高二理科数学试题
高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I卷选择题(共12小题,每小题5分,共60分)1.下列复数中,与5-2i共轭的是()。
A。
5+2i B。
5-2i C。
-5+2i D。
-5-2i2.已知f(x)=3x·sinx,则f'(1)=()。
A。
1/3+cos1 B。
11/3sin1+cos1 C。
3sin1-cos1 D。
sin1+cos13.设a∈R,函数f(x)=ex-ae-x的导函数为f'(x),且f'(x)是奇函数,则a为()。
A。
0 B。
1 C。
2 D。
-14.定积分∫1x(2x-e)dx的值为()。
A。
2-e B。
-e C。
e D。
2+e5.利用数学归纳法证明不等式1+1/2+1/3+…+1/(2n-1)<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了()项。
A。
1项 B。
k项 C。
2k-1项 D。
2k项6.由直线y=x-4,曲线y=2x以及x轴所围成的图形面积为()。
A。
40/3 B。
13 C。
25/2 D。
157.函数f(x)=x^3-ax^2-bx+a^2在x=1处有极值10,则点(a,b)为()。
A。
(3,-3) B。
(-4,11) C。
(3,-3)或(-4,11) D。
不存在8.函数f(x)=x^2-2lnx的单调减区间是()。
A。
(0,1] B。
[1,+∞) C。
(-∞,-1]∪(0,1] D。
[-1,0)∪(0,1]9.已知f(x+1)=2f(x)/(f(x)+2),f(1)=1(x∈N*),猜想f(x)的表达式是()。
A。
f(x)=4/(2x+2) B。
f(x)=2^(12/(x+1)) C。
f(x)=(x+1)/2 D。
f(x)=(2x+1)/210.若f(x)=-1/(2x^2+bln(x+2))在(-1,+∞)上是减函数,则b的取值范围是()。
A。
[-1,+∞) B。
(-1,+∞) C。
高二理科数学上学期期末原创卷02(人教必修2+选修2-1)

高二理科数学(考试时间:120分钟 试卷满分:150分)第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.对于命题:p x ∃∈R ,使得210x x ++<,则p ⌝是 A .:p x ⌝∀∈R ,210x x ++> B .:p x ⌝∃∈R ,210x x ++≠ C .:p x ⌝∀∈R ,210x x ++≥D .:p x ⌝∃∈R ,210x x ++<2.已知点(1,2,1)A -,点C 与点A 关于平面xOy 对称,点B 与点A 关于x 轴对称,则||BC =A .B .C .D .43.过点(2,0)且与直线230x y -+=垂直的直线方程是 A .220x y --= B .220x y +-= C .240x y +-= D .220x y +-=4.已知双曲线22116y x m-=的离心率为2,则双曲线的渐近线方程为A .y x =B .y x =C .y =D .y =5.若,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是A .若,m αββ⊥⊥,则//m αB .若//,m n m α⊥,则n α⊥C .若//,//,,m n m n ααββ⊂⊂,则//αβD .若m ∥β,m ⊂α,α⋂β=n ,则//m n 6.设x ∈R ,若“2)og (l 11x -<”是“221x m >-”的充分不必要条件,则实数m 的取值范围是A .[B .(1,1)-C .(D .[1,1]-7.若圆C 的半径为2,圆心在x 轴的正半轴上,直线3440x y ++=与圆C 相切,则圆C 的方程为 A .22230x y x +--= B .2240x y x ++= C .2240x y x +-=D .22230x y x ++-=8.已知F 是椭圆C :22195x y +=的左焦点,P 为C 上一点,4(1,)3A ,则||||PA PF +的最小值为 A .10B .11C .4 D .139.某几何体的三视图如图所示,其中,正视图中的曲线为圆弧,则该几何体的体积为A .4π643-B .64-4πC .64-6πD .64-8π10.已知直线3y kx =+与圆22(2)(3)4x y -+-=相交于M N 、两点,若||MN ≥k 的取值范围是A .3[,0]4-B .3(,][0,)4-∞-+∞C .[D .2[,0]3-11.如图,在直三棱柱111ABC A B C -中,∠BAC =90°,AB =AC =2,AA 1,则AA 1与平面AB 1C 1所成的角为A .π6B .π4C .π3D .π212.已知抛物线22(0)y px p =>的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|||AK AF =,则AFK △的面积为A .4B .8C .16D .32第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.命题“若实数a 、b 满足5a b +≤,则2a ≤或3b ≤”是________命题(填“真”或“假”).14.若1a >,则双曲线22213x y a -=的离心率的取值范围是___________. 15.已知四棱锥-P ABCD 的顶点都在球O 的球面上,底面ABCD 是边长为2的正方形,且PA ⊥平面ABCD ,四棱锥-P ABCD 的体积为163,则该球的体积为___________. 16.若直线:10l ax by ++=始终平分圆22:4210M x y x y ++++=的周长,则22(2)(2)a b -+-的最小值为___________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知命题p :二次函数2()76f x x x =-+在区间[,)m +∞上是增函数;命题q :双曲线22141x y m m -=--的离心率的取值范围是)+∞.(1)分别求命题p ,命题q 均为真命题时,m 的取值范围;(2)若“p 且q ” 是假命题,“p 或q ”是真命题,求实数m 的取值范围.18.(本小题满分12分)已知圆C 经过原点O (0,0)且与直线y =2x ﹣8相切于点P (4,0). (1)求圆C 的方程;(2)已知直线l 经过点(4, 5),且与圆C 相交于M ,N 两点,若|MN|=2,求出直线l 的方程. 19.(本小题满分12分)已知直线:2l y x b =+与抛物线21:2C y x =. (1)若直线与抛物线相切,求实数b 的值.(2)若直线与抛物线相交于A 、B 两点,且|AB |=10,求实数b 的值.20.(本小题满分12分)在平面直角坐标系xOy 中,∆ABC 顶点的坐标分别为A (−1,2)、B (1,4)、C(3,2).(1)求∆ABC 外接圆E 的方程;(2)若直线l 经过点(0,4),且与圆E 相交所得的弦长为l 的方程;(3)在圆E 上是否存在点P ,满足22||2||PB PA =12,若存在,求出点P 的坐标;若不存在,请说明理由.21.(本小题满分12分)如图,已知四棱锥S -ABCD ,底面梯形ABCD 中,BC ∥AD ,平面SAB ⊥平面ABCD ,SAB △是等边三角形,已知AC =2AB =4,BC =2AD =2DC =(1)求证:平面SAB ⊥平面SAC ; (2)求二面角B-SC-A 的余弦值.22.(本小题满分12分)设椭圆C :x 2a 2+y 2b 2=1(a >b >0),右顶点是A(2,0),离心率为12. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于两点,M N (,M N 不同于点A ),且AM ⃑⃑⃑⃑⃑⃑ ∙AN ⃑⃑⃑⃑⃑⃑ =0,求证:直线l 过定点,并求出定点坐标.。
高二理科数学参考答案及解析

ln0x<01x⇔<<,|1|2x+<31x⇔-<<,而区间(0,1)(3,1)⊆-,故“ln0x<”是“|1|2x+<”的充分不必要条件.3.【答案】C.选项A,反例为直棱柱两相邻侧面与其底面;选项B,反例为圆锥的母线与其底面;选项C,这两条直线均平行于二面的交线即可;选项D,反例为直线在平面内的情形.4.【答案】B.取PB的中点N,则CMN∠为异面直线PA与CM所成角,设正四面体的棱长为2,则1MN=,CM CN==cos6CMN∠=.5.【答案】D.该几何体由一个半径为1的半球和一个直径与高都为2的半圆柱组合而成的组合体,其表面积为(2)(24)5422πππππ++++=+.6.【答案】A.由122kxπ=得函数()f x的对称中心为11(,0)()4kkπ∈Z,故函数()g x的对称中心为22(,0)()43kkππ+∈Z,所以21||||||()4343k k ka b kππππ--=+=+∈Z,取1k=-得最小值为12π.7.【答案】B.令1m=得121n na a+=+,所以112(1)n na a++=+,{1}na+成等比数列,于是不难求得21nna=-,663a=.8.【答案】A.由题,原点O到直线:0AB x ay a+-==2a=12+.9.【答案】C.令e,ex ya b==,则,0a b>且2a b+=,于是221ee ex ya b--+=+211e()()2a ba b=++221e(1e)2b aa b=+++221(1e)(1e22+=++=,当且仅当eb a=时等号成立.10.【答案】D.设,()P x y,由22||12||PA PB+=可得点P在圆22:14()E x y+-=上,由题可知E与圆22:(2)4C x y a+-=-相切,故41a-=或9,即3a=或5-.11.【答案】B.把函数(21)y f x=-的图象向左平移个单位,再向下平移1个单位,即可得到函数()(2)1g x f x =-的图象,故()g x 的图象关于直线对称,故选B .12.【答案】D .考虑函数ln 1(0)y ax x =->与2y x ax =+-的图象,不难知它们有公共的零点t 时,()0f x ≥恒成立.于是,24e at t =-=由2sin()cos()3sin 12x x x π+--=-=得1sin 3x =-,故27cos 212sin 9x x =-=. 14.【答案】[4,)+∞.由题,1y a x ≥+,作出不等式组所表示的平面区域可知,1yx +表示区域内的点与点(1,0)-连线的斜率,当(,)x y 取点时(0,4)时,1yx +的最大值为4,所以[4,)a ∈+∞.15.【答案】131+.2|32|14(64)a b c c a b +-=-⋅+,而|64|213a b +=,设向量c 与64a b +的夹角为θ则|32|142a b c +-=-θπ=时,|32|a b c +-1.16.【答案】1643.设过点,,C M N 的平面与棱11A D 交于点P ,则NP CM ∥,故11D P =.体积较小的那部分为三棱台1D NP DCM -,该三棱台的体积为128(14)433⋅=,所以体积较大的那部分的体积为328164433-=.三、解答题:共70分。
高二数学理科期末试卷1

高二数学理科期末试卷1第 I 卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在客观题答题卡上。
1. 21()n x x-的展开式中,常数项为15,则n =( ) A .3 B .4 C .5 D .62. )3.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 60B. 48C. 42D. 364. 已知随机变量X 服从正态分布()3,1N ,且(24)P X ≤≤=0.6826,则()4P X >=( )A 、0.1588B 、0.1587C 、0.1586D 0.15855. 已知离散型随机变量X 的分布列如下表.若E (X )=0,D (X )=1,则a ,b ,c 的值依次为( )A .,,1244B .,,4124C .115,,4412D .以上答案均不对 6. 甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( )A .16B .14C .13D .128.已知函数()x f 在R 上满足 672)2(2+-=-x x x f ,则曲线()x f y =在()()1,1f 处的切线方程是( )A. 21y x =-B. y x =C. 32y x =-D. 23y x =-+8. 从5,4,3,2,1中任取两个不同的数,事件A 为“取到的两个数之和为偶数”,事件B 为 “取到的两个数均为偶数”,则()=A B P ( )A .18B .14C .25D .129. 有一批种子,每一粒种子发芽的概率都为0.9,那么播下15粒种子,恰有14粒发芽的概率是( )A .1410.9-B .140.9C .()1414150.910.9C - D .()1414150.910.9C - 10.用数学归纳法证明)1(12131211>∈<-++++n N n n n 且 ,第二步证明从“k 到k+1”,左端增加的项数是A . 12+kB .12-kC . k 2D .12-k11. 设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a =A .0B .1C .11D .1212. 下列命题正确的个数是 ( )(1)比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好(2)605.1精确到01.0的近似值是24.1(3)若随机变量X ~()p n B ,,且7=EX ,6=DX ,则17P =A .0个B .1个C .2个D .3个 第 II 卷(非选择题 共90分 二.填空题:本题共4小题,每小题5分,共20分,请将答案写在答题纸指定的位置上。
高二年级理科数学综合试题

高二年级理科数学综合试题本试卷分选择题和非选择题两部分,共3页,满分150分.考试时间120分钟. 注意事项:1. 答第I 卷前,务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3. 考试结束后,监考人将答题卡收回,试卷考生自己保管.一、选择题:本大题共有8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把它选出后在答题卡规定的位置上用铅笔涂黑. 1. “3x >”是“24x >”的( ).A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 2. 已知0a b >>,那么下列不等式成立的是( ).A a b ->- .B a c b c +<+ ()()22.C a b ->- 11.D a b> 3. 设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( ).A .8B .7C .6D .54. 已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是 ( )A .q p ∨⌝)(B .q p ∧C .)()(q p ⌝∧⌝D .)()(q p ⌝∨⌝5. 小明在玩投石子游戏,第一次走1米放2颗石子,第二次走2米放4颗石子,…,第n 次走n 米放2n颗石子,当小明一共走了36米时,他投放石子的总数是( ) A .36 B .254 C .510 D .5126. 锐角ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若2C A =,则ca 的取值范围是( )().1,2A (.B ).,2C .D7. 有甲、乙两个粮食经销商每次在同一粮食生产地以相同的价格购进粮食,他们共购进粮食两次,各次的粮食价格不同,甲每次购粮10000千克,乙每次购粮食10000元,在两次统计中,购粮的平均价格较低的是( )A.甲B.乙C.一样低D.不确定8. 设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为 ( )A.340x y ±=B.350x y ±=C.430x y ±=D.540x y ±=二、填空题:本大题共有6个小题,每小题5分,共30分。
高二理科数学练习题

高二理科数学练习题1. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值。
解析:将x = -1代入函数f(x)中,得到f(-1) = 2(-1)^2 - 3(-1) + 1 = 6。
答案:f(-1)的值为6。
2. 解方程3x + 4 = 10。
解析:将方程转化为一元一次方程形式,得到3x = 10 - 4 = 6,再除以3,即x = 2。
答案:方程的解为x = 2。
3. 某邮箱容量为2GB,已使用1.5GB,求邮箱剩余容量的百分比并用百分数表示。
解析:剩余容量为2GB - 1.5GB = 0.5GB,所以剩余容量的百分比为(0.5/2) × 100% = 25%。
答案:邮箱剩余容量的百分比为25%。
4. 一个长方体的长、宽、高分别为3cm、4cm、5cm,求它的体积和表面积。
解析:体积公式为V = 长 ×宽 ×高 = 3cm × 4cm × 5cm = 60cm³。
表面积公式为S = 2(长×宽 + 长×高 + 宽×高) = 2(3cm×4cm +3cm×5cm + 4cm×5cm) = 94cm²。
答案:长方体的体积为60cm³,表面积为94cm²。
5. 求下列方程的根:x^2 - 5x + 6 = 0。
解析:根据方程的一般形式ax^2 + bx + c = 0,可以使用求根公式x = (-b ±√(b^2 - 4ac)) / (2a)。
带入a = 1,b = -5,c = 6,得到x = (5 ±√(5^2 - 4×1×6)) / (2×1)。
计算可得x1 = 3,x2 = 2。
答案:方程的根为x = 3和x = 2。
6. 若三角形的两边长分别为5cm和7cm,夹角的正弦值为0.8,求第三边的长。
高二年级理科数学测试卷

高二年级理科数学测试卷参考公式22221123(1)(21)6n n n n ++++=++ 一. 选择题(每题5分,共40分,每小题答案唯一) 1.在复平面内,复数ii-1对应的点位于( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 2.函数3231x x y -=的递增区间是( ) (A) ),2(+∞ (B) )2,(-∞ (C) )0,(-∞ (D) )2,0(3.若443322104)1(x a x a x a x a a x ++++=+,则4321a a a a +++的值为( ) (A) 0 (B) 15 (C) 16 (D) 174.异面直线1l 、2l , 1l 上有5个不同点,2l 上有4个不同点,这9个点一共可组成直线的条数为( )(A) 9 (B) 10 (C) 20 (D) 225.用数学归纳法证明),12(312)()2)(1(-⋅⋅=+++n n n n n n 从“k 到k+1”左端需增乘的代数式是( )(A)12+k (B) )12(2+k (C)112++k k (D) 132++k k 6.有4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有( )(A) 2880 (B)3080 (C)3200 (D) 3600 7.12名同学分别到三个企业进行社会调查,若每个企业4人,则不同的分配方案共有( )种。
(A) 4448412C C C (B) 44484123C C C (C) 3348412A C C(D) 334448412A C C C 8.已知),1()!1(,111≥+=-=+n n a a a n n 若当n m ≥时,m a 的值都能被9整除.则n 的最小值为( )(A) 5 (B) 4 (C) 3 (D) 2 二.填空题(每题5分,共30分)9.实数y x ,满足,2)1()1(=++-y i x i 则.________=xy 10.利用定积分的几何意义,求.______________4220=-⎰dx x11.用0,1,2,3,4,5六个数字组成无重复数字的三位数,其中能被3整除的有_______个(用数字作答).12.某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了五种不同的荤菜.若要保证每位顾客有200种以上不同选择,则餐厅至少还需要准备不同的素菜品种数为__________.13.如图所示,椭圆中心在坐标原点,F 为左焦点,当F B ⊥AB 时,其离心率为,215-此类椭圆被称为“黄金椭圆”, 类比“黄金椭圆”可推算出“黄金双曲线”的离心率e 等于____________.14.如图,有一列曲线210,,,,P P P 进行如下操作得到:将k P 的每条边三等份,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(k=0,1,2,…).则1P 边数为________,2P 边数为________.由此,推测出n P 的边数为_______.三.解答题:本题共6小题,80分,解答应写出文字说明,证明过程或演算过程. 15.(满分12分)已知n xx )2(+的展开式前3项二项式系数的和为37.(1)求n 的值. (2)这个展开式中是否有常数项?若有,将它求出,若没有,请说明理由. 16. (满分14分)(1)计算由曲线24x x y -=与x 轴围成的封闭区域的面积S.(2)如图,若抛物线)0(2>=a ax y 将(1)中的区域分成两部分,面积分别为21,S S ,且S S 411=,求a 的值.17.(满分12分)已知在△ABC 中,,90D AB C ACB 上的射影为在点 =∠且b AC =,a CB =,则222111ba CD +=;拓展到空间,如右图,三棱锥ABC S -的三条侧棱SA 、SB 、SC 两两垂直,在平面,点、、S c SCb SB a SA ===ABC 上的射影为O.运用类比猜想,对于上述的三棱锥ABC S -存在什么类似的结论,并加以证明. 18.(满分14分)对于任意正整数n ,比较12-n 与2)1(+n 的大小,并用数学归纳法证明你的结论.19. (满分14分)已知抛物线221x y =焦点为F,分别与抛物线切于点A 、B 的两切线1l 、2l 互相垂直,(1)求证:A 、F 、B 三点共线;[(2)过A 、B 两点的直线为l ,点M 在l 上,若l OM ⊥(O 为坐标原点),求点M 的轨迹方程.20.(满分14分) 设不等式组⎪⎪⎩⎪⎪⎨⎧+-≤≥≥nx y y x 304所表示的平面区域为n D ,记n D 内的整点个数为n a )2,(*≥∈n N n ,(整点即横坐标和纵坐标均为整数的点).(1)求2a 、3a ;(2)猜想)2(≥n a n 的通项公式(不需证明); (3)记n n a a a a S ++++= 432;12)1()(+-=n nS n S n g ,若,670223)()3()2(=+++n g g g 求n 的值.AD C Bb a CAS OB b ca参考答案9. 1; 10. π;11. 36; 12. 7. 13.215+; 14. 43⨯ 243⨯ n43∙ 三.解答题(本题共6小题,80分,解答应写出文字说明,证明过程或演算过程.)21)1(2,71+<<≤-n n n 时当 21)1(2,7+==-n n n 时当21)1(2,8+>≥-n n n 时当 ………………………4分后面的证10分 19. (14分)解:(1)1'1222111|),2,(),2,(x y k x x B x x A x x ===则设 2'22|x y k x x ===1,2121-=∴⊥x x l l ………………………3分21221++=x x x y AB 所在直线方程为 .),21,0(的方程的坐标适合点又AB F F三点共线。
高二理科数学综合试题

高二年级理科数学综合试题一、选择题(每小题5分,共40分)1、等差数列{}n a 中,51130a a +=,47a =,则12a 的值为 A .15B .23C .25D .372、在ABC ∆中, 120,3,33===A b a ,则B 的值为( ) A 、 30 B 、 45 C 、 60 D 、 903、若条件p :x<4,条件q :216x <,则p 是q 的( ).A 必要不充分条件.B 充分不必要条件.C 充要条件 .D 既不充分也不必要条件4、若0,a b >>,则下列不等式不一定成立的是( )A 、a c b c ->-B 、22ab > C 、22ac bc > D 、11a b<5、两个焦点的坐标分别是(0,2)-、(0,2),并且经过点(0,3)的椭圆方程是A .22159x y +=B .22195x y +=C .221139x y +=D .22179x y +=6、原点O 和点A (1,1)在直线x+y=a 两侧,则a 的取值范围是 A a <0或 a >2 B 0<a <2 C a=0或 a=2 D 0≤a ≤27、数列{}n a 的前n 项和为2n n S c =+,其中c 为常数,若该数列{}n a 为等比数列,则c 的值是A .1c =-B .0c =C .1c =D .2c = 8、下列结论正确的是A 当2lg 1lg ,10≥+≠>xx x x 时且 B 21,≥+>x x x 时当C 21,2的最小值为时当x x x +≥D 无最大值时当xx x 1,20-≤<二、填空题(本大题共6个小题,每小题5分,共30分)9、记数列{}n a 的前n 项和为n S ,且)1(2-=n n a S ,则=2a . 10、已知P :04,2<+-∈∃x x R x ;则为P ⌝ . 11、在ABC ∆中,角A 、B 、C 成等差数列,则cos B = ;12、在等差数列{}n a 中,421,,a a a 这三项构成等比数列,则公比=q 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014---2015学年下期期末联考
高二 理科数学试题
一、选择题:(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)
1.复数1
i i -在复平面上对应的点位于 A 第一象限 B 第二象限 C 第三象限 D 第四象限
2. 为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程1l 和2l ,两人计算知x 相同,y 也相同,下列正确的是( )
A 1l 与2l 重合
B 1l 与2l 一定平行
C 1l 与2l 相交于点(,)x y
D 无法判断1l 和2l 是否相交
3.一物体的运动方程为235s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在4秒末的瞬时速度是
A 8米/秒
B 7米/秒
C 6米/秒
D 5米/秒
4.设()52501252x a a x a x a x -=++ ,那么024135
a a a a a a ++++的值为( ) A -6160 B -122121 C -244241
D -1 5.已知随机变量ξ服从正态分布()
23,N a ,且P(ξ<6)=0.8,则P(0<ξ<3)= A 0.6 B 0.4 C 0.3 D 0.2
6.若曲线22=ρ上有n 个点到曲线2)4cos(=+π
θρ的距离等于2,则n =( )
A 1
B 2
C 3
D 4
7. 在R 上的可导函数c bx ax x x f +++=
22131)(23,当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则1
2--a b 的取值范围是( ) A )1,41( B )1,2
1( C )41,21(- D )21,21(- 8.小张拿着一个硬币玩游戏,任意掷三次,事件 A=“至少一次出现反面”,事件B=“恰有一次出现正面”,则()
P B A ( )
A 12
B 37
C 23
D 4
7
9.知函数()322f x ax bx b x =++,在1x =处有极大值1
3,则b =
A 1-
B 1
2 C 1
12-或 D 5
12-
10.某教师一天上3个班级的课,每班一节,如果一天共有9节课,上午5节,下午4节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法有 ( )
A 474种
B 77种
C 462种
D 79种
11.如图,在杨辉三角形中,斜线l 的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10,…,记此数列的前n 项之和
为n S ,则21S 的值为( )
A 66
B 153
C 295
D 361
12.已知函数()21
,f x a x x e e ⎛⎫=-≤≤ ⎪⎝⎭(e 为自然对数的底数)与()2ln h x x =的图像上
存在关于x 轴对称的点,求实数a 的范围 A 21
1,22e ⎡⎤
+⎢⎥⎣⎦ B 21,e 2⎡⎤-⎣⎦ C 2211,e 2e ⎡⎤
+-⎢⎥⎣⎦ D 2e 2,⎡⎤-+∞⎣⎦
二、填空题(本大题共4小题,每小题5分,共20分)
13.定积分()1
11x dx --⎰的值为______
14. 在极坐标系()(),02ρθθπ≤<中,曲线2sin ρθ=与cos 1ρθ=-的交点的极坐标为______
15.已知()6
2*k x k N x ⎛⎫
+∈ ⎪⎝⎭的展开式的常数项小于120,则k = ____________
16.设函数()f x 是定义在()0,+∞的函数,()'f x 是()f x 的导函数,且()()'f x f x <则关于x 的不等式()()1ln xf ef x <的解集为
三、解答题:(本大题共70分)
17、(10分)已知
n 的展开式中的第6项为常数项, (1)求展开式中含2
x 项的系数.
(2)求展开式中所有的有理项.
18 、(12分) 设()2()56ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()1,(1)f 处
的切线与y 轴交于点()0,6。
(1) 确定的a 值;
(2) 求函数()f x 的单调区间与极值.
19、(12分) 用0,1,2,3,4这五个数组成无重复数字的自然数。
(1)在组成的三位数中,求所有偶数的个数;
(2)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301,423等都是“凹数”,试求“凹数”的个数;
(3)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数个数。
20、(12分) 在平面直角坐标系xOy 中,直线l
的参数方程为(x t y t ⎧=⎪⎨=+⎪⎩
为参数)
,圆C 的参数方程为2cos (2sin x y θθθ=⎧⎨=⎩
为参数)。
以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系。
(1)求直线l 和圆C 的极坐标方程
(2)直线和圆交于A ,B 两点,求弓形AOB 的面积。
21、(12分)某校为了丰富学生的业余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取项目,每首古诗词背诵正确加10分,背诵错误减去10分,只有“正确”和“错误”两种结果,其中某班背诵正确的概率为p =
23,背诵错误的概率为13
q =,现记“该班完成n 首古诗词背诵后总得分为n S ” (I )求620S =且0(1,2,3)i S i ≥=的概率;
(II )记5S ξ=,求ξ的分布列和数学期望。
22、(12分)已知21()ln(1)2
f x ax x x =-+-+,其中0a >。
(1)若3x =是函数()f x 的极值点,求a 的值
(2)求函数()f x 的单调区间
(3)若()f x 在[)0,+∞上最大值是0,求a 的取值范围。