北师大版八年级数学勾股定理单元测试1

合集下载

第一章勾股定理 单元测试 2024-2025学年北师大版八年级数学上册

第一章勾股定理 单元测试   2024-2025学年北师大版八年级数学上册

第一章勾股定理单元测试一、单选题1.平面直角坐标系中,点P (2,0)平移后对应的点为Q (5,4),则平移的距离为()A .3B .4C .5D .72.如图,在网格中的小正方形边长为1,ABC 和BCD 的顶点都在网格格点上,则ABC 和BCD 的面积之比为()A .1:2B .2:3C .3:2D .3:43.将一根橡皮筋两端固定在点A ,B 处,拉展成线段AB ,拉动橡皮筋上的一点P ,当△APB 是顶角为120°的等腰三角形时,已知AB =6cm ,则橡皮筋被拉长了()A .2cmB .4cmC .()6cmD .(4cm -4.如图,在边长为1的正方形方格中,A ,B ,C ,D 均为格点,构成图中三条线段AB ,BC ,CD .现在取出这三条线段AB ,BC ,CD 首尾相连拼三角形.下列判断正确的是()A .能拼成一个锐角三角形B .能拼成一个直角三角形C .能拼成一个钝角三角形D .不能拼成三角形5.如图,如果△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上),那么△DEF 与△ABC 的周长比为()A .4:1B .3:1C .2:1D 2:16.下列各组数不能组成直角三角形的一组数是()A .5,12,13B .2223,4,5C .7,24,25D .8,15,177.如图,矩形ABCD 中,AC 和BD 相交于点O ,3AD =,4AB =,点E 是CD 边上一点,过点E 作EH BD ⊥于点H ,EG AC ⊥于点G ,则EH EG +的值是()A .2.4B .2.5C .3D .48.如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段50A ,B 在小正方形的顶点上,设AB 与网格线相交所成的锐角为α,则不同角度的α有()A .1种B .2种C .3种D .4种9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE AF =,AC 与EF 相交于点G .下列结论:①AC 垂直平分EF ;②当AEB AEF ∠=∠时,45EAF ∠=︒;③当15DAF ∠=︒时,AEF 为等边三角形:④当C =2−2B 时,BE DF EF +=.其中正确的结论有()个A .1B .2C .3D .410.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD 可以进行如下操作:①把△ABF 翻折,点B 落在C 边上的点E 处,折痕为AF ,点F 在BC 边上;②把△ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH ,点H 在CD 边上,若AD =6,CD =10,则EH EF =()A .32B .53C .43D .54二、填空题11.如图,一高层住宅发生火灾,消防车立即赶到距大厦8米处(车尾AE 到大厦墙面CD ),升起云梯到火灾窗口B .已知云梯AB 长17米,云梯底部距地面的高 1.5AE =米,则发生火灾的住户窗口距离地面多高度BD 是.12.在Rt △ABC 中,90C ∠=︒,10AB =,则2222AB AC BC ++=.13.如图所示,等腰三角形ABC 的底边为8cm ,腰长为5cm ,一动点P (与B 、C 不重合)在底边上从B 向C 以1cm/s 的速度移动,当P 运动秒时,△ACP 是直角三角形14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE 等于.15.在矩形ABCD 中,AB =4,AD =9,点E 在BC 上,CE =4,点F 是AD 上的一个动点,连接BF ,若将四边形ABEF 沿EF 折叠,点A 、B 分别落在点A ′、B '处,则当点B 恰好落在矩形ABCD 的一边上时,AF 的长为.三、解答题16.如图,在四边形ABCD 中,90B ∠=︒,AC 为对角线,8AB =,6BC =,215CD =,10AD =.(1)求AC 的长;(2)求ACD 的面积.17.某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离了欲到达点B ,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).18.如图,在四边形ABCD 中,CD =AD =2,∠D =90°,AB =5.BC =3.(1)求∠C 的度数;(2)求四边形ABCD 的面积.19.如图所示,有一张长方形纸片ABCD ,8AB =,6AD =.现折叠该纸片使得AD 边与对角线DB 重合,折痕为DG ,点A 落在F 处,(1)DF =____________,BF =____________;(2)求AG 的长.20.如图,射线AM AN ⊥于点A 、点C 、B 在AM 、AN 上,D 为线段AC 的中点,且DE BC ⊥于点E .(1)若10BC =,直接写出22AC AB +的值;(2)若8AC =,ABC 的周长为24,求ABC 的面积;(3)若6AB =,C 点在射线AM 上移动,问此过程中,22BE CE -的值是否为定值?若是,请求出这个定值;若不是,请求出它的取值范围.21.如图,在平面直角坐标系中,O 为坐标原点,ABC 的边BC 在x 轴上,A C 、两点的坐标分别为0,、s 0,−5,0,且−32+3−12=0,点P 从B 出发以每秒2个单位的速度沿射线BO 匀速运动,设点P 运动时间为t 秒.(1)求A C 、两点的坐标;(2)连接PA ,当POA 的面积是2,求t 的值?(3)当P 在线段BO 上运动时,是否存在一点P ,使PAC 是等腰三角形?若存在,请直接写出满足条件的所有P 点的坐标.。

新版北师大版八年级数学上册第1章《勾股定理》单元测试试卷及答案(1)

新版北师大版八年级数学上册第1章《勾股定理》单元测试试卷及答案(1)

D C B A FE D C B A 新版北师大版八年级数学上册第1章《勾股定理》单元测试试卷及答案(1)一、填空题(1. 如图,在长方形ABCD 中,已知BC=10cm ,AB=5cm ,则对角线BD= cm 。

2. 如图,在正方形ABCD 中,对角线为22,则正方形边长为 。

3. 把直角三角形的两条直角边同时扩大到原来的2倍,则其斜边扩大到原来的 。

4. 三角形中两边的平方差恰好等于第三边的平方,则这个三角形是 三角形。

5. 飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行 千米。

6. 在Rt △ABC 中,∠C=90°,若a:b=3:4,c=20,则a= ,b= 。

7. 已知一个直角三角形的两边长分别是3和4,则第三边长为 。

8. 如图所示,在矩形ABCD 中,AB=16,BC=8,将矩形沿AC 折叠,点D 落在点E 处,且CE 与AB 交于点F ,那么AF= 。

9. 如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形茶杯中,设筷子露在杯子外面的长为acm (茶杯装满水),则a 的取值范围是 。

10. 如图,数轴上有两个Rt △ABC 、Rt △ABC ,OA 、OC 是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O 为圆心,OA 、OC 为半径画弧交x 轴于E 、F ,则E 、F 分别对应的数是 。

11. 一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,则一个半小时后两船相距 海里。

12. 所谓的勾股数就是指使等式a 2+b 2=c 2成立的任何三个自然数。

我国清代数学家罗士林钻研出一种求勾股数的方法,即对于任意正整数m 、n (m >n ),取a=m 2-n 2,b=2mn ,c=m 2+n 2,则a 、b 、c 就是一组勾股数。

(完整版)北师大版八年级上册数学第一章《勾股定理》单元测试卷(含答案),推荐文档

(完整版)北师大版八年级上册数学第一章《勾股定理》单元测试卷(含答案),推荐文档

7 7第一章《勾股定理》单元测试卷班别:姓名:一、选择题(本题共10 小题,每小题3 分,满分30 分)1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.122.已知a=3,b=4,若a,b,c 能组成直角三角形,则c=()A.5B.C.5 或D.5 或63.如图中字母A 所代表的正方形的面积为()A.4 B.8 C.16 D.644.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形5.直角三角形的一直角边长是7cm,另一直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm6.适合下列条件的△ABC 中,直角三角形的个数为()①a= ,b=,c= ②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2 个B.3 个C.4 个D.5 个7.在△ABC 中,若a=n2﹣1,b=2n,c=n2+1,则△ABC 是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形3 8. 直角三角形斜边的平方等于两条直角边乘积的2 倍,这个三角形有一个锐角是 ( ) A .15°B .30°C .45°D .60°9. 已知,如图长方形 ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点 D 重合,折痕为 EF ,则△ABE 的面积为( ) A .3cm 2B .4cm 2C .6cm 2 D.12cm 210. 已知,如图,一轮船以 16 海里/时的速度从港口 A 出发向东北方向航行,另一轮船以 12 海里/时的速度同时从港 口 A 出发向东南方向航行,离开港口 2 小时后,则两船相距( ) A .25 海里B .30 海里C .35 海里D . 40 海里二、填空题(本题共 8 小题,每小题 3 分,满分 24 分)11. 一个三角形三边长度之比为 1∶2∶ ,则这个三角形的最大角为度.12. 如图,等腰△ABC 的底边 BC 为 16,底边上的高 AD 为 6,则腰长 AB 的长为. 13.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点 C 偏离欲到达点 B200m ,结果他在水中实际游了 520m ,求该河流的宽度为m .14.小华和小红都从同一点O 出发,小华向北走了9 米到A 点,小红向东走到B 点时,当两人相距为15 米,则小红向东走了米.15.一个三角形三边满足(a +b)2 -c2 = 2ab ,则这个三角形是三角形.16.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面(填”合格”或”不合格”).17.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为cm2.18.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是.三、解答题(共46 分)19.在RtΔABC 中,∠A CB=90°,AB=5,AC=3,CD⊥AB 于D,求CD 的长.CA BD21.(7 分)如图,在△ABC 中,AD⊥BC 于D,AB=3,BD=2,DC=1,求AC 的值.22.(8 分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河北牧童A东B 小屋23.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1)A 城是否受到这次台风的影响?为什么?(2)若 A 城受到这次台风影响,那么 A 城遭受这次台风影响有多长时间?《勾股定理》单元测试卷答案一、选择题(共10 小题,每小题3 分,满分30 分)1.C.2.C.3.D.4.C.5.D.6.A.7.D.8.C.9.C.10.D.二、填空题(共8 小题,每小题3 分,满分24 分)11.900 .12.10 .13.480 m.14.12 米.15.直角.16.合格.17.30 cm2.18.25 .三、解答题(共46 分)19.略20.解:∵∠ACB=90°,AB=5,AC=3,∴BC2 = AB2 -AC2=42,∴BC=4,∵CD⊥AB,1 1 12∴AB·CD= AC·BC,∴5CD=12,∴CD=.2 2 5.21.解:∵AD⊥BC 于D,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD2=AB2﹣BD2=5∵DC=1,∴AC2=AD2+DC2=5+1=6.∴AC=22.解:设矩形的长是a,宽是b,根据题意,得:,(2)+(1)×2,得(a+b)2=196,即a+b=14,所以矩形的周长是14×2=28m.23.如图,作出A 点关于MN 的对称点A′,则A′A=8 km,连接A′B 交MN 于点P,则A′B 就是最短路线.在Rt△A′DB 中,A′D=15 km,BD=8 km由勾股定理得A′B2= A′D 2+BD2=289∴A′D =17kmA′M P NAD B24.解:(1)由A 点向BF 作垂线,垂足为C,在Rt△ABC 中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A 城要受台风影响;(2)设BF 上点D,DA=200 千米,则还有一点G,“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

北师大版八年级数学勾股定理单元测试1

北师大版八年级数学勾股定理单元测试1

北师大版八年级数学勾股定理单元测试1姓名_____________班级____________学号____________分数_____________按住ctrl 键 点击查看更多初中八年级资源1 .一、选择题:(每小题4分,共计20分)1.如图1,在山坡上种树,沿山坡走了10米,高度上升了6米,如果要求树的株距(相邻两棵树之间的水平距离)是4米,那么,斜坡上相邻两棵树之间的坡面距离应是 ( )A .10米B .6米C .5米D .4米 .图15米,13米长的梯子可以达到建筑物的高度是( ) A .12米 B .13 米 C .14米 D .15米.3.如图2,是一块长、宽、高分别是4cm ,2cm 和1cm A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( ) A .5cm B .5.4cm C .6.1cm D .7cm .、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组( ) A .13,12,12 B .12,12,8 C .13,10,12 D .5,8,4. 5.如图3, 一个高,宽的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( ) A . B . C .4米 D .二、填空题(每小题4分,共计32分)70cm 的长的木棒放到一个长、宽、高分别为50cm 、40cm 、30cm 的木箱中,他能放进去吗?_______. 1200米,接着向正东方向走到离家2000米远的地方,这时,李明向正东方向走了______米.8.如图5,小明将一张长为20cm,宽为15cm 的长方形纸剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为_______.图2图3图5 图6 图79.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图6所示,撑脚长A B.DC 为3m,两撑脚间的距离BC为4m,则AC=____m就符合要求.10.如图7,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动_____米.11.如图8,是一长方形公园,如果某人从景点A走到景点C,则至少要走_____米.图8 图9 图1012.在一棵树上的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只猴子爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树______米.13.如图10是一个三级台阶,它的每一级长、宽、高分别是2米、、, A.B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是______米.三、解答题(本题共计48分)14.如图,某人欲垂直横渡一条河,由于水流的影响,他实际上岸地点C偏离了想要达到的B点140米,(即BC=140米),其结果是他在水中实际游了500米(即AC=500米),求该河AB处的宽度.15.我们古代数学中有这样一道数学题:有一棵枯树直立在地上,树高2丈,粗3尺,有一根藤条从树根处缠绕而上,缠绕7周到达树顶,(如图)请问这根藤条有多长?(注:枯树可以看成圆柱;树粗3尺,DBA指的是:圆柱底面周长为3尺,1丈=10尺).16.如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm, 在无风的天气里,彩旗自然下垂,如图. 求彩旗下垂时最低处离地面的最小高度h .彩旗完全展平时的尺寸如左图的长方形(单位:cm).17.如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?18.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?12090 AB 小河东北牧童 小屋2.6m4mAB 4219. 如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽,请问这辆送家具的卡车能否通过这个通道.、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.21. 如图所示,某人到岛上去探宝,从A处登陆后先往东走4km,又往北走,遇到障碍后又往西走2km,再转向北走到处往东一拐,仅走就找到宝藏.问登陆点A与宝藏埋藏点B之间的距离是多少?图1 图2北师大版八年级数学勾股定理单元测试1参考答案1 .答案:一、选择题:(每小题4分,共计20分)1.解析:坡面距离就是斜坡的长. 沿山坡走了10米,高度上升了6米, 则其水平距离为8(米);设斜坡上相邻两棵树之间的坡面距离是x 米, 则由题意知1084x=,所以x=5. 答案: C .2.解析:13米长的梯子可以达到建筑物的高度可设为x 米, 因梯子的底端离建筑物5米,由勾股定理得: x 2=132-52,x=12米. 答案:A .3.解析:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB 2=22(24)137++=;(2) 展开前面上面由勾股定理得AB 2=22(14)229++=;(3)展开左面上面由勾股定理得AB 2=22(21)425++=;所以最短路径的长为5cm . 答案:( ) A .4.解析:等腰三角形的高把等腰三角形分成两个直角三角形, 腰为斜边,高和底边长一半为直角边,因此由三角形三边关系及勾股定理可知( )A . 132≠122+62, B .122≠82+62, C .132=122+52, D .52≠42+42. 答案: C .ABC图45.解析:如图,此题可运用勾股定理解决,设这条木板的长度为x米,由勾股定理得:x222,解得x=3.9.答案: B.二、填空题(每小题4分,共计32分)6.解析:在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大.因此可设放入长方体盒子中的最大长度是x㎝,根据题意,得x2 =502+40 2 +3022 =4900,因为4900<5000,所以能放进去.答案:能.7.解析:如图4,把实际问题转化为数学模型,由题意可知AB=1200,AC=2000,由勾股定理得:BC2=AC2-AB2= 20002-12002=16002 ,所以BC=1600.李明向正东方向走了1600米.答案:1600.8.解析:延长A B.DC构成直角三角形,运用勾股定理得BC2=(15-3)2+(20-4)2=122+162=400,所以BC=20.答案:20cm.图5 图6 图79.解析:由题意可知A B.DC为3m,BC为4m,由勾股定理得:AC2=AB2+BC2=32+42=25=52,所以AC=5.答案:5.10.解析:由题意可知梯子的长是不变的,由云梯长10米 ,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时, 梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8-6=2(米).答案:2.11.解析:依据两点之间线段最短,确定最短路线为长方形公园的对角线长,可设长方形公园的对角线长为x 米,由勾股定理得:x 2=1202+3502,解得x=370. 答案:370.图8 图9 图1012.解析:如图9,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.设树的高度为x 米, 因两只猴子所经过的距离相等都为30米.由勾股定理得:x 2+202=[30-(x-10)]2,解得x=15. 答案:15.13.解析:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为x ,由勾股定理得:x 2=22+[(0.2+0.3)×3]22,x=2.5. 答案:2.5.三、解答题(本题共计48分)14.解析:如图,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决. 答案:在Rt△ABC 中,AB 2+BC 2=AC 2,所以AB 2+1402=5002,解得AB=480. 答:该河AB 处的宽度为480米.15.解析:本题是一道古代数学题,由于树可以近似看作圆柱,藤条绕树缠绕,我们可以按图的方法,转化为平面图形来解决.如图13,线段AB 的长就是古藤的长. 答案:如图13,在Rt△ABC 中,由勾股定理得 AB 2=BC 2+AC 2.因为BC=20,AC=3×7=21, 所以AB 2=202+212=841. 所以AB=29.所以这根藤条有29尺. 答:这根藤条有29尺.D B A120902.6m4m16.解析:如图14,彩旗下垂时最低处离地面的最小高度h 也就是旗杆的高度减去彩旗的对角线的长,彩旗的对角线长为150,所以h=320-150=170cm. 答案:彩旗下垂时最低处离地面的最小高度h 为170cm.. 17.解析:找最短路程,只需要找到A 点关于河岸的对称点和点B的距离就可以,借助勾股定理可以求出来. 答案:如图,作出A 点关于MN 的对称点A′,连接A′B 交MN 于点P,则A′B 就是最短路线. 在Rt△A′DB 中,由勾股定理求得A′B=17km.18.解析:本题关键是能将红莲移动后的图画出, 红莲被吹至一边,花朵刚好齐及水面即AC 为红莲的长.答案:设水深为h 尺.如图,Rt△ABC 中,AB=h,AC=h+3,BC=6, 由勾股定理得:AC 2=AB 2+BC 2,即(h+3)2=h 2+62. ∴h 2+6h+9=h 2+36,解得:h=4.5. 答:水深尺.19. 解析:如图,卡车能否通过,关键是车高4米与AC 的比较,BC 为,只需求AB,在直角三角形OAB 中,半径OA 为2米,车宽的一半为DC = OB =,运用勾股定理求出AB 即可.答案:过直径的中点O,作直径的垂线交下底边于点D, 如图所示,在Rt△ABO 中,由题意知OA=2,DC = OB =1.4, 所以2222 1.4 2.04AB =-=. 因为4-2.6=1.4,21.41.96=,2.04>1.96,所以卡车可以通过.答:卡车可以通过,但要小心.ABDPNA MABDC20. 解析:①只须画直角边为2和3的直角三角形即可.这时直角三角形的面积为:1232⨯⨯=3;②画面积为5的四边形,我们可画边长的平方为5的正方形即可. 答案:如图1和图2.21. 解析:本题需要把实际问题转化为数学模型,构造直角三角形,利用勾股定理完成. 答案:如图,过点B 作BC⊥AD 于C,则AC=2.5,BC=6, 由勾股定理求得AB=6.5(km) .所以登陆点A 与宝藏埋藏点B 之间的距离是6.5km.图2图1。

北师大版数学八年级上册第1章勾股定理 检测卷 (含答案)

北师大版数学八年级上册第1章勾股定理 检测卷 (含答案)

第1章检测卷勾股定理(时间:100分钟满分:120分)题号一二三总分得分一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是 ( )A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a²=c²−b²D. a:b:c=3:4:62.下列各组数中,不能作直角三角形三边长的是 ( )A.3,4,5B.5,12,13C.7,24,25D.7,9,133.若直角三角形的三边长为6,8,m,则m²的值为 ( )A.10B.100C.25D.100 或284.如图,D为△ABC的边BC上一点,已知AB=13,AD=12,AC=15,BD=5,则BC的长为( )A.13B.14C.15D.165.将一根长为25 cm的筷子置于底面直径为5cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外的长为h cm,则 h的取值范围是 ( )A.12≤h≤13B.11≤h≤12C.11≤h≤13D.10≤h≤126.如图,高速公路上有A,B两点相距10km,点 C,D 为两村庄,已知DA=4km,CB=6km. DA⊥AB于点A,CB ⊥AB于点B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,则EA的长是( )A. 4kmB. 5kmC.6kmD.7 km7.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草( )A.1B.2C.3D.48.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为 ( )A.0.7 米B.1.5米C.2.2 米D.2.4米9.在我国古代数学著作《九章算术》的第九章《勾股》中记载了这样的一个问题:“今天有开门去阔(kǔn)一尺,不合二寸,问门广几何?”意思是:如图,推开两扇门(AD 和BC),门边缘 D,C 两点到门槛AB的距离是1 尺(1尺=10寸),两扇门的间隙CD为2寸,那么门的宽度(两扇门的宽度和)AB为 ( )A.101 寸B.100寸C.52寸D.96寸10.如图,圆柱形容器高为18 cm,底面周长为24 cm,在杯内壁离杯底4 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B 处的最短距离为( )A.13cmB.12 cmC.16 cmD.20cm二、填空题(每小题3分,共15 分)11.三个正方形如图摆放,其中两个正方形的面积分别为S₁=25,S₂=144,则第三个正方形的面积为S₃=.12.如图,∠C=90°,AB=12,BC=3,CD=4,AD=13,则∠ABD=.13.一直角三角形的两边长分别为4和5,明明以第三边为正方形的一边,画了个正方形,则明明画的这个正方形的面积等于 .14.如图,每个小正方形的边长都为1,则△ABC的三边长a,b,c的大小关系是 .(用“>”连接)15.如图为一个三级台阶,每一级台阶的长、宽、高分别是50cm,30cm,10cm,A 和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到 B 点,最短路线的长是 cm.三、解答题(本大题共8个小题,共75分)16.(8分)有一朵荷花,花朵高出水面1尺,一阵大风把它吹歪,使花朵刚好落在水面上,此时花朵离原位置的水平距离为3尺,此水池的水深有多少尺?17.(8分)如图所示的一块草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块草坪的面积.18.(8 分)如图,在长方形ABCD 中,AB=3cm,AD=9cm,,将此长方形折叠,使点 B 与点 D 重合,折痕为 EF,求△ABE的面积.19.(9 分)如图,在△ABC中,D 是BC 上一点,若AB=10,BD=6,AD=8,AC=17.(1)求 DC 的长;(2)求△ABC的面积.20.(9分)如图,长方体中AB=BB′=2,AD=3,,一只蚂蚁从A点出发,在长方体表面爬到C′点,求蚂蚁怎样走最短,最短路径是多少.21.(10分)如图,牧童在A 处放羊,其家在B 处,A,B 到河岸的距离分别为AC=400m,BD=200m,C,D间的距离为800 m,牧童从A处把羊牵到河边饮水后再回家,试问:羊在何处饮水所走路程最短?在图中画出最短路径并求出最短路径的长度是多少.22.(11 分)如图,在△ABC中,∠C=90°,AB=5cm,BC=3cm..若点 P 从点 A出发,以每秒2cm的速度沿A→C→B→A运动,设运动时间为ts(t⟩0).(1)当点P在AC上,且满足.PA=PB时,求t的值;(2)若点 P 恰好在∠BAC的平分线上,求t的值.23.(12分)勾股定理神秘而美妙,它的证法多样,其中的巧妙各有不同,其中的“面积法”给了小聪灵感,他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明勾股定理.下面是小聪利用图1 证明勾股定理的过程.将两个全等的直角三角形按图1所示的方式摆放,其中∠DAB=90°.试说明:a²+b²=c².解:连接DB,过点D作DF⊥BC,,交 BC的延长线点于点 F,则DF=EC=b−a.因为S四边形ADCB =SACD+SABC=12b2+12ab,S四边形ADCB =SABD+SDCB=12c2+12a(b−a).所以12b2+12ab=12c2+12a(b−a).所以a²+b²=c².请参照上述方法,回答下面的问题.将两个全等的直角三角形按图2所示的方式摆放,其中∠DAB=90°.试说明:a²+b²=c².第1章检测卷勾股定理1. D2. D3. D4. B5. A6. C7. D8. C9. A 10. D 11.16912.90° 13.41或9 14. c>a>b 1 5.13016.解:设水深x尺,那么荷花径的长为(x+1)尺.由勾股定理得x²+3²=(x+1)².解得x=4.答:水池的水深有4 尺.17.解:如图,连接AC,则在Rt△ADC中,AC²=AD²+CD²=12²+9²=225,所以AC=15.在△ABC中,.AB²=1521.因为AC²+BC²=15²+36²=1521,所以AB²=AC²+BC².所以△ABC是直角三角形,∠ACB=90°.所以SABC −SAcD=12AC⋅BC−12AD⋅CD=12×15×36−12×12×9=270-54=216(m²).答:这块草坪的面积是216平方米.18.解:因为四边形ABCD 是长方形,所以∠A=90°.设BE=x cm.由折叠的性质可得DE=BE=x cm.所以AE=AD-DE=(9-x) cm.在Rt△ABE中,BE²=AE²+AB²,所以x²=(9−x)²+3².解得x=5.所以DE=BE=5cm,AE=4 cm.所以SABE =12AB⋅AE=12×3×4=6(cm2).19.解:(1)因为在△ABD中,.AB=10,BD=6,AD=8,所以AB²=100,BD²+AD²=36+64=100.所以AB²=BD²+AD².所以△ABD是直角三角形.所以AD⊥BC,即∠ADC=90°.在Rt△ADC中,AD=8,AC=17,由勾股定理得DC²=17²−8²=225,所以DC=15.(2)SABC =12AD⋅BC=12AD⋅(BD+DC)=84.20.解:①如图1,把长方体沿.A→A′→D′→C′→C→D→A剪开,则成长方形ACC'A',宽为AA′=BB′=2,长为AD+DC=AD+AB=5.连接AC',则点A,C,C'构成直角三角形,由勾股定理得AC′²= (AD+DC)²+DD′²=5²+2²=29.②如图2,把长方体沿. A→A ′→B ′→C ′→D ′→D→A 剪开,则成长方形ADC'B',宽为AD=3,长为 DD ′+D ′C ′=BB ′+AB =4.连接AC',则点A,D,C'构成直角三角形,由勾股定理得 AC ′²=AD²+(DD ′+D ′C ′)=3²+4²=25.因为25<29,所以最短路径是5.21.解:作点 B 关于 CD 的对称点 B',连接AB'交 CD 于点 P,连接PB,此时PA+PB 的值最小,最小值为AB'的长.过点 A 作AE⊥B'B 交B'B 的延长线于点 E.在 Rt△AED'中,因为AE=CD=800 m,B'E=AC +B'D =AC +BD=400+200=600(m),所以 AB ′²=AE²+B ′E²=800²+600².所以 AB ′=1000m.即最短路程的长度是1 000 m.22.解:(1)因为AB=5cm,BC =3cm,∠C=90°,所以由勾股定理得 AC²=AB²−BC²=5²−3²=16,所以 A C=4 cm.当PA=PB =2t cm 时,PC=(4-2t) cm.在 Rt△PCB 中,由勾股定理得 PC²+BC²=PB².即 (4−2t )²+3²=(2t )².解得 t =2516.所以PA=PB 时,t 的值为 2516.(2)当点 P 在∠BAC 的平分线上时,如图,过点 P 作 PE⊥AB 于点 E.此时BP=(7-2t) cm,PE=PC=(2t-4) cm,BE=5-4=1(cm),其中0<t<3.5.在 Rt△BEP 中,由勾股定理得 PE²+BE²=BP².即 (2t−4)²+1²=(7−2t )²,解得 t =83.当t=6时,点P 与点A 重合,也符合条件.所以点 P 恰好在∠BAC 的平分线上时,t 的值为 83或6.23.解:连接BD,过点B 作BF⊥DE,交DE 的延长线于点 F,易知BF=b-a.因为S CBED =S ABC +S ABD +S BDE =12ab +12c 2+ 12a (b−a ),S ACBED =S ACBE +S ADE =12b (a +b )+12ab,所以12ab +12c 2+12a (b−a )=12b (a +b )+12ab.所以 a²+b²=c².。

北师大版八年级数学上册第一章勾股定理测试题(含答案)

北师大版八年级数学上册第一章勾股定理测试题(含答案)

八年级上北师大版第一章勾股定理测试题(一)一、选择题(每小题3分,共30分)1. 下列各组中,不能构成直角三角形的是 ( ).(A )9,12,15 (B )12,16,20 (C )16,30,32 (D )9,40,412. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).(A )6 (B )8 (C )10 (D )123. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中△ABE 的面积为( ). (A )9 (B )3 (C )49 (D )29 4. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为( ).(A )11 (B )10 (C )9 (D )85. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是( ).(A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).(A )6 (B )8.5 (C )1320 (D )1360 7. 高为3,底边长为8的等腰三角形腰长为 ( ).(A )3 (B )4 (C )5 (D )68. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需 ( ).(A )6秒 (B )5秒 (C )4秒 (D )3秒9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2)(b a + 的值为 ( ). (A )49 (B )25 (C )13 (D )110. 如图5所示,在长方形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE=12,BF=16,则由点E 到F 的最短距离为 ( ).(A )20 (B )24 (C )28 (D )32二、填空题(每小题3分,共30分)11. 写出两组直角三角形的三边长.(要求都是勾股数)12. 如图6(1)、(2)中,(1)正方形A 的面积为.(2)斜边x=.13. 如图7,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于.14. 四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,任选三根组成三角形,其中有个直角三角形.15. 如图8,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为.三、简答题(50分)16.(8分)如图9,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD 的面积.17.(8分)如图10,方格纸上每个小正方形的面积为1个单位.(1)在方格纸上,以线段AB 为边画正方形并计算所画正方形的面积,解释你的计算方法.(2)你能在图上画出面积依次为5个单位、10个单位、13个单位的正方形吗?18.(8分)如图12,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶5000米.飞机每小时飞行多少千米?21.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?一、选择题1.C2.B3.C4.B5.D6.D7.C8.C9.A 10.A二、填空题11.略 12.(1)36,(2)13 13. 2π 14. 1 15. 3三、简答题16. 在Rt △ABC 中,AC=54322=+. 又因为22213125=+,即222CD AC AD =+.所以∠DAC=90°.所以125214321⨯⨯+⨯⨯=+=∆∆ABC Rt ACD Rt ABCD S S S 四边形=6+30=36. 17.略18. 如图12,在Rt △ABC 中,根据勾股定理可知,BC=30004000500022=-(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.20. (1)10;(2)4条21. (1)7米;(2)不是.设滑动后梯子的底端到墙的距离为x米,得方程,2)422=x,解得x=15,所以梯子向后滑动了8米.-24(25-。

北师大版数学八年级上册单元测试-第一章

北师大版数学八年级上册单元测试-第一章

B16925北师大版八上第一章《勾股定理》1.1-1.3单元测试一、耐心填一填(每小题5分,共30分)1、如图所示的一段楼梯,其中高BC =3米,斜边AB =5米,楼梯宽2米计划在楼梯上铺地毯,每平方米用20元,则地毯的费用为_____元。

2、求图中直角三角形中未知的长度:b =__________,c =____________.3、艳艳从家到学校时,先向正南方向走了150米,接着向正东方向走了200米,则艳艳家离学校的最短距离为________米。

4、若三角形三边长a ,b ,c 满足条件(a +b )2=c 2+2ab ,则此三角形为________.5、四根小木棒的长度分别为5c m ,8c m ,12c m ,13c m ,任选三根可组成_____个三角形,其中有_____个直角三角形。

6、一个长方形的长为40,对角线长为41,则这个长方形的周长为_______。

7、直角三角形的周长为12c m ,一直角边的长为4c m ,则其面积为 ;8、已知一个Rt △的两边长分别为3和4,则第三边长的平方是________.9、东东把一根70c m 长的木棒放到一个长、宽、高分别为30c m 、40c m 、50c m 的木箱中,他能放进去吗?答: .(填“能”、或“不能”)10、如图,小虎欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达B 点200m ,结果他在水中实际游了520m ,则该河流的宽度为 .二、精心选一选(每小题5分,共30分)1、如图字母B 所代表的正方形的面积是 ( )A . 12B .13C . 144D .194 2、在Rt △ABC 中,∠C =900,若a =11,c =61,则b =(B )A .63B .60C .48D .583、在直角三角形中,两条直角边分别为5和12,则斜边上的高为( )A .5B .1360C .4D .125_7ABC200m520m4、如图小方格都是边长为1的正方形,则四边形ABC D 的面积是 ( ) A .25 B .12.5 C .9 D .8.55、直角三角形的两直角边同时扩大到原来的2倍,其斜边扩大到原来的( )A .2倍B .3倍C .4倍D .不变 6、下列各组数中不能作为直角三角形的三边长的是( )A . 1.5,2,3;B . 7,24,25;C .6,8,10;D . 9,12,15. 7、一个直角三角形,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25; B .三角形的周长为25; C .斜边长为5; D .三角形面积为20.8、兵兵的妈妈买了一部29英寸(74c m)的电视机,下列对29英寸的说法中正确的是( ) A .兵兵认为指的是屏幕的长度; B .兵兵的妈妈认为指的是屏幕的宽度; C .兵兵的爸爸认为指的是屏幕的周长; D .售货员认为指的是屏幕对角线的长度.9、一架250c m 的梯子斜靠在墙上,这时梯足距墙终端距离为70c m ,如果梯子顶端沿墙下滑40c m ,那么梯足将向外滑动(C )A .150cmB .90cmC .80cmD .40cm10、在A 地有甲、乙两支部队,接到命令后分别沿着东南方向与西南方向参加长江大堤的抗洪抢险。

北师大版八年级上册数学第一章勾股定理测试卷(附答案)

北师大版八年级上册数学第一章勾股定理测试卷(附答案)

13.在
中, ∠ , ∠ , ∠ 的对边分别是 、 、 ,若 2 + 2 = 25, 2 − 2 = 7 ,又 = 5 ,则
最大边上的高为________.
14.如图,H 是△ABC 内一点,BH⊥CH,AH=6,CH=3,BH=4,D、E、F、G 分别是 AB、AC、CH、BH 的 中点,则四边形 DEFG 的周长是________.
理由如下:连接 OD. ∵OA=OD ∴∠ODA=∠A 又∵∠BDE=∠A ∴∠ODA=∠BDE ∵AB 是⊙O 直径 ∴∠ADB=90° 即∠ODA+∠ODB=90° ∴∠BDE+∠ODB=90° ∴∠ODE=90° ∴OD⊥DE ∴DE 与⊙O 相切; (2)∵R=5, ∴AB=10, 在 Rt△ABC 中
BC 中,∠ABC=90°,以 AB 为直径的⊙O 与 AC 边交于点 D,过点 D 的直线交 BC 边于点 E, ∠BDE=∠A. (1)判断直线 DE 与⊙O 的位置关系,并说明理由. (2)若⊙O 的半径 R=5,tanA=34 , 求线段 CD 的长.
15.已知 △

延长线于 G,连接
= , ⊥ ,点 F 在 上,作 ⊥ , ∠ = 2∠ , = = 2 ,则
,直线 交 于 E,交 的长为________.
三、解答题(共 7 题;共 55 分)
16.如图,在△ABC 中,AD 是 BC 边上的高,tanC=
1 2
,AC=3
5 ,AB=4,求△ABC 的周长.
19.如图,一个梯子 AB 长 2.5 米,顶端 A 靠在墙 AC 上,这时梯子下端 B 与墙角 C 距离为 1.5 米,梯子滑动 后停在 DE 的位置上,测得 BD 长为 0.2 米,求梯子顶端 A 下落了多少米?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级数学勾股定理单元测试1姓名_____________班级____________学号____________分数_____________按住ctrl 键 点击查看更多初中八年级资源1 .一、选择题:(每小题4分,共计20分)1.如图1,在山坡上种树,沿山坡走了10米,高度上升了6米,如果要求树的株距(相邻两棵树之间的水平距离)是4米,那么,斜坡上相邻两棵树之间的坡面距离应是 ( )A .10米B .6米C .5米D .4米 .图12.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A .12米 B .13 米 C .14米 D .15米.3.如图2,是一块长、宽、高分别是4cm ,2cm 和1cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( ) A .5cm B .5.4cm C .6.1cm D .7cm .4.一个木工师傅测量了一个等腰三角形木版的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组( )A .13,12,12B .12,12,8C .13,10,12D .5,8,4. 5.如图3, 一个高1.5米,宽3.6米的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A .3.8米B .3.9米C .4米D .4.4米二、填空题(每小题4分,共计32分)6.小明要把一根长为70cm 的长的木棒放到一个长、宽、高分别为50cm 、40cm 、30cm 的木箱中,他能放进去吗?_______.7.李明从家出发向正北方向走了1200米,接着向正东方向走到离家2000米远的地方,这时,李明向正东方向走了______米.8.如图5,小明将一张长为20cm,宽为15cm 的长方形纸剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为_______.图5图6 图7图2图39.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图6所示,撑脚长A B .DC 为3m,两撑脚间的距离BC 为4m,则AC=____m 就符合要求.10.如图7,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动_____米.11.如图8,是一长方形公园,如果某人从景点A 走到景点C,则至少要走_____米.图8 图9 图1012.在一棵树上的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘A 处,另一只猴子爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树______米.13.如图10是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米, A .B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面爬行到B 点最短路程是______米. 三、解答题(本题共计48分)14.如图,某人欲垂直横渡一条河,由于水流的影响,他实际上岸地点C 偏离了想要达到的B 点140米,(即BC=140米),其结果是他在水中实际游了500米(即AC=500米),求该河AB 处的宽度.15.我们古代数学中有这样一道数学题:有一棵枯树直立在地上,树高2丈,粗3尺,有一根藤条从树根处缠绕而上,缠绕7周到达树顶,(如图)请问这根藤条有多长?(注:枯树可以看成圆柱;树粗3尺,指的是:圆柱底面周长为3尺,1丈=10尺).16.如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm, 在无风的天气里,彩旗自然下垂,如图. 求彩旗下垂时最低处离地面的最小高度h .彩旗完全展平时的尺寸如左图的长方形(单位:cm).D B A17.如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?18.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?19. 如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道.20.图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.21. 如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km,又往北走1.5km,遇到障碍后又往西走2km,再转向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?图1图2小河北师大版八年级数学勾股定理单元测试1参考答案1 .答案:一、选择题:(每小题4分,共计20分)1.解析:坡面距离就是斜坡的长. 沿山坡走了10米,高度上升了6米, 则其水平距离为8(米);设斜坡上相邻两棵树之间的坡面距离是x 米, 则由题意知1084x=,所以x=5. 答案: C .2.解析:13米长的梯子可以达到建筑物的高度可设为x 米, 因梯子的底端离建筑物5米,由勾股定理得: x 2=132-52,x=12米. 答案:A .3.解析:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB 2=22(24)137++=;(2) 展开前面上面由勾股定理得AB 2=22(14)229++=;(3)展开左面上面由勾股定理得AB 2=22(21)425++=;所以最短路径的长为5cm . 答案:( ) A .4.解析:等腰三角形的高把等腰三角形分成两个直角三角形, 腰为斜边,高和底边长一半为直角边,因此由三角形三边关系及勾股定理可知( )A . 132≠122+62, B .122≠82+62, C .132=122+52, D .52≠42+42.答案: C .5.解析:如图,此题可运用勾股定理解决,设这条木板的长度为x 米, 由勾股定理得:x 2=1.52+3.62,解得x=3.9. 答案: B .二、填空题(每小题4分,共计32分)6.解析:在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大. 因此可设放入长方体盒子中的最大长度是x ㎝, 根据题意,得x 2=502+40 2+302=5000.702=4900, 因为4900<5000,所以能放进去. 答案:能.7.解析:如图4,把实际问题转化为数学模型, 由题意可知AB=1200,AC=2000, 由勾股定理得:BC 2=AC 2-AB 2= 20002-12002=16002,所以BC=1600.李明向正东方向走了1600米. 答案:1600.8.解析:延长A B .DC 构成直角三角形,运用勾股定理得 BC 2=(15-3)2+(20-4)2=122+162=400,所以BC=20. 答案:20cm.图5 图6 图7 9.解析:由题意可知A B .DC 为3m,BC 为4m,由勾股定理得: AC 2=AB 2+BC 2=32+42=25=52,所以AC=5. 答案:5.10.解析:由题意可知梯子的长是不变的,由云梯长10米 ,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时, 梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8-6=2(米). 答案:2.11.解析:依据两点之间线段最短,确定最短路线为长方形公园的对角线长,可设长方形公园的对角线长为x 米,由勾股定理得:x 2=1202+3502,解得x=370. 答案:370.图8 图9 图1012.解析:如图9,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.设树的高度为x 米, 因两只猴子所经过的距离相等都为30米.由勾股定理得:x 2+202=[30-(x-10)]2,解得x=15.答案:15.13.解析:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为x ,由勾股定理得:x 2=22+[(0.2+0.3)×3]2=2.52,x=2.5. 答案:2.5.三、解答题(本题共计48分)14.解析:如图,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决. 答案:在Rt△ABC 中,AB 2+BC 2=AC 2,所以AB 2+1402=5002,解得AB=480. 答:该河AB 处的宽度为480米.15.解析:本题是一道古代数学题,由于树可以近似看作圆柱,藤条绕树缠绕,我们可以按图的方法,转化为平面图形来解决.如图13,线段AB 的长就是古藤的长. 答案:如图13,在Rt△ABC 中,由勾股定理得 AB 2=BC 2+AC 2.因为BC=20,AC=3×7=21, 所以AB 2=202+212=841. 所以AB=29.所以这根藤条有29尺. 答:这根藤条有29尺.16.解析:如图14,彩旗下垂时最低处离地面的最小高度h 也就是旗杆的高度减去彩旗的对角线的长,彩旗的对角线长为150,所以h=320-150=170cm. 答案:彩旗下垂时最低处离地面的最小高度h 为170cm..17.解析:找最短路程,只需要找到A 点关于河岸的对称点和点B 的距离就可以,借助勾股定理可以求出来.答案:如图,作出A 点关于MN 的对称点A′,连接A′B 交MN 于点P,则A′B 就是最短路线. 在Rt△A′DB 中,由勾股定理求得A′B=17km.18.解析:本题关键是能将红莲移动后的图画出, 红莲被吹至一边,花朵刚好齐及水面即AC 为红莲的长. 答案:设水深为h尺.如图,Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得:AC 2=AB 2+BC 2,即(h+3)2=h 2+62. ∴h 2+6h+9=h 2+36,解得:h=4.5.D B A答:水深4.5尺.19. 解析:如图,卡车能否通过,关键是车高4米与AC 的比较,BC 为2.6米,只需求AB,在直角三角形OAB 中,半径OA 为2米,车宽的一半为DC = OB =1.4米,运用勾股定理求出AB 即可. 答案:过直径的中点O,作直径的垂线交下底边于点D, 如图所示,在Rt△ABO 中,由题意知OA=2,DC = OB =1.4, 所以2222 1.4 2.04AB =-=. 因为4-2.6=1.4,21.41.96=,2.04>1.96,所以卡车可以通过.答:卡车可以通过,但要小心.20. 解析:①只须画直角边为2和3的直角三角形即可.这时直角三角形的面积为:1232⨯⨯=3;②画面积为5的四边形,我们可画边长的平方为5的正方形即可. 答案:如图1和图2.21. 解析:本题需要把实际问题转化为数学模型,构造直角三角形,利用勾股定理完成. 答案:如图,过点B 作BC⊥AD 于C,则AC=2.5,BC=6, 由勾股定理求得AB=6.5(km) .所以登陆点A 与宝藏埋藏点B 之间的距离是6.5km.图2图1。

相关文档
最新文档