BC 、AC 交于点D 、E ,过点D 作DF ⊥AC 于点F .(1)若⊙O 的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF 是⊙O 的切线;(3)求证:∠EDF=∠DAC .4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表 借阅图书的次数0次 1次 2次 3次 4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、A6、B7、D8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、x(x+2)(x﹣2)3、11415、(,2)或(1,2).6、5三、解答题(本大题共6小题,共72分)1、x=﹣3.2、13、(1)阴影部分的面积为32)略;(3)略.BD=1,理由见详解.4、(1)理由见详解;(2)25、()117、20;()22次、2次;()372;()4120人.6、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。

九年级数学上学期9月月考试卷含解析苏科版2

九年级数学上学期9月月考试卷含解析苏科版2

江苏省无锡市江阴市文林中学2016-2017学年九年级(上)月考数学试卷(9月份)一、选择题1.﹣5的相反数是()A.﹣5 B.5 C.﹣ D.2.如果mn=ab,则下列比例式中错误的是()A.B.C.D.3.若⊙P的半径为5,圆心P的坐标为(﹣3,4),则平面直角坐标系的原点O与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定4.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠55.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为()A.80° B.60° C.50° D.40°6.如图,一个直角三角形ABC的斜边AB与量角器的零刻度线重合,点D对应56°,则∠BCD的度数为()A.28° B.56° C.62° D.64°7.如图,⊙O中,AB、AC是弦,O在∠BAC的内部,∠ABO=α,∠ACO=β,∠BOC=θ,则下列关系式中,正确的是()A.θ=α+β B.θ=2α+2βC.θ+α+β=180°D.θ+α+β=360°8.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=70°,连接AE,则∠AEB的度数为()A.20° B.24° C.25° D.26°9.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2 B.2+C.2 D.2+10.对于每个正整数n,设f(n)表示n(n+1)的末位数字.例如:f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字),…则f(1)+f(2)+f(3)+…+f(2012)的值为()A.6 B.4022 C.4028 D.6708二、细心填一填:(本大题共8小题,每空2分,共18分.)11.如果二次根式使有意义的x的取值范围是.12.已知线段a=8cm,c=4cm,b是a,c的比例中项,则b等于.13.若4y﹣3x=0,则= ,已知=,则= .14.关于x的方程(m+2)x+1=0为一元二次方程,则m= .15.如图,AB是半圆的直径,点C、D是半圆上两点,∠ABC=40°,则∠ADC= .16.如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴与点C,D为第一象限内⊙O上的点,若∠OCD=70°,则∠DAB= .17.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 度.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN= .三、解答题(共10题,82分)19.(16分)解方程:(1)(x﹣2)2﹣9=0;(2)2x2+3x﹣1=0.(3)(x+1)(x﹣2)=x+1(4)(x+2)(x﹣5)=1.20.(6分)先化简,再求值:(a﹣2+)÷(a2+1),其中a=﹣2.21.(6分)2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”;D类表示“不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D类部分所对应扇形的圆心角的度数为°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?22.(6分)无锡地铁一号线是贯穿无锡市区南北的一条城市快速轨道交通线路.2014年3月开始进行3个月的试运行,小张和小林准备利用课余时间,以问卷调查的方式对无锡居民的出行方式进行调查.如图是无锡地铁一号线的路线图(部分),小张和小林商量好准备从无锡火车站(A)、胜利门站(B)、三阳广场站(C)、南禅寺站(D)这四站中,各选不同的一站作为问卷调查的站点.(1)在这四站中,小张选取问卷调查的站点是南禅寺站的概率是;(2)请你用画树状图或列表法分析,求小张和小林选取问卷调查的站点正好相邻的概率.(各站点用相应的英文字母表示)23.(6分)作图探究:如图,点P是直角坐标系xOy第三象限内一点.(1)尺规作图:请在图中作出经过O、P两点且圆心在x轴的⊙M;(不写作法,保留作图痕迹)(2)若点P的坐标为(﹣4,﹣2).①请求出⊙M的半径;②填空:若Q是⊙M上的点,且∠PMQ=90°,则点Q的坐标为.24.(8分)已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?25.(6分)用工件槽(如图1)可以检测一种铁球的大小是否符合要求,已知工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图1所示的A、B、E三个接触点,该球的大小就符合要求.图2是过球心O及A、B、E三点的截面示意图,求这种铁球的直径.26.(8分)惠民”经销店为某工厂代销一种工业原料(代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨;该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨工业原料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,此时的月销售量= 吨;(2)若在“薄利多销、让利于民”的原则下,当每吨原料售价为多少时,该店的月利润为9000元;(3)每吨原料售价为多少时,该店的月利润最大,求出最大利润.27.(10分)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=8,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,求出△ABC的面积.28.(10分)在平面直角坐标系中,ABCD是正方形,且A(0,1)、B(2,0).(1)求C点的坐标.(2)将正方形ABCD沿x轴的负方向平移,在第二象限内A、C两点的对应点A′、C′正好落在某反比例函数图象上.请求出这个反比例函数的解析式与直线A′C′的解析式.(3)在(2)的条件下,直线A′C′交y轴于点E.问是否存在x轴上的点F和反比例函数图象上的点G,使得四边形CEGF是平行四边形.如果存在,请求出点F的坐标;如果不存在,请说明理由.2016-2017学年江苏省无锡市江阴市文林中学九年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题1.﹣5的相反数是()A.﹣5 B.5 C.﹣ D.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣5的相反数是5.故选:B.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.2.如果mn=ab,则下列比例式中错误的是()A.B.C.D.【考点】比例的性质.【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:A、由=得,ab=mn,故本选项错误;B、由=得,ab=mn,故本选项错误;C、由=得,bm=an,故本选项正确;D、由=得,ab=mn,故本选项错误.故选C.【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.3.若⊙P的半径为5,圆心P的坐标为(﹣3,4),则平面直角坐标系的原点O与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定【考点】点与圆的位置关系;坐标与图形性质.【分析】由勾股定理等性质算出点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:由勾股定理,得OP==5,d=r=5,原点O在⊙P上.故选:B.【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.4.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【分析】由方程有实数根可知根的判别式b2﹣4ac≥0,结合二次项的系数非零,可得出关于a一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,解得:a≥1且a≠5.故选C.【点评】本题考查了根的判别式,解题的关键是得出关于a的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.5.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为()A.80° B.60° C.50° D.40°【考点】圆周角定理.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠C=90°,又由直角三角形中两锐角互余,即可求得答案.【解答】解:∵AB是⊙O的直径,∴∠C=90°,∵∠A=40°,∴∠B=90°﹣∠A=50°.故选C.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意数形结合思想的应用,注意直径所对的圆周角是直角定理的应用.6.如图,一个直角三角形ABC的斜边AB与量角器的零刻度线重合,点D对应56°,则∠BCD的度数为()A.28° B.56° C.62° D.64°【考点】圆周角定理.【分析】由∠ACB=90°,可得△ABC是以AB为直径的外接圆的内接三角形,然后由圆周角定理,求得∠ACD的度数,继而求得答案.【解答】解:∵∠ACB=90°,∴△ABC是以AB为直径的外接圆的内接三角形,∴∠ACD=∠AOD=×56°=28°,∴∠BCD=90°﹣∠ACD=62°.故选C.【点评】此题考查了圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.如图,⊙O中,AB、AC是弦,O在∠BAC的内部,∠ABO=α,∠ACO=β,∠BOC=θ,则下列关系式中,正确的是()A.θ=α+β B.θ=2α+2βC.θ+α+β=180°D.θ+α+β=360°【考点】圆周角定理;三角形的外角性质;等腰三角形的性质.【分析】过A、O作⊙O的直径AD,分别在等腰△OAB、等腰△OAC中,根据三角形外角的性质求出θ=2α+2β.【解答】解:过A作⊙O的直径,交⊙O于D;△OAB中,OA=OB,则∠BOD=∠OBA+∠OAB=2α;同理可得:∠COD=∠OCA+∠OAC=2β;∵∠BOC=∠BOD+∠COD,∴θ=2α+2β;故选B.【点评】此题主要考查的是等腰三角形的性质及三角形的外角性质.8.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=70°,连接AE,则∠AEB的度数为()A.20° B.24° C.25° D.26°【考点】圆周角定理;平行四边形的性质.【分析】根据平行四边形的性质得到∠ABC=∠ADC=70°,再根据圆周角定理的推论由BE为⊙O的直径得到∠BAE=90°,然后根据三角形内角和定理可计算出∠AEB的度数.【解答】解:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=70°,∵BE为⊙O的直径,∴∠BAE=90°,∴∠AEB=90°﹣∠ABC=20°.故选A.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了平行四边形的性质.9.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2 B.2+C.2 D.2+【考点】一次函数综合题.【分析】过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.分别求出PD、DC,相加即可.【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,PA=2,根据勾股定理得:PE==1,∵点A在直线y=x上,∴∠AO C=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴a=PD+DC=2+.故选:B.【点评】本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键.注意函数y=x与x轴的夹角是45°.10.对于每个正整数n,设f(n)表示n(n+1)的末位数字.例如:f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字),…则f(1)+f(2)+f(3)+…+f(2012)的值为()A.6 B.4022 C.4028 D.6708【考点】规律型:数字的变化类.【分析】首先根据已知得出规律,f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字),f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,…,进而求出即可.【解答】解:∵f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字),f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,…,∴每5个数一循环,分别为2,6,2,0,0…∴2012÷5=402..2∴f(1)+f(2)+f(3)+…+f(2012)=2+6+2+0+0+2+6+2+…+2+6=402×(2+6+2)+8=4028.故选:C.【点评】此题主要考查了数字变化规律,根据已知得出数字变化以及求出f(1)+f(2)+f (3)+…+f(2012)=402×(2+6+2)+8是解题关键.二、细心填一填:(本大题共8小题,每空2分,共18分.)11.如果二次根式使有意义的x的取值范围是x≥.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数是非负数即可列不等式求解.【解答】解:根据题意得3x﹣4≥0,解得:x≥.故答案是:x≥.【点评】本题考查了二次根式有意义的条件:被开方数是非负数,正确解不等式是关键.12.已知线段a=8cm,c=4cm,b是a,c的比例中项,则b等于4.【考点】比例线段.【分析】根据比例中项得到b2=8×4,然后利用算术平方根的定义求解.【解答】解:根据题意得b2=ac,即b2=8×4,解得b1=4,b2=﹣4(舍去).所以b=4cm.故答案为4.【点评】本题考查了比例线段:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.13.若4y﹣3x=0,则= ,已知=,则= .【考点】比例的性质.【分析】根据等式的性质,可得,根据和比性质,可得答案;根据等式的性质,可得,根据和比性质,可得答案.【解答】解:由两边都加3x,得4y=3x,两边都除以3y,得=.由和比性质,得==;两边都乘以91,得7x﹣7y=13y.两边都加7y,得7x=20y,两边都除以7y,得=,由和比性质,得==,故答案为:,.【点评】本题考查了比例的性质,利用等式的性质得出是解题关键,又利用了和比性质.14.关于x的方程(m+2)x+1=0为一元二次方程,则m= 2 .【考点】一元二次方程的定义.【分析】根据一元二次方程的定义可知,最高次数为2且二次项的系数不为0,即m2﹣2=2,且m+2≠0,解出m的值即可.【解答】解:由题意可知:m2﹣2=2,∴m=±2,又∵m+2≠0,∴m≠﹣2,即m=2.故答案为:2【点评】本题考查一元二次方程的定义,要注意系数不为0,这是比较容易漏掉的条件.15.如图,AB是半圆的直径,点C、D是半圆上两点,∠ABC=40°,则∠ADC= 140°.【考点】圆周角定理.【分析】根据圆内接四边形的性质解答即可.【解答】解:∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,又∠ABC=40°,∴∠ADC=140°,故答案为:140°.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形对角互补是解题的关键.16.如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴与点C,D为第一象限内⊙O上的点,若∠OCD=70°,则∠DAB= 25°.【考点】圆周角定理;坐标与图形性质.【分析】根据圆周角定理求出∠DOB,根据等腰三角形性质求出∠OCD=∠ODC,根据三角形内角和定理求出即可.【解答】解:连接OD,∵∠OCD=70°,OD=OC,∴∠CDO=∠OCD=70°,∴∠COD=180°﹣140°=40°,∴∠DOB=90°﹣40°=50°,∴∠DAB=∠DOB=25°,故答案为:25°.【点评】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中.17.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 60 度.【考点】圆周角定理;平行四边形的性质.【分析】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD+∠OCD的度数.【解答】解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60.【点评】此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN= .【考点】垂径定理;含30度角的直角三角形;勾股定理.【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.【解答】解:如图,延长ME交⊙O于G,∵E、F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=6,∴OE=OA﹣AE=×6﹣×6=3﹣2=1,OM=×6=3,∵∠MEB=60°,∴OH=OE•sin60°=1×=,在Rt△MOH中,MH===,根据垂径定理,MG=2MH=2×=,即EM+FN=.故答案为:.【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.三、解答题(共10题,82分)19.(16分)(2016秋•江阴市校级月考)解方程:(1)(x﹣2)2﹣9=0;(2)2x2+3x﹣1=0.(3)(x+1)(x﹣2)=x+1(4)(x+2)(x﹣5)=1.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)求出b2﹣4ac的值,再代入公式求出即可;(3)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(4)整理后求出b2﹣4ac的值,再代入公式求出即可.【解答】解:(1)(x﹣2)2﹣9=0,(x﹣2+3)(x﹣2﹣3)=0,x﹣2+3=0,x﹣2﹣3=0,x1=﹣1,x2=5;(2)2x2+3x﹣1=0,b2﹣4ac=32﹣4×2×(﹣1)=17,x=,x1=,x2=;(3)(x+1)(x﹣2)=x+1,(x+1)(x﹣2)﹣(x+1)=0,(x+1)(x﹣2﹣1)=0,x+1=0,x﹣2﹣1=0,x1=﹣1,x2=3;(4)(x+2)(x﹣5)=1,整理得:x2﹣3x﹣11=0,b2﹣4ac=(﹣3)2﹣4×1×(﹣11)=53,x=,x1=,x2=.【点评】本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解此题的关键.20.先化简,再求值:(a﹣2+)÷(a2+1),其中a=﹣2.【考点】分式的化简求值.【分析】首先对括号内的式子通分相加,把除法转化成乘法,即可对分式进行化简,然后把a的值代入即可求解.【解答】解:原式=[+]•=•=当a=﹣2时,原式==.【点评】本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.21.2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”;D类表示“不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了200 名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D类部分所对应扇形的圆心角的度数为36 °;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由图①知A类人数30,由图②知A类人数占15%,即可求出样本容量;(2)由(1)可知抽查的人数,根据图②知C类人数占30%,求出C类人数,即可将条形统计图补充完整;(3)求出D类的百分数,即可求出圆心角的度数;(4)求出B类所占的百分数,可知A、B类共占的百分数,用样本估计总体的思想计算即可.【解答】解:(1)30÷15%=200,故答案为:200;(2)200×30%=60,如图所示,(3)20÷200=0.1=10%,360°×10%=36°,故答案为:36;(4)B类所占的百分数为:90÷200=45%,该校初中学生中对二战历史“非常了解”和“比较了解”的学生共占15%+45%=60%;故这所学校共有初中学生1500名,该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有:1500×60%=900(名).【点评】此题考查了扇形统计图和频数(率)分布表,关键是正确从扇形统计图和表中得到所用的信息.22.无锡地铁一号线是贯穿无锡市区南北的一条城市快速轨道交通线路.2014年3月开始进行3个月的试运行,小张和小林准备利用课余时间,以问卷调查的方式对无锡居民的出行方式进行调查.如图是无锡地铁一号线的路线图(部分),小张和小林商量好准备从无锡火车站(A)、胜利门站(B)、三阳广场站(C)、南禅寺站(D)这四站中,各选不同的一站作为问卷调查的站点.(1)在这四站中,小张选取问卷调查的站点是南禅寺站的概率是;(2)请你用画树状图或列表法分析,求小张和小林选取问卷调查的站点正好相邻的概率.(各站点用相应的英文字母表示)【考点】列表法与树状图法.【分析】(1)由共有4个站,选取每个站都是等可能的,小张选取问卷调查的站点是南禅寺站的只有1种情况,然后根据概率公式求解即可;(2)首先列表,然后由表格求得所有等可能的结果与小张和小林选取问卷调查的站点相邻的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵共有4个站,选取每个站都是等可能的,小张选取问卷调查的站点是南禅寺站只有1种情况,∴在这四站中,小张随机选取的站是南禅寺站点的概率是;(2)列表得∴共有16种可能出现的结果,每种结果出现的可能性相同,其中小张和小林选取问卷调查的站点正好相邻的结果有6种:(A,B),(B,A),(B,C),(C,B),(C,D),(D,C),∴小张和小林选取问卷调查的站点正好相邻的概率为=.故答案为.【点评】此题考查了列表法与树状图法求概率.注意用列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.23.作图探究:如图,点P是直角坐标系xOy第三象限内一点.(1)尺规作图:请在图中作出经过O、P两点且圆心在x轴的⊙M;(不写作法,保留作图痕迹)(2)若点P的坐标为(﹣4,﹣2).①请求出⊙M的半径;②填空:若Q是⊙M上的点,且∠PMQ=90°,则点Q的坐标为(﹣,)或(﹣,﹣).【考点】垂径定理;一次函数综合题;勾股定理;作图—复杂作图.【分析】(1)连接OP,作OP的垂直平分线交x轴于M点,以MO我半径作⊙M,即为所求;(2)①连接PM,作PH⊥x轴,垂足为H,设⊙O的半径为r,则PM=MO=r,MH=4﹣r,PH=2,在Rt△PHM中,由勾股定理求r即可;②过M点作PM的垂线,交⊙M于Q1,Q2,再过Q1,Q2,作x轴的垂线,利用三角形全等求Q 点坐标.【解答】解:(1)⊙M如图所示;(2)①连接PM,作PH⊥x轴,垂足为H,设⊙O的半径为r,则PM=MO=r,MH=4﹣r,PH=2,在Rt△PHM中,PH2+MH2=PM2,即22+(4﹣r)2=r2,解得r=;②如图,过M点作PM的垂线,交⊙M于Q1,Q2,再过Q1,Q2,作x轴的垂线,垂足为N1,N2,利用互余关系,PM=Q1M=Q2M,可证Rt△PMH≌Rt△Q1MN1≌Rt△Q2MN2,∴PH=MN1=MN2=2,MH=Q1N1=Q2N2=4﹣r=,∴Q(﹣,)或(﹣,﹣).故答案为:(﹣,)或(﹣,﹣).【点评】本题考查了垂径定理,勾股定理,尺规作图的知识.关键是将问题转化到直角三角形中,利用勾股定理,全等三角形解题.24.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【考点】一元二次方程的应用;平行四边形的性质;菱形的性质.【分析】(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.【点评】综合考查了平行四边形及菱形的有关性质;利用解一元二次方程得到两种图形的边长是解决本题的关键.25.用工件槽(如图1)可以检测一种铁球的大小是否符合要求,已知工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图1所示的A、B、E三个接触点,该球的大小就符合要求.图2是过球心O及A、B、E三点的截面示意图,求这种铁球的直径.【考点】垂径定理的应用;勾股定理.【分析】AB可看作圆内的弦,CD是圆的切线.连接圆心和切点,作出半径来构成直角三角形求解.【解答】解:连接OA、OE,设OE与AB交于点P,如图∵AC=BD,AC⊥CD,BD⊥CD∴四边形ACDB是矩形∵CD=16cm,PE=4cm∴PA=8cm,BP=8cm,在Rt△OAP中,由勾股定理得OA2=PA2+OP2即OA2=82+(OA﹣4)2解得:OA=10.答:这种铁球的直径为20cm.【点评】本题考查常用的辅助线作法:连接圆心与切点,作出半径来构成直角三角形求解.建模是关键.26.惠民”经销店为某工厂代销一种工业原料(代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨;该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨工业原料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,此时的月销售量= 60 吨;(2)若在“薄利多销、让利于民”的原则下,当每吨原料售价为多少时,该店的月利润为9000元;(3)每吨原料售价为多少时,该店的月利润最大,求出最大利润.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)下降了20元,则月销售量增加了2个7.5吨,所以45+15=60吨;(2)先设每吨原料售价为x元时,该店的月利润为9000元,根据等量关系式:(售价﹣费用)(45+增加的销售量)=9000列方程解出即可,并根据“薄利多销、让利于民”的原则进行取舍;(3)设当每吨原料售价为x元时,月利润为W元,根据(2)问得:W=(x﹣100)(45+×7.5),化成一般形式并配方,求最值即可.【解答】解:(1)45+×7.5=60(吨),则当每吨售价是240元时,此时的月销售量为60吨;故答案为:60;(2)设当每吨原料售价为x元时,该店的月利润为9000元,由题意得:(x﹣100)(45+×7.5)=900,整理后:x2﹣420x+44000=0,x1=200,x2=220,根据“薄利多销、让利于民”的原则,x应取200元,当每吨原料售价为200元,该店的月利润为9000元;(3)设当每吨原料售价为x元时,月利润为W元,W=(x﹣100)(45+×7.5),=﹣(x﹣210)2+9075,因为﹣<0,所以W有最大值,当x=210时,月利润W最大,为9075元.【点评】本题二次函数和一元二次方程的应用,属于销售利润问题,明确总利润=单件的利润×销售的数量,其中单件的利润=售价﹣进价;是常考题型;此类题所求的最值问题一般都转化为二次函数的顶点坐标问题,通常采用配方法化成顶点式写出即可,也可以利用顶点坐标公式代入计算解决.27.(10分)(2016秋•江阴市校级月考)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学(上)月考试卷(9月份)一、选择题(本题共有6小题,每小题3分,共18分.)1.下列各组数中,成比例的是()A.﹣7,﹣5,14,5 B.﹣6,﹣8,3,4 C.3,5,9,12 D.2,3,6,122.在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C的度数为()A.30°B.45°C.60°D.75°3.下列关于x的方程中一定有实数根的是()A.x2﹣x+2=0 B.x2+x﹣2=0 C.x2+x+2=0 D.x2+1=04.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A.0.5m B.0.55m C.0.6m D.2.2m5.某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x,则有()A.500(1+x2)=720; B.500(1+x)2=720; C.500(1+2x)=720 D.720(1+x)2=5006.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()A.B.2C.2 D.1二、填空题(本题共有10小题,每小题3分,共30分.)7.如果=,那么的值为___________.8.在Rt△ABC中,∠C=90°,a=5,b=5,则∠A=___________.9.在一张比例尺为1:50000的地图上,如果一块多边形地的面积是320cm2,那么这块地的实际面积是___________cm2(用科学记数法表示).10.已知(a2+b2)2﹣(a2+b2)﹣6=0,则a2+b2=___________.11.已知关于x的一元二次方程(m﹣1)x2+x﹣1=0有实数根,则m的取值范围是___________.12.如图,已知两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3把线段AB缩小,则点A的对应点坐标是___________.13.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=___________.14.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD 相交于点P,则tan∠APD的值是___________.15.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿直线AD折叠后,点C落在E处,连接BE,若BE=4,则BC长=___________.16.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM=___________时,△AED与以M,N,C为顶点的三角形相似.三、解答题(本大题共有10小题,共102分)17.①计算:()﹣1﹣4sin60°++(3﹣π)0;②解方程:2x2﹣4x=1(用配方法)18.先化简,再求值:,其中a满足方程a2+4a+1=0.19.关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?20.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为___________,点C的坐标为___________.(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为___________.(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1:2.请在网格内画出△A2B2C2,并写出点A2的坐标:___________.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?24.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.①当t为何值时,DP⊥AC?②设S△APQ+S△DCQ=y,写出y与t之间的函数解析式,并探究P点运动到第几秒到第几秒之间时,y取得最小值.25.如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.26.在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N.动点P从点B出发沿射线BA以每秒厘米的速度运动.同时,动点Q从点N出发沿射线NC运动,且始终保持MQ⊥MP 设运动时间为t秒(t>0).(1)△PBM与△QNM相似吗?以图1为例说明理由;(2)探求BP2,PQ2,CQ2三者之间的数量关系,以图1为例说明理由.参考答案与试题解析一、选择题(本题共有6小题,每小题3分,共18分.)1.下列各组数中,成比例的是()A.﹣7,﹣5,14,5 B.﹣6,﹣8,3,4 C.3,5,9,12 D.2,3,6,12【考点】比例的性质.【专题】计算题.【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.【解答】解:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.答案中,只有B中,3×(﹣8)=﹣6×4,故选B.【点评】理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.本题要用绝对值最小的和最大的相乘,另外两条相乘.2.在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C的度数为()A.30°B.45°C.60°D.75°【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求出tanA及cosB的值,再根据特殊角的三角函数值求出∠A及∠B的值,根据三角形内角和定理即可得出结论.【解答】解:∵(tanA﹣)2+|﹣cosB|=0,∴tanA﹣=0,﹣cosB=0,∴tanA=,cosB=,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=75°,故选B.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.3.下列关于x的方程中一定有实数根的是()A.x2﹣x+2=0 B.x2+x﹣2=0C.x2+x+2=0 D.x2+1=0【考点】根的判别式.【专题】计算题.【分析】根据根的判别式△=b2﹣4ac的值的符号就可以判断下列方程有无实数解.【解答】解:A、△=1﹣8=﹣7<0,所以没有实数解,故本选项错误;B、△=1+8=9>0,所以有实数解,故本选项正确;C、△=1﹣8=﹣7<0,原方程没有实数解;故本选项错误;D、△=0﹣4=﹣4<0,原方程有实数解,故本选项正确.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根;也考查了一元二次方程的定义.4.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A.0.5m B.0.55m C.0.6m D.2.2m【考点】相似三角形的应用;比例的性质.【专题】应用题.【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【解答】解:设小刚举起的手臂超出头顶是xm根据同一时刻物高与影长成比例,得,x=0.5.故选:A.【点评】能够根据同一时刻物高与影长成比例,列出正确的比例式,然后根据比例的基本性质进行求解.5.某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x,则有()A.500(1+x2)=720 B.500(1+x)2=720 C.500(1+2x)=720 D.720(1+x)2=500【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】由于某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x,那么二、三月份分别生产500(1+x)吨、500(1+x)2,由此即可列出方程.【解答】解:依题意得500(1+x)2=720.故选B.【点评】此题主要考查了一元二次方程的应用,是增长率的问题,解题的关键利用了增长率的公式a(1+x)2=b.6.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()A.B.2C.2 D.1【考点】正方形的性质.【专题】压轴题.【分析】根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.【解答】解:∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,∴∠ADB=∠CGE=45°,∴∠GDT=180°﹣90°﹣45°=45°,∴∠DTG=180°﹣∠GDT﹣∠CGE=180°﹣45°﹣45°=90°,∴△DGT是等腰直角三角形,∵两正方形的边长分别为4,8,∴DG=8﹣4=4,∴GT=×4=2.故选B.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等腰直角三角形的判定与性质.二、填空题(本题共有10小题,每小题3分,共30分.)7.如果=,那么的值为.【考点】比例的性质.【分析】根据两內项之积等于两外项之积列式整理即可得解.【解答】解:∵=,∴5x=3(x+y),∴2x=3y,∴=.故答案为:.【点评】本题考查了比例的性质,熟记两內项之积等于两外项之积是解题的关键.8.在Rt△ABC中,∠C=90°,a=5,b=5,则∠A=30°.【考点】特殊角的三角函数值.【分析】直接根据特殊角的三角函数值即可得出结论.【解答】解:∵在Rt△ABC中,∠C=90°,a=5,b=5,∴tan∠A==,∴∠A=30°.故答案为:30°.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.9.在一张比例尺为1:50000的地图上,如果一块多边形地的面积是320cm2,那么这块地的实际面积是8×1011cm2(用科学记数法表示).【考点】比例线段.【分析】相似多边形的面积之比等于相似比的平方,据此求解,注意单位.【解答】解:设这个地区的实际面积是xcm2,由题意得,320:x=(1:50000)2,解得,x=8×1011,故答案是:8×1011【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.10.已知(a2+b2)2﹣(a2+b2)﹣6=0,则a2+b2=3.【考点】换元法解一元二次方程.【分析】将a2+b2看作一个整体,然后用未知数表示出a2+b2,通过解所得的一元二次方程即可求出a2+b2的值.【解答】解:设a2+b2=x,则有:x2﹣x﹣6=0,解得x1=3,x2=﹣2;由于a2+b2≥0,故a2+b2=x1=3.【点评】换元法就是解题过程中把某个式子看作一个整体,用一个字母去代替它,实行等量替换.这样做,常能使问题化繁为简,化难为易,形象直观.11.已知关于x的一元二次方程(m﹣1)x2+x﹣1=0有实数根,则m的取值范围是m≥且m≠1.【考点】根的判别式.【专题】计算题.【分析】根据一元二次方程的定义以及△的意义得到m﹣1≠0且△≥0,即12﹣4(m﹣1)×(﹣1)≥0,然后解两个不等式求出它们的公共部分即可得到m的取值范围.【解答】解:∵关于x的一元二次方程(m﹣1)x2+x﹣1=0有实数根,∴m﹣1≠0且△≥0,即12﹣4(m﹣1)×(﹣1)≥0,∴m≥且m≠1.故答案为m≥且m≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个,相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.12.如图,已知两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3把线段AB缩小,则点A的对应点坐标是(2,1)或(﹣2,﹣1).【考点】位似变换;坐标与图形性质.【分析】易得线段AB垂直于x轴,根据所给相似比把各坐标都除以3或﹣3即可.【解答】解:如图所示:∵A(6,3),B(6,0)两点,以坐标原点O为位似中心,相似比为,∴A′、A″的坐标分别是A′(2,1),A″((﹣2,﹣1).故答案为:(2,1)或(﹣2,﹣1).【点评】此题主要考查了位似图形变换,用到的知识点为:各点到位似中心的距离比也等于相似比.13.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=8.【考点】根与系数的关系;一元二次方程的解.【专题】常规题型.【分析】根据m+n=﹣=﹣2,m•n=﹣5,直接求出m、n即可解题.【解答】解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m2+2m﹣5=0∴m2=5﹣2mm2﹣mn+3m+n=(5﹣2m)﹣(﹣5)+3m+n=10+m+n=10﹣2=8故答案为:8.【点评】此题主要考查了一元二次方程根根的计算公式,根据题意得出m和n的值是解决问题的关键.14.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD 相交于点P,则tan∠APD的值是2.【考点】相似三角形的判定与性质;勾股定理;锐角三角函数的定义.【专题】几何图形问题.【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:2,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.【解答】解:如图,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==2,∵∠APD=∠BPF,∴tan∠APD=2.故答案为:2.【点评】此题考查了相似三角形的判定与性质与三角函数的定义.此题难度适中,解题的关键准确作出辅助线,注意转化思想与数形结合思想的应用.15.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿直线AD折叠后,点C落在E处,连接BE,若BE=4,则BC长=4.【考点】翻折变换(折叠问题).【分析】根据题意可知DE为BC的垂直平分线,由翻折的性质可知:CD=DE,故此BD=DE,在Rt△BDE 中,利用特殊锐角三角函数值可求得BD的长,然后可求得BC的长.【解答】解:∵AD是△ABC的中线,∴BD=C D.由翻折的性质可知:∠EDA=∠ADC=45°,CD=DE.∴∠BDE=90°,BD=DE.∴BD=sin45°BE==2.∴BC=2BD=2×2=4.故答案为:4.【点评】本题主要考查的是翻折的性质、证得△BDE为等腰直角三角形的是解题的关键.16.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM=或时,△AED与以M,N,C为顶点的三角形相似.【考点】相似三角形的判定与性质;正方形的性质.【专题】动点型.【分析】根据题意不难确定Rt△AED的两直角边AD=2AE.再根据相似的性质及变化,可考虑Rt△MCN的两直角边MC、NC间的关系满足是或2倍.求得CM的长.【解答】解:设CM的长为x.在Rt△MNC中∵MN=1,∴NC=,①当Rt△AED∽Rt△CMN时,则,即,解得x=或x=(不合题意,舍去),②当Rt△AED∽Rt△CNM时,则,即,解得x=或(不合题意,舍去),综上所述,当CM=或时,△AED与以M,N,C为顶点的三角形相似.故答案为:或.【点评】本题考查相似三角形的判定与性质、正方形的性质.解决本题特别要考虑到①当Rt△AED∽Rt △CMN时②当Rt△AED∽Rt△CNM时这两种情况.三、解答题(本大题共有10小题,共102分)17.①计算:()﹣1﹣4sin60°++(3﹣π)0;②解方程:2x2﹣4x=1(用配方法)【考点】实数的运算;零指数幂;负整数指数幂;解一元二次方程-配方法;特殊角的三角函数值.【专题】计算题.【分析】①原式第一项利用负整数指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项化为最简二次根式,最后一项利用零指数幂法则计算即可得到结果;②方程整理后,利用完全平方公式配方后,开方即可求出解.【解答】解:①原式=2﹣4×+3+1=3+;②方程整理得:x2﹣2x=,配方得:x2﹣2x+1=,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题考查了实数的运算,以及解一元二次方程﹣配方法,熟练掌握运算法则是解本题的关键.18.先化简,再求值:,其中a满足方程a2+4a+1=0.【考点】分式的化简求值.【专题】计算题.【分析】把原式括号里的第二项提取﹣1,然后把原式的各项分子分母都分解因式,找出括号里两项分母的最简公分母,利用分式的基本性质对括号里两项进行通分,然后利用同分母分式的减法运算法则:分母不变,只把分子相减,计算出结果,然后利用分式的除法法则:除以一个数等于乘以这个数的倒数,变形为乘法运算,约分后即可把原式化为最简分式,把a满足的方程变形后,代入原式化简后的式子中即可求出值.【解答】解:原式=====,(6分)∵a2+4a+1=0,∴a2+4a=﹣1,∴原式=.(10分)【点评】此题考查了分式的混合运算,以及多项式的运算.分式的化简求值题,应先对原式的分子分母分解因式,在分式的化简运算中,要通观全局,弄清有哪些运算,然后观察能否用法则,定律,分解因式及公式来简化运算,同时注意运算的结果要化到最简,然后再代值计算.19.(10分)(2013•南充)关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?【考点】解一元二次方程-公式法;一元二次方程的解.【分析】(1)利用求根公式x=解方程;(2)利用(1)中x的值来确定m的值.【解答】解:(1)根据题意,得m≠1.∵a=m﹣1,b=﹣2m,c=m+1,∴△=b2﹣4ac=(﹣2m)2﹣4(m﹣1)(m+1)=4,则x1==,x2=1;(2)由(1)知,x1==1+,∵方程的两个根都为正整数,∴是正整数,∴m﹣1=1或m﹣1=2,解得m=2或3.即m为2或3时,此方程的两个根都为正整数.【点评】本题考查了公式法解一元二次方程.要会熟练运用公式法求得一元二次方程的解.20.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.【考点】解直角三角形.【专题】计算题.【分析】根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.【解答】解:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sinC==.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为(2,8),点C的坐标为(6,6).(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为(a﹣7,b).(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1:2.请在网格内画出△A2B2C2,并写出点A2的坐标:(1,4)或(﹣1,﹣4).【考点】作图-位似变换;点的坐标;坐标与图形变化-平移.【专题】作图题.【分析】(1)直接根据图形即可写出点A和C的坐标;(2)找出三角形平移后各顶点的对应点,然后顺次连接即可;根据平移的规律即可写出点M平移后的坐标;(3)根据位似变换的要求,找出变换后的对应点,然后顺次连接各点即可,注意有两种情况.【解答】解:(1)A点坐标为:(2,8),C点坐标为:(6,6);(2)所画图形如下所示,其中△A1B1C1即为所求,根据平移规律:左平移7个单位,可知M1的坐标(a ﹣7,b);(3)所画图形如下所示,其中△A2B2C2即为所求,点A2的坐标为(1,4)或(﹣1,﹣4).【点评】本题考查了旋转变换和位似变换后图形的画法,解题关键是根据变换要求找出变换后的对应点,难度一般.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?【考点】相似三角形的应用.【专题】应用题.【分析】如图,由于AC∥BD∥OP,故有△MAC∽△MOP,△NBD∽△NOP即可由相似三角形的性质求解.【解答】解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.【点评】解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解答问题.23.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)根据“销售单价每涨2元,月销售量就减少20千克”,可知:月销售量=500﹣(销售单价﹣50)×.由此可得出售价为55元/千克时的月销售量,然后根据利润=每千克的利润×销售的数量来求出月销售利润;(2)销售成本不超过10000元,即进货不超过10000÷40=250kg.根据利润表达式求出当利润是8000时的售价,从而计算销售量,与进货量比较得结论.【解答】解:(1)当销售单价定为每千克55元时,月销售量为:500﹣(55﹣50)×10=450(千克),所以月销售利润为:(55﹣40)×450=6750元;(2)由于水产品不超过10000÷40=250kg,定价为x元,则(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=80,x2=60.当x1=80时,进货500﹣10(80﹣50)=200kg<250kg,符合题意,当x2=60时,进货500﹣10(60﹣50)=400kg>250kg,舍去.答:商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为80元.【点评】本题主要考查了一元二次方程的应用,能正确表示出月销售量是解题的关键.24.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.①当t为何值时,DP⊥AC?②设S△APQ+S△DCQ=y,写出y与t之间的函数解析式,并探究P点运动到第几秒到第几秒之间时,y取得最小值.【考点】相似形综合题.【专题】压轴题;探究型.【分析】(1)求证相似,证两对角相等即可,由平行线的性质容易得出角相等.(2)①当垂直时,易得三角形相似,故有相似边成比例,由题中已知矩形边长,AP长已知,故t易知.②因为S△APQ+S△DCQ=y,故求S△APQ和S△DCQ是解决问题的关键,观察无固定组合规则图象,则考虑作高分别求取.考虑两高在同一直线上,且相加恰为10,故可由(1)相似结论得,高的比等于对应边长比,设其中一高为h,即可求得,则易表示y=,注意要考虑t的取值.讨论何时y最小,y=不是我们学过的函数类型,故无法用最值性质来讨论,观察题目问法“探究P点运动到第几秒到第几秒之间时”,<1>并不是我们常规的在确定时间最小,<2>时间为整数秒.故可考虑将所有可能的秒全部算出,再观察数据探究函数的变化找结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠QPA=∠QDC,∠QAP=∠QCD,∴△APQ∽△CDQ.(2)解:①当DP⊥AC时,∠QCD+∠QDC=90°,∵∠ADQ+∠QDC=90°,∴∠DCA=∠ADP,∵∠ADC=∠DAP=90°,∴△ADC∽△PAD,∴=,∴,解得PA=5,∴t=5.②设△AQP的边AP上的高h,则△QDC的边DC上的高为(10﹣h).∵△APQ∽△CDQ,∴==,解得h=,∴10﹣h=,∴S△APQ==,S△DCQ==,∴y=S△APQ+S△DCQ=+=(0≤t≤20).探究:t=0,y=100;t=1,y≈95.48;t=2,y≈91.82;t=3,y≈88.91;t=4,y≈86.67;t=5,y=85;t=6,y≈83.85;t=7,y≈83.15;t=8,y≈82.86;t=9,y≈82.93;t=10,y≈83.33;t=11,y≈84.03;t=12,y=85;t=13,y≈86.21;t=14,y≈87.65;t=15,y≈89.29;t=16,y≈91.11;t=17,y≈93.11;t=18,y≈95.26;t=19,y≈97.56;t=20,y=100;观察数据知:当0≤t≤8时,y随t的增大而减小;当9≤t≤20时,y随t的增大而增大;故y在第8秒到第9秒之间取得最小值.【点评】本题主要考查了三角形相似及相似图形性质等问题,(2)②是一道非常新颖的考点,它考察了考生对函数本身的理解,作为未知函数类型如何探索其变化趋势是非常需要学生能力的.总体来说,本题是一道非常好、非常新的题目.25.如图,在直角梯形OABC 中,BC ∥AO ,∠AOC =90°,点A ,B 的坐标分别为(5,0),(2,6),点D 为AB 上一点,且BD =2AD ,双曲线y =(k >0)经过点D ,交BC 于点E .(1)求双曲线的解析式;(2)求四边形ODBE 的面积.【考点】反比例函数综合题.【专题】综合题.【分析】(1)作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,利用点A ,B 的坐标得到BC =OM =2,BM =OC =6,AM =3,再证明△ADN ∽△ABM ,利用相似比可计算出DN =2,AN =1,则ON =OA ﹣AN =4,得到D 点坐标为(4,2),然后把D 点坐标代入y =中求出k 的值即可得到反比例函数解析式;(2)根据反比例函数k 的几何意义和S 四边形ODBE =S 梯形OABC ﹣S △OCE ﹣S △OAD 进行计算.【解答】解:(1)作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,如图,∵点A ,B 的坐标分别为(5,0),(2,6),∴BC =OM =2,BM =OC =6,AM =3,∵DN ∥BM ,∴△ADN ∽△ABM ,∴==,即==,∴DN =2,AN =1,∴ON =OA ﹣AN =4,∴D 点坐标为(4,2),把D (4,2)代入y =得k =2×4=8,∴反比例函数解析式为y =;(2)S 四边形ODBE =S 梯形OABC ﹣S △OCE ﹣S △OAD=×(2+5)×6﹣×|8|﹣×5×2=12.【点评】本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.26.在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N.动点P从点B出发沿射线BA以每秒厘米的速度运动.同时,动点Q从点N出发沿射线NC运动,且始终保持MQ⊥MP 设运动时间为t秒(t>0).(1)△PBM与△QNM相似吗?以图1为例说明理由;(2)探求BP2,PQ2,CQ2三者之间的数量关系,以图1为例说明理由.【考点】相似三角形的判定与性质;勾股定理.【分析】(1)通过垂直的定义、直角三角形中的两个锐角互余以及等量代换,可以证得△PBM与△QNM 中的两个角对应相等,所以这两个三角形一定相似;(2)PQ2=BP2+CQ2.作辅助线延长QM至点D,使MD=MQ.连接PD、BD构建平行四边形BDCQ.根据平行四边形的对边平行且相等推知BD∥CQ,BD=CQ;然后在直角三角形BPD中利用勾股定理求得PD2=BP2+BD2=BP2+CQ2;最后利用线段垂直平分线的性质知PQ=PD,所以由等量代换证得该结论.【解答】解:(1)△PBM∽△QNM.理由如下:如图1,∵MQ⊥MP,MN⊥BC(已知),∴∠PMB+∠PMN=90°,∠QMN+∠PMN=90°,∴∠PMB=∠QMN(等量代换).∵∠PBM+∠C=90°(直角三角形的两个锐角互余),∠QNM+∠C=90°(直角三角形的两个锐角互余),∴∠PBM=∠QNM(等量代换).∴△PBM∽△QNM;(2)PQ2=BP2+CQ2.证明如下:如图1,延长QM至点D,使MD=MQ.连接PD、BD,BQ,CD∵BC、DQ互相平分,∴四边形BDCQ为平行四边形,∴BD∥CQ,BD=CQ(平行四边形的对边平行且相等);又∵∠BAC=90°,∴∠PBD=90°,∴PD2=BP2+BD2=BP2+CQ2,∵PM垂直平分DQ,∴PQ=PD,∴PQ2=BP2+CQ2.【点评】本题考查了相似三角形的判定与性质,以及勾股定理的综合应用,解题的关键是熟练掌握垂直的定义、直角三角形中的两个锐角互余,相似三角形的判定与性质,平行四边形的性质,勾股定理,线段垂直平分线的性质等知识点,综合性较强,难度较大.。

相关文档
最新文档