2020版高考江苏数学大一轮精准复习精练:13.1空间几何体含解析
2020版高考江苏数学大一轮精准复习精练:专题十七 空间向量与立体几何 Word版含解析

专题十七空间向量与立体几何挖命题【真题典例】【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点空间向量及应用1.空间向量的概念2.空间向量共线、共面的充分必要条件3.空间向量的加法、减法及数乘运算4.空间向量的坐标表示5.空间向量的数量积6.空间向量的共线与垂直7.空间向量的应用2015江苏,221.求二面角2.求异面直线所成角3.空间向量的数量积直线与平面所成角★★★2017江苏,221.求异面直线所成角2.求二面角3.空间向量的数量积2018江苏,221.求异面直线所成角2.求直线与平面所成角3.空间向量的数量积分析解读 空间向量及其应用在高考中的考查比较单一,主要涉及用空间向量求解空间几何体中的异面直线所成角、直线与平面所成角、二面角以及存在性问题或角的取值范围问题.考查的几何体主要是棱柱、棱锥等常规几何体,难度中等.破考点 【考点集训】考点一 空间向量的运算1.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b,则λ与μ的值是 . 答案 2,12或-3,122.已知a=(1-t,1-t,t),b=(2,t,t),则|b-a|的最小值为 . 答案3√55 3.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E,F,G 分别是AB,AD,CD 的中点,计算: (1)EF ⃗⃗⃗⃗⃗ ·BA ⃗⃗⃗⃗⃗ ; (2)EF ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ .解析 设AB ⃗⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗⃗ =b,AD ⃗⃗⃗⃗⃗ =c,则|a|=|b|=|c|=1,<a,b>=<b,c>=<c,a >=60°. EF⃗⃗⃗⃗⃗ =12BD ⃗⃗⃗⃗⃗⃗ =12c-12a,BA ⃗⃗⃗⃗⃗ =-a,DC ⃗⃗⃗⃗⃗ =b-c,所以 (1)EF ⃗⃗⃗⃗⃗ ·BA ⃗⃗⃗⃗⃗ =(12c -12a)·(-a)=12a 2-12a ·c=14.(2)EF ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =12(c-a)·(b-c)=12(b ·c-a ·b-c 2+a ·c)=-14.考点二 空间向量的应用1.(2018江苏泰兴中学调研,22)如图,在三棱锥P-ABC 中,已知平面PAB ⊥平面ABC,AC ⊥BC,AC=BC=2a,点O,D 分别是AB,PB 的中点,PO ⊥AB,连接CD.(1)若PA=2a,求异面直线PA 与CD 所成角的余弦值的大小; (2)若二面角A-PB-C 的余弦值的大小为√55,求PA.。
2020版高考数学(文)江苏专用新精准大一轮复习:第七章4第4讲空间几何体的结构及其表面积和体积含解析

1.正六棱柱的高为6,底面边长为4,则它的全面积为________. 解析:S 底=6×34×42=243,S 侧=6×4×6=144,所以S 全=S 侧+2S 底=144+483=48(3+3).答案:48(3+3)2.将一个边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________. 解析:当以长度为4π的边为底面圆时,底面圆的半径为2,两个底面的面积是8π;当以长度为8π的边为底面圆时,底面圆的半径为4,两个底面圆的面积为32π.无论哪种方式,侧面积都是矩形的面积32π2.故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π3.一个球与一个正方体的各个面均相切,正方体的棱长为a ,则球的表面积为________. 解析:由题意知,球的半径R =a2.所以S 球=4πR 2=πa 2.答案:πa 2 4.以下命题:①以直角梯形的一腰为轴旋转一周所得的旋转体是圆台; ②圆柱、圆锥、圆台的底面都是圆;③一个平面截圆锥,得到一个圆锥和一个圆台. 其中正确命题的个数为________.解析:命题①错,因这条腰必须是垂直于两底的腰.命题②对.命题③错,必须用平行于圆锥底面的平面截圆锥才行.答案:15.(2019·江苏省重点中学领航高考冲刺卷(二))在一次模具制作大赛中,小明制作了一个母线长和底面直径相等的圆锥,而小强制作了一个球,经测量得圆锥的侧面积恰好等于球的表面积,则圆锥和球的体积的比值等于________.解析:设圆锥的底面半径为r ,球的半径为R ,则圆锥的母线长为2r ,高为3r .由题意可知πr ×2r =4πR 2,即r =2R .所以V 圆锥V 球=13πr 2×3r43πR 3=34×⎝⎛⎭⎫r R 3=34×(2)3=62.答案:626.(2019·苏锡常镇四市调研)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 是矩形,AB =2,AD =3,P A =4,点E 为棱CD 上一点,则三棱锥E -P AB 的体积为________.解析:因为V E P AB =V P ABE =13S △ABE ×P A =13×12AB ×AD ×P A =13×12×2×3×4=4.答案:47.(2019·江苏省高考名校联考(四))如图,在四棱柱ABCD A 1B 1C 1D 1中,上、下底面为平行四边形,E 为棱CD 的中点,设四棱锥E -ADD 1A 1的体积为V 1,四棱柱ABCD -A 1B 1C 1D 1的体积为V 2,则V 1∶V 2=________.解析:由题意,将侧面ADD 1A 1作为四棱柱的底面,设顶点C 到平面ADD 1A 1的距离为2h ,因为E 为棱CD 的中点,所以E 到平面ADD 1A 1的距离为h ,所以V 1∶V 2=V E ADD 1A 1∶V BCC 1B 1ADD 1A 1=13S 四边形ADD 1A 1h ∶S 四边形ADD 1A 1(2h )=1∶6. 答案:1∶68.(2019·南京市、盐城市高三年级第二次模拟考试)在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分所示),折叠成底面边长为2的正四棱锥S -EFGH (如图2),则正四棱锥S -EFGH 的体积为________.解析:设正四棱锥S - EFGH 的高为h ,体积为V ,点S 到HG 的距离为h ′,则2h ′+2=42,得h ′=322,所以h =⎝⎛⎭⎫3222-⎝⎛⎭⎫222=2,所以V =13×(2)2×2=43.答案:439.(2019·江苏省名校高三入学摸底卷)《九章算术》是我国古代内容极为丰富的数学名著.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,若某阳马的底面积为7,最长的侧棱长为52,则该阳马的体积的最大值为________.解析:设该阳马的底面边长分别为a ,b ,高为h ,最长的侧棱长为l ,则ab =7,由于l 2=a 2+b 2+h 2且l =52,所以h 2=l 2-(a 2+b 2)≤(52)2-2ab =50-2×7=36(当且仅当a =b =7时取等号),即有h max =6,所以该阳马的体积的最大值为13abh max =13×7×6=14.答案:1410.(2019·江苏省重点中学领航高考冲刺卷(八))中国古代数学名著《九章算术》中记载:“今有羡除”.刘徽注:“羡除,隧道也.其所穿地,上平下邪.”现有一个羡除如图所示,四边形ABCD 、ABFE 、CDEF 均为等腰梯形,AB ∥CD ∥EF ,AB =6,CD =8,EF =10,EF 到平面ABCD 的距离为3,CD 与AB 间的距离为10,则这个羡除的体积是________.解析:如图,过点A 作AP ⊥CD ,AM ⊥EF ,过点B 作BQ ⊥CD ,BN ⊥EF ,垂足分别为P ,M ,Q ,N ,连结PM ,QN ,将一侧的几何体补到另一侧,组成一个直三棱柱,底面积为12×10×3=15.棱柱的高为8,体积V =15×8=120.答案:12011.一个正三棱台的两底面的边长分别为8 cm 、18 cm ,侧棱长是13 cm ,求它的全面积. 解:上底面周长为c ′=3×8=24 cm , 下底面周长c =3×18=54 cm , 斜高h ′=132-⎝⎛⎭⎫18-822=12 cm ,所以S 正棱台侧=12(c ′+c )h ′=12×(24+54)×12=468 cm 2,S 上底面=34×82=16 3 cm 2,S 下底面=34×182=81 3 cm 2, 所以正三棱台的全面积为S =468+163+813=(468+973) cm 2.12.如图所示,已知E 、F 分别是棱长为a 的正方体ABCD -A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1B 1EDF 的体积.解:法一:连结A 1C 1,B 1D 1交于点O 1,连结B 1D ,EF ,过O 1作O 1H ⊥B 1D 于H . 因为EF ∥A 1C 1,且A 1C 1⊄平面B 1EDF , 所以A 1C 1∥平面B 1EDF .所以C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离. 因为平面B 1D 1D ⊥平面B 1EDF ,平面B 1D 1D ∩平面B 1EDF =B 1D , 所以O 1H ⊥平面B 1EDF ,即O 1H 为棱锥的高. 因为△B 1O 1H ∽△B 1DD 1, 所以O 1H =B 1O 1·DD 1B 1D =66a .所以V C 1B 1EDF =13S 四边形B 1EDF ·O 1H =13·12·EF ·B 1D ·O 1H =13·12·2a ·3a ·66a =16a 3.法二:连结EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,V C 1B 1EDF =V B 1C 1EF +V D C 1EF =13S △C 1EF ·(h 1+h 2)=16a 3.1.已知圆锥的轴截面是边长为2的正三角形,则过圆锥的高的中点的平面截圆锥所得的圆台的体积为________.解析:如图,在正三角形SAB 中, AB =2,SO =3,OB =1,O 1O =32, 圆台的体积为V =13πh (r 2+rr ′+r ′2)=13π×32⎝⎛⎭⎫14+12×1+1=73π24. 答案:73π242.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为________.解析:如图,设球的半径为R ,因为 ∠AOB =90°,所以S △AOB =12R 2.因为 V O ABC =V C AOB ,而△AOB 面积为定值,所以当点C 到平面AOB 的距离最大时,V O ABC 最大,所以当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O ABC 最大为13×12R 2×R =36,所以R =6,所以球O 的表面积为4πR 2=4π×62=144π. 答案:144π3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都等于2,A 1在底面ABC 上的射影为BC 的中点,则三棱柱的侧面积为________.解析:如图所示,设点D 为BC 的中点, 则A 1D ⊥平面ABC , 因为BC ⊂平面ABC , 所以A 1D ⊥BC ,因为△ABC 为等边三角形, 所以AD ⊥BC ,又AD ∩A 1D =D ,AD ⊂平面A 1AD ,A 1D ⊂平面A 1AD , 所以BC ⊥平面A 1AD , 因为A 1A ⊂平面A 1AD , 所以BC ⊥A 1A .又因为A 1A ∥B 1B ,所以BC ⊥B 1B .又因为三棱柱的侧棱与底面边长都等于2, 所以四边形BB 1C 1C 是正方形,其面积为4. 作DE ⊥AB 于E ,连结A 1E ,则AB ⊥A 1E , 又因为AD =22-12=3,DE =AD ·BD AB =32,所以AE =AD 2-DE 2=32,所以A 1E =AA 21-AE 2=72, 所以S 四边形ABB 1A 1=S 四边形AA 1C 1C =7, 所以S 三棱柱侧=27+4. 答案:27+44.(2019·苏州市高三调研测试)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________.(容器壁的厚度忽略不计,结果保留π)解析:由题意知,可将问题转化为求长、宽、高分别是1,2,5的长方体的外接球的表面积,易知该球的直径2R =12+22+52=30,则该球的表面积为4πR 2=30π.答案:30π5.四面体的六条棱中,有五条棱长都等于a . (1)求该四面体的体积的最大值; (2)当四面体的体积最大时,求其表面积.解:(1)如图,在四面体ABCD 中,设AB =BC =CD =AC =BD =a ,AD =x ,取AD 的中点为P ,BC 的中点为E ,连结BP 、EP 、CP ,得到AD ⊥平面BPC ,所以V A BCD =V A BPC +V D BPC =13·S △BPC ·AP +13S △BPC ·PD =13·S △BPC ·AD =13·12·a ·a 2-x 24-a 24·x=a 12(3a 2-x 2)x 2≤a 12·3a 22=18a 3 ⎝⎛⎭⎫当且仅当x =62a 时取等号.所以该四面体的体积的最大值为18a 3.(2)由(1)知,△ABC 和△BCD 都是边长为a 的正三角形,△ABD 和△ACD 是全等的等腰三角形,其腰长为a ,底边长为62a , 所以S 表=2×34a 2+2×12×62a ×a 2-⎝⎛⎭⎫64a 2=32a 2+62a ×10a 4=32a 2+15a 24=23+154a 2. 6.把边长为a 的正三角形铁皮的三个角切去三个全等的四边形,再把它的边沿虚线折起(如图),做成一个无盖的正三角形底铁皮箱,当箱底边长为多少时,箱子容积最大?最大容积是多少?解:由题图可知,箱底边长为x ,则箱高为h =33×a -x2(0<x <a ), 箱子的容积为V (x )=12x 2×sin 60°×h =18ax 2-18x 3(0<x <a ).由V ′(x )=14ax -38x 2=0,解得x 1=0(舍),x 2=23a ,且当x ∈⎝⎛⎭⎫0,23a 时,V ′(x )>0;当x ∈⎝⎛⎭⎫23a ,a 时,V ′(x )<0, 所以函数V (x )在x =23a 处取得极大值,这个极大值就是函数V (x )的最大值:V ⎝⎛⎭⎫23a =18a ×⎝⎛⎭⎫23a 2-18×⎝⎛⎭⎫23a 3=154a 3. 所以当箱子底边长为23a 时,箱子容积最大,最大值为154a 3.。
2020版高考江苏数学大一轮精准复习精练:13.2 平面及其基本性质 Word版含解析

13.2平面及其基本性质挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点平面的基本性质空间点、线、面位置关系的判断★☆☆分析解读平面的基本性质是立体几何的基础,在江苏高考中一般不单独命题,但只有充分认识了平面的基本性质,才能为后续的线线、线面、面面关系的证明打下坚实的基础,所以说也是“逢考必考”的一个知识点.破考点【考点集训】考点平面的基本性质1.(2018江苏南师附中检测)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是.答案b与α相交或b⊂α或b∥α2.如图所示,平面α,β,γ两两相交,a,b,c为三条交线,且a∥b,则a与c,b与c的位置关系是.答案a∥b∥c3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的条件.答案充分不必要炼技法【方法集训】方法一证明点共线、线共点、点线共面的方法1.(2018江苏海门实验学校月考)如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且CFCB =CGCD=23,则下列说法正确的是.(填写所有正确说法的序号)①EF 与GH 平行; ②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上. 答案 ④2.(2019届江苏宿迁中学周练)如图,平面ABEF ⊥平面ABCD,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD=∠FAB=90°,BC∥AD,BE ∥FA,且BC=12AD,BE=12FA,G,H 分别为FA,FD 的中点. (1)求证:四边形BCHG 是平行四边形; (2)C,D,F,E 四点是否共面?为什么?解析 (1)证明:由题设知,FG=GA,FH=HD, 所以GH ∥AD,GH=12AD. 又BC ∥AD,BC=12AD, 故GH ∥BC,且GH=BC,所以四边形BCHG 是平行四边形. (2)C,D,F,E 四点共面. 理由如下:由BE ∥FA,BE=12FA,G 是FA 的中点知,BE ∥GF,且BE=GF, 所以四边形BGFE 是平行四边形, 所以EF ∥BG. 由(1)知BG ∥CH,所以EF ∥CH,故EC 、FH 共面. 又点D 在直线FH 上, 所以C,D,F,E 四点共面.方法二 空间两直线位置关系的判断方法1.如图,正方体ABCD-A 1B 1C 1D 1中,M,N 分别为棱C 1D 1,C 1C 的中点,有以下四个结论:。
2020版江苏省高考文科数学三轮复习 解析几何、立体几何精选试题(6页)

小题专题练(四)解析几何、立体几何(建议用时:50分钟)1.抛物线y2=4x的准线方程为________.2.已知双曲线x2a2-y23=1(a>0)的离心率为2,则a=________.3.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.4.(2019·连云港调研)已知圆C:(x-3)2+(y-5)2=5,直线l过圆心且交圆C于A,B两点,交y轴于P点,若2P A→=PB→,则直线l的斜率k=________.5.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则CD 的长为________.6.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为________.7.(2019·徐州调研)在三棱柱ABC-A1B1C1中,侧棱AA1与侧面BCC1B1的距离为2,侧面BCC1B1的面积为4,则此三棱柱ABC-A1B1C1的体积为________.8.已知圆C1:x2+(y-2)2=4,抛物线C2:y2=2px(p>0),C1与C2相交于A,B两点,|AB|=855,则抛物线C2的方程为____________.9.如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分别是AD,BE的中点,将△ADE沿AE折起,则下列说法正确的是________.(填上所有正确说法的序号)①不论D 折至何位置(不在平面ABC 内)都有MN ∥平面DEC ;②不论D 折至何位置都有MN ⊥AE ;③不论D 折至何位置(不在平面ABC 内)都有MN ∥AB ;④在折起过程中,一定存在某个位置,使EC ⊥AD .10.已知O 为坐标原点,过双曲线x 2-y 2b 2=1(b >0)上的点P (1,0)作两条渐近线的平行线,分别交两渐近线于A ,B 两点,若平行四边形OBP A 的面积为1,则双曲线的离心率为________.11.(2019·盐城模拟)已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0)、B (m ,0)(m >0),若圆上存在一点P ,使得∠APB =90°,则m 的最小值为________.12.已知半径为1的球O 中内接一个圆柱,当圆柱的侧面积最大时,球的体积与圆柱的体积的比值为________.13.(2019·宿迁质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是________.14.如图,椭圆C :x 2a 2+y 24=1(a >2),圆O :x 2+y 2=a 2+4,椭圆C 的左、右焦点分别为F 1,F 2,过椭圆上一点P 和原点O 作直线l 交圆O 于M ,N 两点,若|PF 1|·|PF 2|=6,则|PM |·|PN |的值为________.小题专题练(四)1.解析:易知抛物线y 2=4x 的准线方程为x =-p 2=-1.答案:x =-12.解析:因为c 2=a 2+3,所以e =c a =a 2+3a2=2,得a 2=1,所以a =1. 答案:1 3.解析:设该六棱锥的高是h .根据体积公式得,V =13×12×2×3×6×h=23,解得h =1,则侧面三角形的高为1+(3)2=2,所以侧面积S =12×2×2×6=12.答案:124.解析:依题意得,点A 是线段PB 的中点,|PC |=|P A |+|AC |=3 5.过圆心C (3,5)作y 轴的垂线,垂足为C 1,则|CC 1|=3,|PC 1|=(35)2-32=6.记直线l 的倾斜角为θ,则有|tan θ|=|PC 1||CC 1|=2,即k =±2. 答案:±25.解析:因为60°的二面角的棱上有A ,B 两点,AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,所以CD→=CA →+AB →+BD →,CA →·AB →=0,AB →·BD →=0, 因为AB =4,AC =6,BD =8,所以|AB→|=4,|AC →|=6,|BD →|=8, 所以CD→2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·BD → =36+16+64+2×6×8×cos 120°=68,所以CD 的长为217.答案:2176.解析:圆C 1关于x 轴对称的圆C ′1的圆心为C ′1(2,-3),半径不变,圆C 2的圆心为(3,4),半径r =3,|PM |+|PN |的最小值为圆C ′1和圆C 2的圆心距减去两圆的半径,所以|PM |+|PN |的最小值为(3-2)2+(4+3)2-1-3=52-4.答案:52-47.解析:补形法将三棱柱补成四棱柱,如图所示.记A 1到平面BCC 1B 1的距离为d ,则d =2.则V 三棱柱=12V 四棱柱=12S 四边形BCC 1B 1·d =12×4×2=4.答案:48.解析:由题意,知圆C 1与抛物线C 2的其中一个交点为原点,不妨记为B ,设A (m ,n ).因为|AB |=855,所以⎩⎨⎧m 2+n 2=855,m 2+(n -2)2=4,解得⎩⎪⎨⎪⎧m =85,n =165,即A ⎝ ⎛⎭⎪⎫85,165.将点A 的坐标代入抛物线方程得⎝ ⎛⎭⎪⎫1652=2p ×85,所以p =165,所以抛物线C 2的方程为y 2=325x . 答案:y 2=325x9.解析:如图,设Q ,P 分别为CE ,DE 的中点,可得四边形MNQP 是矩形,所以①②正确;不论D 折至何位置(不在平面ABC 内)都有MN 与AB 是异面直线,不可能MN ∥AB ,所以③错;当平面ADE ⊥平面ABCD 时,可得EC ⊥平面ADE ,故EC ⊥AD ,④正确.故填①②④.答案:①②④10.解析:依题意,双曲线的渐近线方程为y =±bx ,则过点P 且与渐近线平行的直线方程为y =±b (x -1),联立⎩⎪⎨⎪⎧y =bx y =-b (x -1)得|y |=b 2,所以平行四边形OBP A 的面积S ▱OBP A =2S △OBP =2×⎝ ⎛⎭⎪⎫12×1×|y |=b 2=1,所以b =2,所以双曲线的离心率e =c a =1+221= 5.答案: 511.解析:显然AB =2m ,因为∠APB =90°,所以OP =12AB =m ,所以要求m 的最小值即求圆C 上点P 到原点O 的最小距离,因为OC =5,所以OP min =OC -r =4,即m 的最小值为4.答案:412.解析:如图所示,设圆柱的底面半径为r ,则圆柱的侧面积为S =2πr ×21-r 2=4πr 1-r 2≤4π×r 2+(1-r 2)2=2π(当且仅当r 2=1-r 2,即r =22时取等号).所以当r =22时,V 球V 圆柱=4π3×13π⎝ ⎛⎭⎪⎫222×2=423. 答案:42313.解析:6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称、左右对称.不妨设P 在第一象限,PF 1>PF 2,当PF 1=F 1F 2=2c 时,PF 2=2a -PF 1=2a -2c ,即2c >2a -2c ,解得e =c a >12,又因为e <1,所以 12<e <1;当PF 2=F 1F 2=2c 时,PF 1=2a -PF 2=2a -2c ,即2a-2c >2c 且2c >a -c ,解得13<e <12,综上可得13<e <12或12<e <1.答案:⎝ ⎛⎭⎪⎫13,12∪⎝ ⎛⎭⎪⎫12,1 14.解析:由已知|PM |·|PN |=(R -|OP |)(R +|OP |)=R 2-|OP |2=a 2+4-|OP |2,|OP |2=|OP →|2=14(PF 1→+PF 2→)2=14(|PF 1→|2+|PF 2→|2+2|PF 1→|·|PF 2→|cos ∠F 1PF 2)=12(|PF 1→|2+|PF 2→|2)-14(|PF 1→|2+|PF 2→|2-2|PF 1→||PF 2→|cos ∠F 1PF 2)=12[(2a )2-2|PF 1||PF 2|]-14×(2c )2=a 2-2,所以|PM |·|PN |=(a 2+4)-(a 2-2)=6.答案:6。
2020年高考数学专题提升: 空间几何体(含答案)

空间几何体一、单项选择题(每题5分;共55分)1.某几何体的三视图如图所示,则该几何体的体积为()A. π+412B. π+13C. π+1D. π+142.已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为()A. 16+12πB. 32+12πC. 24+12πD. 32+20π3.直三棱柱ABC−A1B1C1的底面是边长为2的正三角形,侧棱长为√3,D为BC中点,则三棱锥A−B1DC1的体积为()A. 3B. 32C. 1D. 24.如图所示的三视图表示的几何体的体积为323,则该几何体的外接球的表面积为( )A. 12πB. 24πC. 36πD. 48π5.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为r1,大圆柱底面半径为r2,如图1放置容器时,液面以上空余部分的高为ℎ1,如图2放置容器时,液面以上空余部分的高为ℎ2,则ℎ1ℎ2=()A. r2r1 B. (r2r1)2 C. (r2r1)3 D. √r2r16.如图,长方体ABCD−A1B1C1D1的体积是36,点E在棱CC1上,且CE=2EC1,则三棱锥E-BCD的体积是()A. 3B. 4C. 6D. 127.某几何体的正视图和侧视图如图1所示,它的俯视图的直观图是平行四边形A′B′C′D′,如图2所示.其中A′B′=2A′D′=4,则该几何体的表面积为( )A. 16+12πB. 16+8πC. 16+10πD. 8π8.某几何体的三视图如图所示,若该几何体的体积为10,则棱长为a的正方体的外接球的表面积为()3A. 12πB. 14πC. 4√3πD. 16π9.斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有.图一图二是斗拱实物图,图三是斗拱构件之一的“斗”的几何体.本图中的斗是由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是400cm2,900cm2,高为9cm,长方体形凹橹的体积为4300cm3,那么这个斗的体积是()注:台体体积公式是V=1(S' +√S′S+S)h.3A. 5700cm3B. 8100cm3C. 10000cm3D. 9000cm310.在四棱锥P−ABCD中,PB=PD=2,AB=AD=1,PC=√3PA=3,∠BAD= 120°,AC平分∠BAD,则四棱锥P−ABCD的体积为()A. √62B. √6 C. √63D. √311.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为()(注:1丈=10尺=100寸,π≈3.14,sin22.5∘≈513)A. 600立方寸B. 610立方寸C. 620立方寸D. 633立方寸二、填空题(每空4分;共44分)12.如图,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,正视图中的曲线为四分之一圆弧,则该几何体的表面积是________.13.已知某正四棱锥的底面边长和侧棱长均为2cm,则该棱锥的体积为________ cm3.14.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为________.15.祖暅是我国南北朝时代的伟大科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”,称为祖暅原理.意思是底面处于同一平面上的两个同高的几何体,若在等高处的截面面积始终相等,则它们的体积相等.利用这个原理求半球O的体积时,需要构造一个几何体,该几何体的三视图如图所示,则该几何体的体积为________,表面积为________.16.如图,长方体ABCD−A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.17.学生到工厂劳动实践,利用3D打印技术制作模型,如图,该模型为长方体ABCD-A1B1C1D1,挖去四棱推O一EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为0.9g/cm2,不考虑打印损耗,制作该模型所需原料的质量为________g.18.某三棱锥的三视图如图所示,则该三棱锥体积是________,四个面的面积中最大的是________.19.在《九章算术》中有称为“羡除”的五面体体积的求法.现有一个类似于“羡除”的有三条棱互相平行的五面体,其三视图如图所示,则该五面体的体积为________.20.如图,在棱长为2的正方体ABCD−A1B1C1D1中,E、F分别为棱A1D1、C1D1的中点,NBC1,若P、M分别为线段D1B、EF上的动点,则|PM|+是线段BC1上的点,且BN=14|PN|的最小值为________.参考答案一、单项选择题1.【答案】A2.【答案】A3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】A9.【答案】C10.【答案】A11.【答案】D二、填空题12.【答案】24√213.【答案】4314.【答案】1315.【答案】2π;(3 +√2)π316.【答案】1017.【答案】118.818.【答案】1;3√5219.【答案】2420.【答案】√6。
(江苏专用)2020版高考数学一轮复习第十二章立体几何12.1空间几何体的表面积和体积课件

3
名师点睛 解题的关键要认清空间中的点、线、面的位置关系,要重点掌握直线与直线、直
线与平面、平面与平面的平行和垂直的关系.对于一些常见的几何体,如棱长为a的正方体或
正四面体,要会求相关线段的长度、有关面积与体积,掌握好特殊几何体,能更好地提升空间想
象能力.
3.(2017江苏,6,5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记
的核心素养是直观想象、数学运算.
因为长方体的体积是120,所以2S△BCD·CC1=120,
则S△BCD·CC1=60.所以VE-BCD=
1 3
S△BCD·EC=13
·S△BCD·12
CC1=16
×60=10.
评析 本题通过长方体考查体积之间的关系,通过体积公式,找出底面面积与高的关系,不需要 求出具体的底面面积和高是多少.
8
8
即 1 SA·SBsin∠ASB= 1 · 2 r· 2 r× 15 =5 15 ,所以r2=40,故圆锥的侧面积为πrl= 2 πr2=40 2 π.
2
2
8
疑难突破 利用底面半径与母线的关系,以及△SAB的面积值求出底面半径是解题的突破口.
2.(2018课标全国Ⅰ文改编,5,5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平
3
3
高为8,且它们的底面半径相同,可设两几何体的底面半径均为r(r>0),则 1 ×π×r2×4+π×r2×8= 196
3
3
π,解得r2=7,从而r= 7 .
B组 统一命题、省(区、市)卷题组
考点一 空间几何体的表面积
1.(2018课标全国Ⅱ理,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为 7 ,SA与圆锥
2020版高考江苏数学大一轮精准复习精练:13.4 直线、平面垂直的判定与性质 Word版含解析

13.4直线、平面垂直的判定与性质挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点线面垂直的判定与性质1.线面垂直的证明2.线面垂直的性质的应用★☆☆面面垂直的判定与性质1.面面垂直的证明2.面面垂直的性质的应用2014江苏,16 面面垂直的判定线面平行的判定★★★2016江苏,16 面面垂直的判定线面平行的判定分析解读空间的垂直问题是江苏高考的热点内容,几乎每年都考,主要考查面面垂直的判定与性质,偶尔涉及线面垂直的判定与性质,一般与平行关系综合在一起考查,一问线面,一问面面,在解答题的前两题中出现,属于简单题.在复习中,要注重表述的规范,逻辑的严谨以及定理、公理、定义使用的完备性,这是最近几年高考阅卷的重点.破考点【考点集训】考点一直线与平面垂直的判定与性质1.(2018江苏海安中学检测)设l,m,n为三条不同的直线,α为一个平面,给出下列命题:①若l⊥α,则l与α相交;②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;③若l∥m,m∥n,l⊥α,则n⊥α;④若l∥m,m⊥α,n⊥α,则l∥n.其中正确命题的序号为.答案①③④2.(2018江苏苏州木渎中学期初)若α、β是两个相交平面,则在下列命题中,真命题的序号为.(写出所有真命题的序号)①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线;②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直;③若直线m⊂α,则在平面β内,不一定存在与直线m垂直的直线;④若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线.答案②④3.如图,已知直三棱柱ABC-A1B1C1中,AB=AC,D为BC的中点.求证:AD⊥平面BB1C1C.证明∵三棱柱ABC-A1B1C1为直三棱柱,∴CC1⊥底面ABC,∴CC1⊥AD.∵AB=AC,且D为BC中点,∴AD⊥BC,∵BC∩CC1=C,所以AD⊥平面BB1C1C.考点二平面与平面垂直的判定与性质1.(2017江苏无锡辅仁中学质检)如图,在四棱锥P-ABCD中,AB∥CD,AC⊥BD,AC与BD交于点O,且平面PAC⊥平面ABCD,E为棱PA上一点.(1)求证:BD⊥OE;(2)若AB=2CD,AE=2EP,求证:EO∥平面PBC.证明(1)因为平面PAC⊥底面ABCD,平面PAC∩底面ABCD=AC,BD⊥AC,BD⊂平面ABCD,所以BD⊥平面PAC,又因为OE⊂平面PAC,所以BD⊥OE.(2)因为AB∥CD,AB=2CD,AC与BD交于点O,所以CO∶OA=CD∶AB=1∶2,又因为AE=2EP,所以CO∶OA=PE∶EA,所以EO∥PC,又因为PC⊂平面PBC,EO⊄平面PBC,所以EO∥平面PBC.2.(2018江苏海门中学检测)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.证明:平面AEC⊥平面BED.证明因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,AC⊂平面ABCD,所以AC⊥BE.又BE∩BD=B,所以AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.炼技法【方法集训】。
2020年(江苏)高考数学(理)大一轮复习检测:专题十七 立体几何

专题十七立体几何一、填空题考向一立体几何中的计算问题1.(2017·苏州、无锡、常州、镇江二模)已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.2.(2018·南通、泰州一模)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知正六棱柱的底面边长、高都为4 cm,圆柱的底面积为9 cm2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为cm.(不计损耗)(第2题)(第3题)3.(2018·苏州期初)如图,正四棱锥P-ABCD的底面一边AB的长为2 cm,侧面积为8 cm2,则它的体积为cm3.4.(2017·江苏大联考)已知正四面体P-ABC的棱长为2,若M,N分别是PA,BC的中点,则三棱锥P-BMN 的体积为.(第5题)5.(2018·苏州一模)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为.(容器壁的厚度忽略不计,结果保留π)6.(2018·无锡一模)在直三棱柱ABC-A1B1C1中,已知AB⊥BC,AB=3,BC=4,AA1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为.考向二立体几何中的命题真假的判定问题7.(2017·丹阳高级中学期初)设α,β为两个不重合的平面,m,n为两条不同的直线,给出下列四个命题:①若m⊥n,m⊥α,则n∥α;②若n⊂α,m⊂β,α与β相交且不垂直,则n与m不垂直;③若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β;④若m∥n,n⊥α,α∥β,则m⊥β.其中正确的命题是.(填序号)8.(2016·南京三模)已知α,β是两个不重合的平面,l,m是两条不同的直线,l⊥α,m⊂β.给出下列四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③m∥α⇒l⊥β;④l⊥β⇒m∥α.其中正确的命题是.(填序号)9.(2016·镇江期末)已知b,c表示两条不同的直线,α,β表示两个不重合的平面,给出下列四个命题:①若b⊂α,c∥α,则b∥c;②若b⊂α,b∥c,则c∥α;③若c∥α,α⊥β,则c⊥β;④若c∥α,c⊥β,则α⊥β.其中正确的命题是.(填序号)10.(2017·南京、盐城、连云港二模)已知α,β是两个互不重合的平面,m,n是两条不同的直线,下列命题中正确的是.(填序号)①若α∥β,m⊂α,则m∥β;②若m∥α,n⊂α,则m∥n;③若α⊥β,α∩β=n,m⊥n,则m⊥β;④若n⊥α,n⊥β,m⊥α,则m⊥β.11.(2017·广州模拟)已知α,β是两个不重合的平面,m,n是两条不同的直线,则下列说法中正确的是.(填序号)①若m∥α,α∩β=n,则m∥n;②若m⊥α,n⊥m,则n∥α;③若m⊥α,n⊥β,α⊥β,则m⊥n;④若α⊥β,α∩β=n,m⊥n,则m⊥β.(第12题)12.(2017·咸阳模拟)如图,在棱长均相等的正四棱锥P-ABCD中,O为底面正方形的中心,M,N分别为侧棱PA,PB的中点,有下列结论:①PC∥平面OMN;②平面OMN⊥平面PAB;③OM⊥PA;④平面PCD∥平面OMN.其中正确的结论是.(填序号)考向三立体几何中的综合问题(第13题)13.(2016·无锡期末)如图,在圆锥VO中,O为底面圆的圆心,点A,B在圆O上,且OA⊥OB.若OA=VO=1,则点O到平面VAB的距离为.14.(2016·南通、扬州、淮安、宿迁、泰州二调)在体积为的四面体ABCD中,若AB⊥平面BCD,AB=1,BC=2,BD=3,则CD长度的所有值为.二、解答题15.(2017·常州一模)如图,在三棱柱ABC-A1B1C1中,所有棱长都相等,且∠ABB1=60°,D为AC的中点.(1)求证:B1C∥平面A1BD;(2)求证:AB⊥B1C.(第15题)16.(2017·苏州、无锡、常州、镇江二模)如图,在斜三棱柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1∩A1C=O,E是棱AB上一点,且OE∥平面BCC1B1.(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.(第16题)17.(2017·扬州一模)如图,在四棱锥P-ABCD中,底面ABCD是矩形,E,F分别是棱PC和PD的中点.(1)求证:EF∥平面PAB;(2)若AP=AD,且平面PAD⊥平面ABCD,求证:AF⊥平面PCD.(第17题)18.(2018·苏州一模)如图,在正方体ABCD-A1B1C1D1中,已知E,F,G,H分别是A1D1,B1C1,D1D,C1C的中点.(1)求证:EF∥平面ABHG;(2)求证:平面ABHG⊥平面CFED.(第18题)19.(2018·苏州期初)如图,在三棱锥P-ABC中,已知平面PBC⊥平面ABC.(1)若AB⊥BC,CP⊥PB,求证:CP⊥PA;(2)若过点A作直线l⊥平面ABC,求证:l∥平面PBC.(第19题)20.(2018·常州一模)如图,四棱锥P-ABCD的底面ABCD是平行四边形,PC⊥平面ABCD,PB=PD,点Q 是棱PC上异于P,C的一点.(1)求证:BD⊥AC;(2)过点Q和AD的平面截四棱锥得到截面ADQF(点F在棱PB上),求证:QF∥BC.(第20题)专题十七立体几何(第1题)1.【解析】如图,在正四棱锥P-ABCD中,PA=,AB=2,故AO=AB=,所以PO==1,所以V=Sh=×22×1=.2. 2【解析】由题知,铜质六角螺帽毛坯的体积V=6××42×sin60°-9×4=60(cm3).设正三棱柱的底面边长为a cm,则×a2×sin60°×6=60,解得a=2,所以正三棱柱的底面边长为2 cm.3. 4【解析】设正四棱锥P-ABCD的高为H,斜高为h,由题意得×2×4h=8,解得h=2,所以H==1,所以该四棱锥的体积V=S·H=×(2)2×1=4(cm3).4.【解析】如图,连接AN,作MD⊥PN,垂足为D.因为正四面体P-ABC的棱长为2,M,N分别是PA,BC 的中点,所以AN⊥BC,PN⊥BC,由此可得MN⊥AP,且AN=PN=.因为AN∩PN=N,AN⊂平面PAN,PN⊂平面PAN,所以BC⊥平面PAN.因为MD⊂平面PNA,所以MD⊥BC.因为MD⊥PN,BC∩PN=N,BC⊂平面PBN,PN⊂平面PBN,所以MD⊥平面PBN.又由题知MN==,因为PN·MD=PM·MN,所以MD===,所以三棱锥P-BMN 的体积==×S△PBN×MD=××1××=.(第4题)5. 30π【解析】由题图知,该鲁班锁外接球的直径与长、宽、高分别为2,1,5的长方体的外接球直径相同.设该球形容器的半径为R,则2R≥,即R≥,所以S=4πR2≥4π×=30π.6. 50π【解析】在直三棱柱ABC-A1B1C1中,因为AB⊥BC,所以可以将该直三棱柱补形成长、宽、高分别为3,4,5的长方体,该长方体的体对角线长即为该直三棱柱的直径,且2R==5,所以S=4πR2=50π.7.③④【解析】因为m⊥α,m⊥n,所以n∥α或n⊂α,故①错误;对于②,当m平行α与β的交线,n垂直于α与β的交线时,m⊥n,故②错误;由面面垂直的性质定理知③正确;因为n⊥α,α∥β,所以n⊥β,又m∥n,所以m⊥β,故④正确.8.①④【解析】对于①,因为l⊥α且α∥β,所以l⊥β,又m⊂β,所以l⊥m,故①正确;对于②,由l⊥α,α⊥β,可知l∥β或l⊂β,则l与m的位置关系不确定,故②不正确;对于③,由m∥α且m⊂β,可知α与β平行或相交,若α与β相交,则l与β不垂直,故③不正确;对于④,由l⊥α且l⊥β,可知α∥β,又m⊂β,所以m∥α,故④正确.9.④【解析】对于①,b与c的位置关系不确定;对于②,可能c⊂α;对于③,c与β的位置关系不确定;只有④是正确的.10.①④【解析】①是面面平行的性质,故①正确;②m,n可能异面,故②错误;③当m⊄α时,m⊥β不成立,故③错误;④由m⊥α,n⊥α,得m∥n,又n⊥β,所以m⊥β,故④正确.(第11题)11.③【解析】对于①,如图,m∥α,α∩β=n,此时m,n异面,故①错误;对于②,若m⊥α,m⊥n,则n∥α或n⊂α,故②错误;对于③,若n⊥β,α⊥β,则n∥α或n⊂α,又m⊥α,所以m⊥n,故③正确;对于④,若α⊥β,α∩β=n,m⊥n,则m也可能与β相交、平行或在β内,故④错误.12.①③④【解析】如图,其中E,F分别为AD,BC的中点,G为OE的中点,平面OMN即平面MNFE.因为PC∥OM,所以PC∥平面OMN,同理PD∥ON,又OM∩ON=O,所以平面PCD∥平面OMN,故①④正确;由于四棱锥的棱长均相等,所以PA2+PC2=AB2+BC2=AC2,所以PC⊥PA,又PC∥OM,所以OM⊥PA,故③正确;因为OM=PC=PD=ME,所以MG⊥OE,又MN∥OE,所以GM⊥MN,假设平面OMN⊥平面PAB,则GM⊥平面PAB,则MG⊥PA,设四棱锥的棱长为4,则MA=2,AG=,MG=,三边长度不满足勾股定理,所以MG不垂直PA,与假设矛盾,故②不正确.(第12题)13.【解析】方法一:设点O到平面VAB的距离为h.由题意知=,所以××1×1×1=××h,解得h=.方法二:取AB的中点M,连接OM,VM.在Rt△VOM中,点O到VM的距离即为点O到平面VAB的距离.因为VO=1,OM=,VM=,所以点O到VM的距离d==,故点O到平面VAB的距离为.14.,【解析】因为四面体ABCD的体积V=××2×3×sin∠CBD×1=,所以sin∠CBD=,所以∠CBD=60°或120°.当∠CBD=60°时,CD2=22+32-2×2×3×cos 60°=7,所以CD=;当∠CBD=120°时,CD2=22+32-2×2×3×cos 120°=19,所以CD=.综上,CD长度的所有值为,.15.(1)连接AB1交A1B于点E,连接DE.因为D,E分别为AC,AB1的中点,所以DE∥B1C.因为DE⊂平面A1BD,B1C⊄平面A1BD,所以B1C∥平面A1BD.(2)取AB的中点O,连接OC,OB1.因为BA=BB1,且∠ABB1=60°,所以△ABB1为正三角形.而O为AB的中点,所以OB1⊥AB.在正三角形ABC中,O为AB的中点,所以OC⊥AB.因为OB1∩OC=O,且OB1⊂平面OB1C,OC⊂平面OB1C,所以AB⊥平面OB1C.又因为B1C⊂平面OB1C,所以AB⊥B1C.16.(1)如图,连接BC1,因为OE∥平面BCC1B1,OE⊂平面ABC1,平面BCC1B1∩平面ABC1=BC1,所以OE∥BC1.因为侧面AA1C1C是菱形,AC1∩A1C=O,所以O是AC1的中点.所以==1,即E是AB的中点.(2)因为侧面AA1C1C是菱形,所以AC1⊥A1C.因为AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC.因为BC⊂平面A1BC,所以AC1⊥BC.(第16题)17.(1)因为点E,F分别是棱PC和PD的中点,所以EF∥CD.又在矩形ABCD中,AB∥CD,所以EF∥AB.又AB⊂平面PAB,EF⊄平面PAB,所以EF∥平面PAB.(2)在矩形ABCD中,AD⊥CD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.又AF⊂平面PAD,所以CD⊥AF.因为PA=AD且F是PD的中点,所以AF⊥PD.因为PD⊂平面PCD,CD⊂平面PCD,PD∩CD=D,所以AF⊥平面PCD.18.(1)因为E,F分别是A1D1,B1C1的中点,所以EF∥A1B1.在正方体ABCD-A1B1C1D1中,A1B1∥AB,所以EF∥AB.又EF⊄平面ABHG,AB⊂平面ABHG,所以EF∥平面ABHG.(2)在正方体ABCD-A1B1C1D1中,CD⊥平面BB1C1C.又BH⊂平面BB1C1C,所以BH⊥CD.①如图,设BH∩CF=P,△BCH≌△CC1F,所以∠HBC=∠FCC1.因为∠HBC+∠PHC=90°,所以∠FCC1+∠PHC=90°,所以∠HPC=90°,即BH⊥CF.②由①②,又DC∩CF=C,CF,CD⊂平面CFED,所以BH⊥平面CFED.又因为BH⊂平面ABHG,所以平面ABHG⊥平面CFED.(第18题)(第19题)19.(1)因为平面PBC⊥平面ABC,平面PBC∩平面ABC=BC,AB⊂平面ABC,AB⊥BC,所以AB⊥平面PBC.因为CP⊂平面PBC,所以CP⊥AB.又因为CP⊥PB,且PB∩AB=B,AB,PB⊂平面PAB,所以CP⊥平面PAB,因为PA⊂平面PAB,所以CP⊥PA.(2)如图,在平面PBC内过点P作PD⊥BC,垂足为D.因为平面PBC⊥平面ABC,平面PBC∩平面ABC=BC,PD⊂平面PBC,所以PD⊥平面ABC.又l⊥平面ABC,所以l∥PD.又l⊄平面PBC,PD⊂平面PBC,所以l∥平面PBC.20.(1)因为PC⊥平面ABCD,BD⊂平面ABCD,所以BD⊥PC.如图,记AC,BD的交点为O,连接OP.平行四边形对角线互相平分,则O为BD的中点,又在△PBD中,PB=PD,所以BD⊥OP.又PC∩OP=P,PC,OP⊂平面PAC,所以BD⊥平面PAC.又AC⊂平面PAC,所以BD⊥AC.(2)因为四边形ABCD是平行四边形,所以AD∥BC.又AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.又AD⊂平面ADQF,平面ADQF∩平面PBC=QF,所以AD∥QF.又AD∥BC,所以QF∥BC.(第20题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十三立体几何【真题典例】13.1空间几何体挖命题【考情探究】分析解读江苏高考对于几何体的体积几乎是每年必考,一般以小题呈现,基础题居多.考查的方式如下:一是考查简单几何体的体积,以圆锥和圆柱为主;二是考查锥体或者柱体的等体积转换,利用底面积和高的比例关系,寻求体积的比例;三是考查以空间几何体为背景的应用题,结合不等式、导数、函数等有关知识,寻求体积或者表面积的最优解问题;四是考查简单组合体的体积.破考点【考点集训】考点一空间几何体的结构特征(2019届江苏吴江期初)在正方体上任意选择4个顶点,它们可能是如下各种几何图形的四个顶点,这些几何图形是(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.答案①③④⑤考点二表面积1.(2018江苏宿迁中学周考)在三棱锥S-ABC中,面SAB,面SBC,面SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S-ABC的表面积是.答案3+2.(2019届江苏苏州中学检测)已知圆锥和圆柱的底面半径均为R,高均为3R,则圆锥和圆柱的表面积之比是.答案考点三体积1.(2018江苏南师附中考前模拟)直三棱柱ABC-A1B1C1的各条棱长均为2,D为棱B1C1上任意一点,则三棱锥D-A1BC的体积是.答案2.(2018江苏启东暑期检测)三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,则=.答案炼技法【方法集训】方法一空间几何体表面积的求解方法1.(2019届江苏盐城中学检测)已知圆锥的底面直径与高都是2,则该圆锥的侧面积为.答案π2.将半径为5的圆分割成面积之比为1∶2∶3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为r1,r2,r3,则r1+r2+r3=.答案 5方法二空间几何体体积的求解方法1.(2018江苏启东汇龙中学检测)设M,N分别为三棱锥P-ABC的棱AB,PC的中点,三棱锥P-ABC的体积记为V1,三棱锥P-AMN的体积记为V2,则=.答案2.(2019届江苏淮阴中学暑期检测)已知四棱锥P-ABCD的底面ABCD是边长为2,且∠ABC=60°的菱形,侧棱PA⊥底面ABCD,PA=3.若点M是BC的中点,则三棱锥M-PAD的体积为.答案方法三与球有关的切、接问题的求解方法1.设P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,且PA=PB=PC=1 m,则球的体积为.答案 m32.(2019届江苏海门中学检测)如图,半径为2的半球内有一个内接正六棱锥P-ABCDEF,则此正六棱锥的侧面积是.答案63.设球O内切于正三棱柱ABC-A1B1C1,则球O的体积与正三棱柱ABC-A1B1C1的体积的比值为.答案过专题【五年高考】A组自主命题·江苏卷题组1.(2017江苏,6,5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.答案2.(2014江苏,8,5分)设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为V1、V2,若它们的侧面积相等,且=,则的值是.答案3.(2015江苏,9,5分)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为. 答案B组统一命题、省(区、市)卷题组考点一表面积1.(2018课标全国Ⅱ理,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°.若△SAB的面积为5,则该圆锥的侧面积为.答案40π2.(2018课标全国Ⅰ文改编,5,5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为.答案12π3.(2017课标全国Ⅱ文,15,5分)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.答案14π4.(2017课标全国Ⅰ文,16,5分)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.答案36π5.(2017课标全国Ⅰ文,18,12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.解析本题考查立体几何中面面垂直的证明和几何体侧面积的计算.(1)证明:由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.由于AB∥CD,故AB⊥PD,从而AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)在平面PAD内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD,故AB⊥PE,可得PE⊥平面ABCD.设AB=x,则由已知可得AD=x,PE=x.故四棱锥P-ABCD的体积V P-ABCD=AB·AD·PE=x3.由题设得x3=,故x=2.从而PA=PD=2,AD=BC=2,PB=PC=2.可得四棱锥P-ABCD的侧面积为PA·PD+PA·AB+PD·DC+BC2sin 60°=6+2.方法总结 1.面面垂直的证明证明两个平面互相垂直,可以在一个平面内找一条直线l,证明直线l垂直于另一个平面.2.几何体的表面积直棱柱的侧面积S侧=C底·l,其他几何体一般要对各个侧面、底面逐个分析求解面积,最后求和.考点二体积1.(2018课标全国Ⅰ文改编,10,5分)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为.答案82.(2018课标全国Ⅲ理改编,10,5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为.答案183.(2018天津理,11,5分)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为.答案4.(2018天津文,11,5分)如图,已知正方体ABCD-A1B1C1D1的棱长为1,则四棱锥A1-BB1D1D的体积为.答案5.(2017课标全国Ⅲ理改编,8,5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为.答案6.(2017课标全国Ⅰ理,16,5分)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.答案47.(2015课标Ⅱ文改编,9,5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为.答案144π8.(2016课标全国Ⅲ理改编,11,5分)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是.答案9.(2015山东改编,7,5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为.答案10.(2014陕西改编,5,5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为.答案11.(2016浙江,14,4分)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.答案12.(2017课标全国Ⅲ文,19,12分)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.解析(1)证明:取AC的中点O,连接DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC⊥BO.又BO∩DO=O,从而AC⊥平面DOB,故AC⊥BD.(2)连接EO.由(1)及题设知∠ADC=90°,所以DO=AO.在Rt△AOB中,BO2+AO2=AB2.又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故∠DOB=90°.由题设知△AEC为直角三角形,所以EO=AC.又△ABC是正三角形,且AB=BD,所以EO=BD.故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的,四面体ABCE的体积为四面体ABCD的体积的,即四面体ABCE与四面体ACDE的体积之比为1∶1.C组教师专用题组1.(2013江苏,8,5分)如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=.答案2.(2012江苏,7,5分)如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为cm3.答案 63.(2016课标全国Ⅱ改编,4,5分)体积为8的正方体的顶点都在同一球面上,则该球的表面积为.答案12π4.(2014山东,13,5分)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为.答案125.(2014福建,19,12分)如图,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A-MBC的体积.解析(1)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD.又∵CD⊥BD,AB∩BD=B,AB⊂平面ABD,BD⊂平面ABD,∴CD⊥平面ABD.(2)解法一:由AB⊥平面BCD,得AB⊥BD.∵AB=BD=1,∴S△ABD=.∵M是AD的中点,∴S△ABM=S△ABD=.由(1)知,CD⊥平面ABD,∴三棱锥C-ABM的高h=CD=1,因此三棱锥A-MBC的体积V A-MBC=V C-ABM=S△ABM·h=.解法二:如图,过点M作MN⊥BD交BD于点N,由AB⊥平面BCD知,平面ABD⊥平面BCD,又平面ABD∩平面BCD=BD,所以MN⊥平面BCD,且MN=AB=,又CD⊥BD,BD=CD=1,∴S△BCD=.∴三棱锥A-MBC的体积V A-MBC=V A-BCD-V M-BCD=AB·S△BCD-MN·S△BCD=.评析本题主要考查空间中直线与直线、直线与平面、平面与平面的位置关系及几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想.6.(2014江西,19,12分)如图,三棱柱ABC-A1B1C1中,AA1⊥BC,A1B⊥BB1.(1)求证:A1C⊥CC1;(2)若AB=2,AC=,BC=,问AA1为何值时,三棱柱ABC-A1B1C1体积最大,并求此最大值.解析(1)证明:由AA1⊥BC知BB1⊥BC,又BB1⊥A1B,故BB1⊥平面BCA1,则BB1⊥A1C,又BB1∥CC1,所以A1C⊥CC1.(2)解法一:设AA1=x,在Rt△A1BB1中,A1B=-=.同理,A1C=-=.在△A1BC中,cos∠BA1C=-·=---,sin∠BA1C=--,所以△=A1B·A1C·sin∠BA1C=.从而三棱柱ABC-A1B1C1的体积V=△·AA1=.因为x=-=--,故当x==,即AA1=时,体积V取到最大值.解法二:过A1作BC的垂线,垂足为D,连接AD.由于AA1⊥BC,A1D⊥BC,故BC⊥平面AA1D,BC⊥AD.又∠BAC=90°,所以S△ABC=AD·BC=AB·AC,得AD=.设AA1=x,在Rt△AA1D中,A1D=-=-,△=A1D·BC=.从而三棱柱ABC-A1B1C1的体积V=△·AA1=.因为x=-=--,故当x==,即AA1=时,体积V取到最大值.评析本题考查线线、线面垂直的判定,空间几何体的体积及其最值的求解,考查学生的空间想象能力、推理论证能力和运算求解能力,正确表示几何体的体积是解决本题的关键.【三年模拟】一、填空题(每小题5分,共50分)1.(2019届江苏启东期初)底面边长为2 m,高为1 m的正三棱锥的表面积为m2.答案32.(2018江苏南京学情调研)将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27πcm3,则该圆柱的侧面积为cm2.答案18π3.(2018江苏苏州暑假测试)如图,正四棱锥P-ABCD的底面一边AB的长为2 cm,侧面积为8 cm2,则它的体积为cm3.答案 44.(2019届江苏海门实验学校周考)已知正四棱柱的底面边长为3 cm,侧面的对角线长是3cm,则这个正四棱柱的体积是 cm3.答案545.(2019届江苏海安中学月考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.答案6.(2018江苏无锡期末)直三棱柱ABC-A1B1C1中,已知AB⊥BC,AB=3,BC=4,AA1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为.答案50π7.(2018江苏苏锡常镇四市调研)若正四棱锥的底面边长为2 cm,侧面积为8 cm2,则它的体积为cm3.答案8.(2018江苏盐城中学月考)如图,正三棱柱ABC-A1B1C1中,AB=4,AA1=6.若E,F分别是棱BB1,CC1上的点,则三棱锥A-A1EF的体积是.答案89.(2019届江苏清江中学期初)如图,在直三棱柱ABC-A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M 是AA1的中点,则三棱锥A1-MBC1的体积为.答案 410.(2019届江苏苏州实验中学月考)已知圆锥的高为6,体积为8.用平行于圆锥底面的平面截圆锥,得到的圆台的体积是7,则该圆台的高为.答案 3二、解答题(共10分)11.(2018江苏南京、盐城高三二模)在边长为4的正方形ABCD内剪去四个全等的等腰三角形(如图1中阴影部分),将剩下的部分折叠成底面边长为的正四棱锥S-EFGH(如图2),求正四棱锥S-EFGH的体积.解析设题图1中△BEF的边EF上的高为h1,则BD=+2h1,在四棱锥S-EFGH中,斜高为h1,设高为h2,由BD=4=+2h1,得h1=,∴h2=-=-=2,∴V S-EFGH=S四边形EFGH×h2=×2×2=.。