北师大版八年级数学勾股定理练习及答案
北师大版八年级上《第一章勾股定理》综合性提高训练含答案解析

北师大 8 上第一章勾股定理综合性提升训练(含答案)例题 1、直角三角形的面积为 S ,斜边上的中线长为 d,则这个三角形周长为()(A )d 2S 2d(B )d 2S d(C ) 2 d2S 2d(D ) 2 d2S dS1解:设两直角边分别为 a,b,斜边为 c,则cab由勾股定理 ,得 a 2b 2c 2 .2d , 2 .所以 ab 2a 22ab b 2 c 2 4S 4d 2 4S .所以ab 2 d 2S.所以ab c 2 d 2 S2d.应选( C )例题 2.在 ABC 中, AB AC 1, BC 边上有 2006 个不一样的点P 1, P 2 , P 2006,记 m iAP i 2BP i PC i i 1,2,2006,则 m 1m 2m 2006=_____.解 如图作ADBC 于D ,因为 AB AC 1 ,则 BD CD. :,由勾股定理 ,得AB2AD 2 BD 2, AP 2 AD 2 PD 2 所以.AB 2 AP 2BD 2 PD 2BD PDBD PDBP PC所以AP 2BP PCAB 2 12 .所以m1m 2m200612 2006 2006 .例题 3.如下图,在RtABC 中, BAC90 , ACAB, DAE 45,且 BD 3 ,CE4,求 DE 的长 .解:如右图:因为ABC为等腰直角三角形 ,所以ABDC45.所以把AEC 绕点 A 旋转到 AFB ,则 AFBAEC .所以BFEC 4, AFAE, ABFC45 连结DF. 所以 DBF 为直角三角形 ..由勾股定理 ,得 DF2BF 2 BD 2 4232 52 .所以DF5 .因为 DAE 45 ,所以 DAF DABEAC 45 .所以 ADE ADF SAS .所以DEDF5 .例题 4、如图,在△ ABC 中,AB=AC=6 ,P 为 BC 上随意一点,请用学过的知识试求 PC ·PB+PA 2的值。
1.1 勾股定理的证明 北师大版八年级数学上册同步练习(含解析)

1.1 勾股定理的证明同步练习一.选择题(共10小题)1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则EF的长为( )A.9B.C.D.32.在认识了勾股定理的赵爽弦图后,一位同学尝试将5个全等的小正方形嵌入长方形ABCD 内部,其中点M,N,P,Q分别在长方形的边AB,BC,CD和AD上,若AB=7,BC=8,则小正方形的边长为( )A.B.C.D.23.如图是我国古代著名的“赵爽弦图”,大正方形ABCD是由四个全等的直角三角形和一个小正方形拼接而成,连接EC,若正方形ABCD的面积为10,EC=BC,则小正方形EFGH的面积为( )A.2B.2.5C.3D.3.54.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果大正方形的面积是5,小正方形的面积是1,直角三角形的两直角边长分别是a、b(b>a),则(a+b)2的值为( )A.16B.9C.4D.35.如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则(a+b)2的值为( )A.25B.19C.13D.1696.如图是在北京召开的国际数学家大会的会标,它是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形.若小正方形的面积为8,每个直角三角形比小正方形的面积均小1,则每个小直角三角形的周长是( )A.5+B.9+C.10+D.147.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,若(a+b)2=27,大正方形面积为15,则小正方形面积为( )A.3B.4C.6D.128.如图所示的“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.该图由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=10,大正方形面积为25,则小正方形边长为( )A.B.2C.D.39.我国是最早了解勾股定理的国家之一,下面四幅图中,不能证明勾股定理的是( )A.B.C.D.10.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是( )A.S1=a2+b2+2ab B.S1=a2+b2+abC.S2=c2D.S2=c2+ab二.填空题(共5小题)11.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和四边形EFGH都是正方形,如果AB=15,AH=9,则四边形GFEH的面积为 .12.“赵爽弦图”是我国古代数学的图腾(如图①).小丽同学深受“赵爽弦图”的启发,设计出一个图形(如图②).已知△ABC和△DEF都是等边三角形,D、E、F分别在线段BE、CF和AD上,且满足EC:EF=1:2,若AC=5,则EF = .13.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是1和2,则小正方形与大正方形的面积之比为 .14.魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为 .15.在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成一个大正方形(如图所示,AB<BC).如果小正方形的面积是25,大正方形的面积为49,那么= .三.解答题(共4小题)16.阅读材料,解决问题:三国时期吴国的数学家赵爽创建了一幅“弦图”,利用面积法给出了勾股定理的证明,实际上,该“弦图”与完全平方公式有着密切的关系.如图2,这是由8个全等的直角边长分别为a,b,斜边长为c的三角形拼成的“弦图”.(1)在图2中,正方形ABCD的面积可表示为 ,正方形PQMN的面积可表示为 .(用含a,b的式子表示)(2)请结合图2用面积法说明(a+b)2,ab,(a﹣b)2三者之间的等量关系.(3)已知a+b=7,ab=5,求正方形EFGH的面积.17.如图叫“赵爽弦图”,此图由四个全等的直角三角形(阴影部分)围成一个大正方形,中空的部分是一个小正方形.它是我国汉代的赵爽在注解《周髀算经》时给出的,其巧妙地利用图形的面积证明了“勾股定理”,表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.(1)请你写出“勾股定理”的内容;(2)请你利用图形面积,结合图片完成勾股定理的证明.18.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.19.勾股定理是人类最伟大的科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(如图中图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有 个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2直角三角形面积为S3,请判断S1,S2,S3的关系并证明.1.1 勾股定理的证明同步练习参考答案与试题解析一.选择题(共10小题1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则EF的长为( )A.9B.C.D.3【解答】解:由题意可得,a2+b2=25,ab=8,∴(a﹣b)2=a2﹣2ab+b2=(a2+b2)﹣2ab=25﹣2×8=25﹣16=9,由图可知:EF2=(a﹣b)2+(a﹣b)2,∴EF2=9+9,解得EF=3,故选:C.2.在认识了勾股定理的赵爽弦图后,一位同学尝试将5个全等的小正方形嵌入长方形ABCD 内部,其中点M,N,P,Q分别在长方形的边AB,BC,CD和AD上,若AB=7,BC=8,则小正方形的边长为( )A .B .C .D .2【解答】解:将每个小正方形按照如图所示分成四个全等的直角三角形和一个正方形,设每个直角三角形的较大的直角边为x ,较小的直角边为y ,∵AB =7,BC =8,∴,解得,∴小正方形的边长为=.故选A .3.如图是我国古代著名的“赵爽弦图”,大正方形ABCD 是由四个全等的直角三角形和一个小正方形拼接而成,连接EC ,若正方形ABCD 的面积为10,EC =BC ,则小正方形EFGH 的面积为( )A .2B .2.5C .3D .3.5【解答】解:∵四边形EFGH 是正方形,∴CH ⊥BE ,∵EC =BC ,∴HE =HB ,∴BE=2HE,∴HC=2HE,设正方形EFGH的边长为a,则HB=HE=a,HC=2a,∴S正方形ABCD=S正方形EFGH+4S△BHC=a2+4××HB•HC=a2+4××a•2a=5a2=10,∴a2=2,故选:A.4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果大正方形的面积是5,小正方形的面积是1,直角三角形的两直角边长分别是a、b(b>a),则(a+b)2的值为( )A.16B.9C.4D.3【解答】解:由题意可知:大正方形的面积=a2+b2=5,4个直角三角形的面积之和=,所以(a+b)2=a2+b2+2ab=5+4=9.故选:B.5.如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则(a+b)2的值为( )A.25B.19C.13D.169【解答】解:由条件可得:,解之得:.所以(a+b)2=25,故选:A.6.如图是在北京召开的国际数学家大会的会标,它是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形.若小正方形的面积为8,每个直角三角形比小正方形的面积均小1,则每个小直角三角形的周长是( )A.5+B.9+C.10+D.14【解答】解:设直角三角形的较长直角边是a,较短直角边是b,斜边是c,∴ab=8﹣1=7,∴ab=14,∵小正方形的边长是a﹣b,∴(a﹣b)2=8,∴a2+b2﹣2ab=8,∴a2+b2=36,∵c2=a2+b2=36,∴c=6,∵(a+b)2=a2+b2+2ab=36+2×14=64,∴a+b=8,∴每个小直角三角形的周长是a+b+c=8+6=14,故选:D.7.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,若(a+b)2=27,大正方形面积为15,则小正方形面积为( )A.3B.4C.6D.12【解答】解:∵(a+b)2=27,∴a2+2ab+b2=27,∵直角三角形的较长直角边长为a,较短直角边长为b,∴大正方形的边长为.∵大正方形的面积为15,∴,∴a2+b2=15,∴2ab=27﹣15=12,∴小正方形的面积为15﹣12=3.故选:A.8.如图所示的“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.该图由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=10,大正方形面积为25,则小正方形边长为( )A.B.2C.D.3【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×10=5,从图形中可得,大正方形的面积是4个直角三角形的面积与中间小正方形的面积之和,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣20=5,∵a﹣b>0,∴a﹣b=.故选:C.9.我国是最早了解勾股定理的国家之一,下面四幅图中,不能证明勾股定理的是( )A.B.C.D.【解答】解:A、大正方形的面积为:c2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:ab×4+(b﹣a)2=a2+b2,∴a2+b2=c2,故A选项能证明勾股定理;B、大正方形的面积为:(a+b)2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:ab×4+c2=2ab+c2,∴(a+b)2=2ab+c2,∴a2+b2=c2,故B选项能证明勾股定理;C、梯形的面积为:(a+b)(a+b)=(a2+b2)+ab;也可看作是2个直角三角形和一个等腰直角三角形组成,则其面积为:ab×2+c2=ab+c2,∴ab+c2=(a2+b2)+ab,∴a2+b2=c2,故C选项能证明勾股定理;D、大正方形的面积为:(a+b)2;也可看作是2个矩形和2个小正方形组成,则其面积为:a2+b2+2ab,∴(a+b)2=a2+b2+2ab,∴D选项不能证明勾股定理.故选:D.10.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是( )A.S1=a2+b2+2ab B.S1=a2+b2+abC.S2=c2D.S2=c2+ab【解答】解:观察图象可知:S1=S2=a2+b2+ab=c2+ab,故选:B.二.填空题(共5小题)11.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和四边形EFGH都是正方形,如果AB=15,AH=9,则四边形GFEH的面积为 9 .【解答】解:∵△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,∴AH=DE=9,AD=AB=15,在Rt△ADE中,AE===12,∴HE=AE﹣AH=12﹣9=3,∵四边形EFGH是正方形,∴四边形GFEH的面积为9,故答案为:9.12.“赵爽弦图”是我国古代数学的图腾(如图①).小丽同学深受“赵爽弦图”的启发,设计出一个图形(如图②).已知△ABC和△DEF都是等边三角形,D、E、F分别在线段BE、CF和AD上,且满足EC:EF=1:2,若AC=5,则EF= .【解答】解:过C作CH⊥AF于H,设CE=x,则EF﹣2x,∵△ABC和△DEF都是等边三角形,∴∠BFD=∠BEF=∠ACB=60°,AC=BC,∴∠DAC+∠ACF=∠ACF+∠BDF,∠AFC=∠CEB,∴∠DAC=∠BCF,∴△ACF≌△CBE(AAS),∴AF=CE=x,在Rt△CFH中,CF=3x,∠CFD=60°,∴CH=CF cos60°=x,FH=CF sin60°=x,∴AC==5,解得:x=,∴EF=2x=,故答案为:.13.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是1和2,则小正方形与大正方形的面积之比为 1:5 .【解答】解:∵直角三角形的两条直角边的长分别是1和2,∴小正方形的边长为1,根据勾股定理得:大正方形的边长=,∴.故答案为:1:5.14.魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为 6 .【解答】解:∵BF=2,CF=4,∴BC=BF+CF=2+4=6,∵AB∥EC,∴=,即=,解得:CE=12,在Rt△ADE中,AD=6,DE=DC+CE=6+12=18,根据勾股定理得:AE==6,故答案为:6.15.在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成一个大正方形(如图所示,AB<BC).如果小正方形的面积是25,大正方形的面积为49,那么= .【解答】解:∵小正方形的面积是25,∴EB=5,∵△HAG≌△BCA,∴AH=CB,∵大正方形的面积为49,∴BH=7,∴AB+AH=7,设AB=x,则AH=7﹣x,在Rt△ABC中:x2+(7﹣x)2=52,解得:x1=4,x2=3,当x=4时,7﹣x=3,当x=3时,7﹣x=4,∵AB<BC,∴AB=3,BC=4,∴=,故答案为:.三.解答题(共4小题)16.阅读材料,解决问题:三国时期吴国的数学家赵爽创建了一幅“弦图”,利用面积法给出了勾股定理的证明,实际上,该“弦图”与完全平方公式有着密切的关系.如图2,这是由8个全等的直角边长分别为a,b,斜边长为c的三角形拼成的“弦图”.(1)在图2中,正方形ABCD的面积可表示为 (a+b)2 ,正方形PQMN的面积可表示为 (a﹣b)2 .(用含a,b的式子表示)(2)请结合图2用面积法说明(a+b)2,ab,(a﹣b)2三者之间的等量关系.(3)已知a+b=7,ab=5,求正方形EFGH的面积.【解答】解:(1)正方形ABCD的面积可表示为(a+b)2,正方形PQMN的面积可表示为(a﹣b)2.故答案为:(a+b)2,(a﹣b)2;(2)∵正方形ABCD的面积=正方形MNPQ的面积+直角三角形的面积×8,∴(a+b)2=(a﹣b)2+ab×8,∴(a+b)2=(a﹣b)2+4ab;(3)∵正方形EFGH的面积=正方形ABCD的面积﹣直角三角形的面积×4,∴正方形EFGH的面积=(a+b)2﹣ab×4=(a+b)2﹣2ab=72﹣2×5=39.17.如图叫“赵爽弦图”,此图由四个全等的直角三角形(阴影部分)围成一个大正方形,中空的部分是一个小正方形.它是我国汉代的赵爽在注解《周髀算经》时给出的,其巧妙地利用图形的面积证明了“勾股定理”,表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.(1)请你写出“勾股定理”的内容;(2)请你利用图形面积,结合图片完成勾股定理的证明.【解答】解:(1)在直角三角形中,两条直角边的平方和等于斜边的平方;(2)由图可知:,∴a2﹣2ab+b2+2ab=c2,∴a2+b2=c2.故:在直角三角形中,两条直角边的平方和等于斜边的平方.18.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.【解答】解:(1)在Rt△ABC中,由面积的两种算法可得:,解得:CD=.(2)在Rt△ABD中AD2=42﹣x2=16﹣x2,在Rt△ADC中AD2=52﹣(6﹣x)2=﹣11+12x﹣x2,所以16﹣x2=﹣11+12x﹣x2,解得=.19.勾股定理是人类最伟大的科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(如图中图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有 3 个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2直角三角形面积为S3,请判断S1,S2,S3的关系并证明.【解答】解:(1)①如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)②证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=ab×4+(b﹣a)2,化简得:a2+b2=c2.在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+ab×4,化简得:a2+b2=c2.在图3中,梯形的面积等于三个直角三角形的面积的和.即(a+b)(a+b)=ab×2+c2,化简得:a2+b2=c2.(2)①三个图形中面积关系满足S1+S2=S3的有3个;故答案为:3;②结论:S1+S2=S3.∵S1+S2=π()2+π()2+S3﹣π()2,∴S1+S2=π(a2+b2﹣c2)+S3,∴a2+b2=c2.∴S1+S2=S3.。
北师大版初二数学勾股定理测试题

北师大版初二数学勾股定理测试题一、选择题(每题 3 分,共 6 分)1. 已知直角三角形的两直角边长分别为3 和4,则斜边长为()-解析:根据勾股定理,直角三角形两直角边的平方和等于斜边的平方。
3²+4²=9+16=25,斜边长为5。
2. 若一个三角形的三边长分别为6、8、10,则这个三角形是()-解析:6²+8²=36+64=100,10²=100,满足勾股定理逆定理,所以这个三角形是直角三角形。
二、填空题(每题 4 分,共8 分)1. 在直角三角形中,一条直角边为5,斜边为13,则另一条直角边为____。
-解析:根据勾股定理,设另一条直角边为x,则x²+5²=13²,x²=169 - 25 = 144,x = 12。
2. 一个直角三角形的两条直角边分别为3 和4,则斜边上的高为____。
-解析:先求斜边,3²+4²=9+16=25,斜边长为5。
设斜边上的高为h,根据三角形面积相等,可得3×4÷2 = 5×h÷2,解得h = 12/5。
三、解答题(每题8 分,共 6 分)1. 已知在△ABC 中,AB = 15,BC = 14,AC = 13,求△ABC 的面积。
-解析:设BC 边上的高为AD,设BD = x,则CD = 14 - x。
在直角三角形ABD 和ACD 中,根据勾股定理可得:AB² - BD² = AC² - CD²,即15² - x² = 13² - (14 - x)²,225 - x² = 169 - (196 - 28x + x²),225 - x² = 169 - 196 + 28x - x²,28x = 225 + 196 - 169,28x = 252,x = 9。
最新北师大版八年级数学上册《勾股定理》单元测试题及答案解析

《第1章勾股定理》一、选择题1.如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.1942.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.53.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形4.下列数据中是勾股数的有()组(1)3,5,7 (2)5,15,17 (3)1.5,2,2.5 (4)7,24,25 (5)10,24,26.A.1 B.2 C.3 D.45.已知直角三角形的两直角边之比是3:4,周长是36,则斜边是()A.5 B.10 C.15 D.206.若等腰三角形的腰长为10cm,底边长为16cm,那么底边上的高为()A.12 cm B.10 cm C.8 cm D.6 cm7.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形8.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.9.下列三角形一定不是直角三角形的是()A.三角形的三边长分别为5,12,13B.三角形的三个内角比为1:2:3C.三角形的三边长之比为1:2:3D.三角形的两内角互余10.放学以后,小明和小华从学校分开,分别向北和东走回家,若小明和小华行走的速度都是50米/分,小明用10分到家,小华用24分到家,小明和小华家的距离为()A.600米B.800米C.1000米D.1300米11.下面说法正确的是()A.在Rt△ABC中,a2+b2=c2B.在Rt△ABC中,a=3,b=4,那么c=5C.直角三角形两直角边都是5,那么斜边长为10D.直角三角形中,斜边最长12.在△ABC中,AB=12cm,AC=9cm,BC=15cm,下列关系成立的是()A.∠B+∠C>∠A B.∠B+∠C=∠A C.∠B+∠C<∠A D.以上都不对二、填空题13.一长为13m的木梯,架在高为12m的墙上,这时梯脚与墙的距离是m.14.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2= .15.一根电线杆在一次台风中于地面3米处折断倒下,杆顶端落在离杆底端4米处,电线杆在折断之前高米.16.如果直角三角形的三条边分别为4、5、a,那么a2的值等于.三、解答题(共52分)17.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?18.求下列图形中阴影部分的面积.(1)如图1,AB=8,AC=6;(2)如图2,AB=13,AD=14,CD=2.19.某校校庆,在校门AB的上方A处到教学楼C的楼顶E处拉彩带,已知AB高5m,EC高29m,校门口到大楼之间的距离BC为10m,求彩带AE的长是多少?20.一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?21.(10分)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F 处,折痕为MN,求线段CN长.22.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?参考答案与试题解析一、选择题1.如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.194【考点】勾股定理.【专题】换元法.【分析】由图可知在直角三角形中,已知斜边和一直角边,求另一直角边的平方,用勾股定理即可解答.【解答】解:由题可知,在直角三角形中,斜边的平方=169,一直角边的平方=25,根据勾股定理知,另一直角边平方=169﹣25=144,即字母B所代表的正方形的面积是144.故选C.【点评】此题比较简单,关键是熟知勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.2.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形【考点】勾股定理的逆定理;三角形内角和定理.【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、解得应为∠B=90度,故错误;C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.故选B.【点评】本题考查了直角三角形的判定.4.下列数据中是勾股数的有()组(1)3,5,7 (2)5,15,17 (3)1.5,2,2.5 (4)7,24,25 (5)10,24,26.A.1 B.2 C.3 D.4【考点】勾股数.【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【解答】解:(1)3,5,7 不是勾股数,因为32+52≠72;(2)5,15,17 不是勾股数,因为52+152≠172;(3)1.5,2,2.5不是勾股数,因为1.5,2,2.5不是正整数;(4)7,24,25 是勾股数,因为72+242=252,且7、24、25是正整数;(5)10,24,26是勾股数,因为102+242=262,且10,24,26是正整数.故选B.【点评】本题考查了勾股数的概念:满足a2+b2=c2的三个正整数,称为勾股数.说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…5.已知直角三角形的两直角边之比是3:4,周长是36,则斜边是()A.5 B.10 C.15 D.20【考点】勾股定理.【分析】设直角三角形的两直角边分别为3k,4k,则斜边为5k,列出方程求出k,即可解决问题.【解答】解:设直角三角形的两直角边分别为3k,4k,则斜边为5k.由题意3k+4k+5k=36,解得k=3,所以斜边为5k=15.故选C.【点评】本题考查勾股定理、一元一次方程等知识,解题的关键是灵活于勾股定理解决问题,学会设未知数列方程解决问题,属于中考常考题型.6.若等腰三角形的腰长为10cm,底边长为16cm,那么底边上的高为()A.12 cm B.10 cm C.8 cm D.6 cm【考点】勾股定理;等腰三角形的性质.【分析】可以先作出BC边上的高AD,根据等腰三角爱哦形的性质可得BD的长,在Rt△ADB中,利用勾股定理就可以求出高AD.【解答】解:作AD⊥BC于D,∵AB=AC,∴BD=BC=8cm,∴AD==6cm,故选:D.【点评】本题主要考查了勾股定理及等腰三角形的性质,关键是掌握勾股定理和等腰三角形三线合一的性质.7.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理,再判断其形状.【解答】解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故选:C.【点评】本题考查了直角三角形的判定:可用勾股定理的逆定理判定.8.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【考点】勾股定理.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.9.下列三角形一定不是直角三角形的是()A.三角形的三边长分别为5,12,13B.三角形的三个内角比为1:2:3C.三角形的三边长之比为1:2:3D.三角形的两内角互余【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理以及直角三角形的定义一一判断即可.【解答】解:A、正确.∵52+122=132,∴三角形为直角三角形.B、正确.∵三角形的三个内角比为1:2:3,∴三个内角分别为30°,60°,90°,∴三角形是直角三角形.C、错误.∵12+22≠32,∴三角形不是直角三角形.D、正确.∵三角形的两内角互余,∴第三个角是90°,∴三角形是直角三角形.故选C.【点评】本题考查勾股定理的逆定理、三角形的内角和等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.10.放学以后,小明和小华从学校分开,分别向北和东走回家,若小明和小华行走的速度都是50米/分,小明用10分到家,小华用24分到家,小明和小华家的距离为()A.600米B.800米C.1000米D.1300米【考点】勾股定理的应用.【分析】根据题意画出图形,再根据勾股定理求解即可.【解答】解:如图所示,∵小明用10分到家,小华用24分到家,∴OA=10×50=500(米),OB=24×50=1200(米),∴AB==1300(米).答:小明和小华家的距离为1300米.故选:D.【点评】本题考查的是勾股定理的应用,熟知在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.11.下面说法正确的是()A.在Rt△ABC中,a2+b2=c2B.在Rt△ABC中,a=3,b=4,那么c=5C.直角三角形两直角边都是5,那么斜边长为10D.直角三角形中,斜边最长【考点】勾股定理.【分析】利用直角三角形勾股定理进行解题.【解答】解:A,B:直角三角形直角是哪个,未知,故不能得出a2+b2=c2,c=5C:斜边长为5;D:由勾股定理知显然正确.故选D.【点评】考查了直角三角形相关知识以及勾股定理的应用.12.在△ABC中,AB=12cm,AC=9cm,BC=15cm,下列关系成立的是()A.∠B+∠C>∠A B.∠B+∠C=∠A C.∠B+∠C<∠A D.以上都不对【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行分析,从而得到三角形的形状,则不难求得其各角的关系.【解答】解:因为122+92=152,所以三角形是直角三角形,则∠B+∠C=∠A.故选B.【点评】本题考查了直角三角形的判定及勾股定理逆定理的应用.二、填空题13.一长为13m的木梯,架在高为12m的墙上,这时梯脚与墙的距离是 5 m.【考点】勾股定理的应用.【分析】根据题意可知,梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【解答】解:∵梯子、地面、墙刚好形成一直角三角形,∴梯脚与墙角的距离==5(m).故答案为:5.【点评】本题考查的是勾股定理在实际生活中的应用,正确应用勾股定理是解题关键.14.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2= 7 .【考点】勾股定理.【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=,OC=,OD=∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.15.一根电线杆在一次台风中于地面3米处折断倒下,杆顶端落在离杆底端4米处,电线杆在折断之前高8 米.【考点】勾股定理的应用.【分析】先根据勾股定理求出大树折断部分的高度,再根据大树的高度等于折断部分的长与未断部分的和即可得出结论.【解答】解:由勾股定理得斜边为=5米,则原来的高度为3+5=8米.即电线杆在折断之前高8米.故答案为8.【点评】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术的算法求解.16.如果直角三角形的三条边分别为4、5、a,那么a2的值等于9或41 .【考点】勾股定理.【分析】此题有两种情况,一是当这个直角三角形的斜边的长为5时;二是当这个直角三角形两条直角边的长分别为4和5时,由勾股定理分别求出此时的a2值即可.【解答】解:当这个直角三角形的斜边的长为5时,a2=52﹣42=9;当这个直角三角形两条直角边的长分别为4和5时,a2=52+42=41.故a的值为9或41.故答案为:9或41.【点评】本题考查勾股定理的知识,解答此题的关键是直角三角形的斜边没有确定,所以要进行分类讨论,注意不要漏解,难度一般.三、解答题(共52分)17.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?【考点】勾股定理的应用.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB===480m,答:该河流的宽度为480m.【点评】本题考查了勾股定理的应用,是实际问题但比较简单.18.求下列图形中阴影部分的面积.(1)如图1,AB=8,AC=6;(2)如图2,AB=13,AD=14,CD=2.【考点】勾股定理.【分析】(1)首先利用勾股定理计算出BC的长,进而得到圆的半径BO长,再利用半圆的面积减去直角三角形面积即可;(2)首先计算出AC的长,再利用勾股定理计算出BC的长,然后利用矩形的面积公式计算即可.【解答】解:(1)∵AB=8,AC=6,∴BC===10,∴BO=5,∵S=AB×AC=×8×6=24,△ABCS=π×52=,半圆∴S=﹣24;阴影(2)∵AD=14,CD=2,∴AC=12,∵AB=13,∴CB===5,【点评】此题主要考查了勾股定理,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.19.某校校庆,在校门AB的上方A处到教学楼C的楼顶E处拉彩带,已知AB高5m,EC高29m,校门口到大楼之间的距离BC为10m,求彩带AE的长是多少?【考点】勾股定理的应用.【专题】探究型.【分析】过点A作AF⊥CE于点F,由AB=5m,EC=29m可求出EF的长,再由BC=10m可知AE=BC=10m,在Rt△AEF中利用勾股定理即可求出AE的长.【解答】解:过点A作AF⊥CE于点F,∵AB⊥BC,EC⊥BC,∴四边形ABCF是矩形,∵AB=5m,EC=29m,∴EF29﹣5=24m,∵BC=10m,∴AE=BC=10m,在Rt△AEF中,∵AF=10m,EF=24m,∴AE===26m.答:彩带AE的长是23米.【点评】本题考查的是勾股定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(10分)(2016春•石家庄期末)一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?【考点】勾股定理的逆定理.【分析】由勾股定理逆定理可得△ACD 与△ABC 均为直角三角形,进而可求解其面积.【解答】解:∵42+32=52,52+122=132,即AB 2+BC 2=AC 2,故∠B=90°,同理,∠ACD=90°∴S 四边形ABCD =S △ABC +S △ACD=×3×4+×5×12=6+30=36.【点评】熟练掌握勾股定理逆定理的运用,会求解三角形的面积问题.21.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,求线段CN 长.【考点】翻折变换(折叠问题).【分析】根据折叠的性质,只要求出DN 就可以求出NE ,在直角△CEN 中,若设CN=x ,则DN=NE=8﹣x ,CE=4cm ,根据勾股定理就可以列出方程,从而解出CN 的长.【解答】解:设CN=xcm ,则DN=(8﹣x )cm ,由折叠的性质知EN=DN=(8﹣x )cm ,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,解得:x=3.即线段CN长为3.【点评】此题主要考查了翻折变换的性质,折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.22.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?【考点】轴对称-最短路线问题.【专题】计算题;作图题.【分析】此题的关键是确定点M的位置,需要首先作点A的对称点A′,连接点B和点A′,交l于点M,M即所求作的点.根据轴对称的性质,知:MA+MB=A′B.根据勾股定理即可求解.【解答】解:作A关于CD的对称点A′,连接A′B与CD,交点CD于M,点M即为所求作的点,则可得:DK=A′C=AC=10千米,∴BK=BD+DK=40千米,∴AM+BM=A′B==50千米,总费用为50×3=150万元.【点评】此类题的重点在于能够确定点M的位置,再运用勾股定理即可求解.。
北师大版八年级勾股定理练习题(含答案)

北师大版八年级勾股定理练习题(含答案)勾股定理练习题一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+1 4. 已知a,b,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定 6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 7.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形 11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为 14.一个三角形三边之比是6:8:10,则按角分类它是 三角形. 15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 . 18.如图,已知ABC∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .AB二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?AEB5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?小汽车小汽车观测点答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长. 答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角. 8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3. 9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5. 答案:cm 5. 二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解. 答案:6.5s .15.解析:本题和14题相似,可以求出BC的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s,可得速度是20m/s=72km/h>70km/h.答案:这辆小汽车超速了.。
(常考题)北师大版初中数学八年级数学上册第一单元《勾股定理》测试(答案解析)

一、选择题1.如图所示,数轴上的点A所表示的数为a,则a的值是()A.51-D.5-+C.51+B.512.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1 条B.2条C.3条D.4条3.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=()A.2.1 B.1.4 C.3.2 D.2.44.下列各组数中是勾股数的是()A.4,5, 6 B.1.5,2, 2.5 C.11,60, 61 D.1,3,25.如图,在△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.29 B.32 C.36 D.456.如图,小彬到雁江区高洞产业示范村参观,看到一个贴有大红“年”字的圆柱状粮仓非常漂亮,回家后小彬制作了一个底面周长为10cm,高为5cm的圆柱粮仓模型.如图BC是底面直径,AB是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A,C两点(接头不计),则装饰带的长度最短为()A .10πcmB .20πcmC .102cmD .52cm 7.下列四组数中,是勾股数的是( ) A .5,12,13 B .4,5,6 C .2,3,4 D .1,2,5 8.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A 处有一滴蜜糖,在玻璃杯的外壁,A 的相对方向有一小虫P ,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A 处的最短距离是( )A .73厘米B .10厘米C .82厘米D .8厘米 9.如图是由四个全等的直角三角形与一个小正方形拼成的大正方形.若小正方形边长为3,大正方形边长为15,则一个直角三角形的面积等于( )A .36B .48C .54D .10810.如图,在Rt ABC 中,AB AC =,BAC 90∠=︒,点D ,E 为BC 上两点.DAE 45∠=︒,F 为ABC 外一点,且FB BC ⊥,FA AE ⊥,则下列结论: ①CE BF =;②222BD CE DE +=;③ADE 1S AD EF 4=⋅△;④222CE BE 2AE +=,其中正确的是( )A .①②③④B .①②④C .①③④D .②③ 11.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A.514 B.8 C.16 D.6412.一根旗杆在离地面3米处断裂,旗杆顶部落在离旗杆底部4米处,旗杆折断之前的高度是()A.5米B.7米C.8米D.9米二、填空题13.将五个边长为2的正方形按如图所示放置,若A,B,C,D四点恰好在圆上,则这个圆的面积为________.(结果保留 )14.如图,已知正方形ABCD的面积为4,正方形FHIJ的面积为3,点D、C、G、J、I在同一水平面上,则正方形BEFG的面积为__________.15.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是______cm.16.已知一个直角三角形三边长的平方和是50,则斜边长为________.17.如图,长方体的底面边长分别为3cm和3cm,高为5cm,若一只蚂蚁从A点开始经过四个侧面爬行一圈到达B点,则蚂蚁爬行的最短路径长为_____cm.18.如图,长方体的长5BE cm =,宽3AB cm =,高6BC cm =,一只小蚂蚁从长方体表面由A 点爬到D 点去吃食物,则小蚂蚁走的最短路程是__________cm .19.如图,在3×3的正方形网格中,每个小正方形边长为1,点A ,B ,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D ,则CD 的长为_____.20.如图,圆柱的底面半径为24,高为7π,蚂蚁在圆柱表面爬行,从点A 爬到点B 的最短路程是_____.三、解答题21.在如图所示的方格纸中,每个小正方形的边长为1个单位长度,我们称每个小正方形的顶点为“格点”.(1)若格点C 在线段AB 右侧,且满足AC BC =,则当ABC ∆的周长最小时,ABC∆的面积等于 .(2)若格点D 在线段AB 左侧,且满足AD BD ⊥,则ABD ∆的面积等于 (以上两问均直接写出结果即可).22.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,其中∠DAB = 90°,求证:a 2+b 2=c 2.23.如图,在ABC 中,AB AC =,15BC =,D 是AB 上一点,9BD =,12CD =.(1)求证:CD AB ⊥;(2)求AC 的长.24.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b ,斜边长为c 的4个直角三角形,请根据图2利用割补的方法验证勾股定理.25.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?26.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、 B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短,这个最短长度的平方值是___.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据勾股定理求出直角三角形的斜边,即可得出选项.【详解】解:BC=BA22+=125∵数轴上点A所表示的数为a,∴a51故选:C.【点睛】本题考查了数轴和实数,勾股定理的应用,能读懂图象是解此题的关键.2.B解析:B【分析】由勾股定理求出a、b、c、d,即可得出结果.【详解】∵223213+=d=2,+=,221417345+=22∴长度是无理数的线段有2条,故选B.【点睛】本题考查了勾股定理、无理数,熟练掌握勾股定理是解决问题的关键.3.B解析:B【分析】设CD=x,在Rt△ACD和Rt△ABC中,利用勾股定理列式表示出AC2,然后解方程即可.【详解】解:设CD=x,则BC=5+x,在Rt△ACD中,AC2=AD2-CD2=25-x2,在Rt△ABC中,AC2=AB2-BC2=64-(5+x)2,所以,25-x2=64-(5+x)2,解得x=1.4,即CD=1.4.故答案为:B.【点睛】本题考查了勾股定理,熟记定理并在两个三角形列出等式表示出AC2,然后列出方程是解题的关键.4.C解析:C【分析】根据勾股数的定义判断即可.【详解】解:A、42+52≠62,不是勾股数,故此选项不合题意;B、1.5, 2.5不是正整数,不是勾股数,故此选项不合题意;C、112+602=612,三个数都是正整数,是勾股数,故此选项符合题意;D 、3不是正整数,不是勾股数,故此选项不合题意;故选:C .【点睛】 此题主要考查了勾股数,关键是掌握满足a 2+b 2=c 2的三个正整数,称为勾股数. 5.D解析:D【分析】在Rt △ABD 及Rt △ADC 中可分别表示出BD 2及CD 2,在Rt △BDM 及Rt △CDM 中分别将BD 2及CD 2的表示形式代入表示出BM 2和MC 2,然后作差即可得出结果.【详解】解:在Rt △ABD 和Rt △ADC 中,BD 2=AB 2−AD 2,CD 2=AC 2−AD 2,在Rt △BDM 和Rt △CDM 中,BM 2=BD 2+MD 2=AB 2−AD 2+MD 2,MC 2=CD 2+MD 2=AC 2−AD 2+MD 2,∴MC 2−MB 2=(AC 2−AD 2+MD 2)−(AB 2−AD 2+MD 2)=AC 2−AB 2=45.故选:D .【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC 2和MB 2是本题的难点,重点还是在于勾股定理的熟练掌握.6.C解析:C【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,圆柱的侧面展开图为长方形,AC =A 'C ,且点C 为BB '的中点,∵AB =5cm ,BC =12×10=5cm , ∴装饰带的长度=2AC =22222255102AB BC +=+=cm ,故选:C .【点睛】本题考查平面展开-最短距离问题,正确画出展开图是解题的关键.7.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A. ∵5,12,13是正整数,且52+122=132,∴5,12,13是勾股数;B. ∵42+52≠62,∴4,5,6不是勾股数;C. ∵22+32≠42,∴2,3,4不是勾股数;D. ∵2,5不是正整数,∴1,2,5不是勾股数;故选A.【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.8.B解析:B【分析】把圆柱沿着点A所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.【详解】把圆柱沿着点A所在母线展开,如图所示,作点A的对称点B,连接PB,则PB为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【点睛】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.9.C解析:C【分析】根据图形的特征先算出4个三角形的面积之和,再除以4,即可求解.【详解】由题意得:15×15-3×3=216,216÷4=54,故选C .【点睛】本题主要考查“赵爽弦图”的相关计算,理清图形中的面积关系,是解题的关键. 10.A解析:A【分析】①利用全等三角形的判定得AFB ≌AEC ,再利用全等三角形的性质得结论;②利用全等三角形的判定和全等三角形的性质得FD DE =,再利用勾股定理得结论;③利用等腰三角形的性质得AD EF EF 2EG ⊥=,,再利用三角形的面积计算 结论;④利用勾股定理和等腰直角三角形的性质计算得结论.【详解】解:如图:对于①,因为BAC 90FA AE DAE 45∠∠=︒⊥=︒,,,所以CAE 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,FAB 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,因此CAE FAB ∠∠=.又因为BAC 90AB AC ∠=︒=,,所以ABC ACB 45∠∠==︒.又因为FB BC ⊥,所以FBA ACB 45∠∠==︒.因此AFB ≌()AEC ASA △,所以CE BF =.故①正确.对于②,由①知AFB ≌AEC ,所以AF AE =.又因为DAE 45FA AE ∠=︒⊥,,所以FAD DAE 45∠∠==︒,连接FD , 因此AFD ≌()AED SAS △.所以FD DE =.在Rt FBD △中,因为CE BF =,所以222222BD CE BD BF FD DE +=+==.对于③,设EF 与AD 交于G .因为FAD DAE 45AF AE ∠∠==︒=,,所以AD EF EF 2EG ⊥=,. 因此ΔADE 11S AD EG AD EF 24=⨯⨯=⨯⨯. 故③正确.对于④,因为CE BF =,又在Rt FBE △中,22222CE BE BF BE FE +=+= 又AEF △是以EF 为斜边的等腰直角三角形,所以22EF 2AE =因此,222CE BE 2AE +=.故④正确.故选A .【点睛】本题考查了全等三角形的判定,全等三角形的性质,勾股定理,等腰三角形的性质和三角形的面积. 11.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.12.C解析:C如图,由题意,AC ⊥BC ,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB ,求出AB 即可解决问题.【详解】解:如图,由题意,AC ⊥BC ,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB .在Rt △ACB 中,∠C=90°,AC=3米,BC=4米, ∴2222AB AC BC 345=++=(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故选:C .【点睛】本题考查勾股定理的应用,解题的关键是理解题意,正确画出图形,运用勾股定理解决问题.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据题意得到圆心O 的位置设MO=x 根据AO2=DO2得到方程求出x 得到圆O 的半径从而求出面积【详解】解:由题意可得:多个小正方形排成轴对称图形∴圆心O 落在对称轴MN 上设MO=x ∵AO=DO ∴ 解析:1309π 【分析】根据题意得到圆心O 的位置,设MO=x ,根据AO 2=DO 2,得到方程,求出x ,得到圆O 的半径,从而求出面积.【详解】解:由题意可得:多个小正方形排成轴对称图形,∴圆心O 落在对称轴MN 上,设MO=x ,∵AO=DO ,∴AO 2=DO 2,即()2222163x x +=-+,解得:x=11 3,∴圆O的半径为21x+=130,∴圆O的面积为21303π⎛⎫⎪⎪⎝⎭=1309π,故答案为:1309π.【点睛】本题考查了勾股定理,轴对称的性质,圆的性质,解题的关键是根据半径相等得到方程.14.7【分析】根据已知利用全等三角形的判定可得到△BCG≌△GJF从而得到正方形BEFG的面积=正方形ABCD的面积+正方形FHIJ的面积【详解】解:∵∠BGC+∠FGJ=90°∠GFJ+∠FGJ=90解析:7【分析】根据已知利用全等三角形的判定可得到△BCG≌△GJF,从而得到正方形BEFG的面积=正方形ABCD的面积+正方形FHIJ的面积.【详解】解:∵∠BGC+∠FGJ=90°,∠GFJ+∠FGJ =90°∴∠BGC =∠GFJ∵∠BCG=∠GJF,BG=GF∴△BCG≌△GJF∴CG=FJ,BC=GJ,∴BG2=BC2+CG2=BC2+FJ2∴正方形DEFG的面积=正方形ABCD的面积+正方形FHIJ的面积=4+3=7.【点睛】本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.15.13【分析】如图将容器侧面展开建立A关于的对称点根据两点之间线段最短可知的长度即为所求【详解】将圆柱沿A所在的高剪开展平如图所示则作A 关于的对称点连接则此时线段即为蚂蚁走的最短路径过B作于点则在中由【分析】如图,将容器侧面展开,建立A 关于MM '的对称点A ',根据两点之间线段最短可知A B '的长度即为所求.【详解】将圆柱沿A 所在的高剪开,展平如图所示,则10cm MM NN '='=,作A 关于MM '的对称点A ',连接A B ',则此时线段A B '即为蚂蚁走的最短路径,过B 作BD A A ⊥'于点D ,则5,''123312cm BD NE cm A D MN A M BE ===+-=+-=,在Rt A BD '中, 由勾股定理得2213cm A B A D BD ''=+=,故答案为:13.【点睛】本题考查了轴对称的性质,最短路径问题,勾股定理的应用等,正确利用侧面展开图、熟练运用相关知识是解题的关键.16.5【分析】设两直角边长分别为ab 斜边长为c 则根据题意列得即可求出答案【详解】设两直角边长分别为ab 斜边长为c 则∵三边长的平方和是∴∴解得c=5(负值舍去)故答案为:5【点睛】此题考查勾股定理正确掌握解析:5【分析】设两直角边长分别为a 、b ,斜边长为c ,则222+=a b c ,根据题意列得2250c =即可求出答案.【详解】设两直角边长分别为a 、b ,斜边长为c ,则222+=a b c ,∵三边长的平方和是50,∴22250a b c ++=,∴2250c =,解得c=5(负值舍去),故答案为:5.此题考查勾股定理,正确掌握勾股定理的计算公式是解题的关键.17.13【分析】要求长方体中两点之间的最短路径只需将长方体展开然后利用两点之间线段最短及勾股定理求解即可【详解】解:展开图如图所示:由题意在中AD=12cmBD=5cm蚂蚁爬行的最短路径长为:故答案为1解析:13【分析】要求长方体中两点之间的最短路径,只需将长方体展开,然后利用两点之间线段最短及勾股定理求解即可.【详解】解:展开图如图所示:由题意,在Rt ADB中,AD=12cm,BD=5cm,∴蚂蚁爬行的最短路径长为:2222=+=+=,AB AD BD cm12513故答案为13.【点睛】本题主要考查最短路径问题,熟练掌握求最短路径的方法是解题的关键.18.10【分析】将长方体展开可分三种情况求出其值最小者即为最短路程【详解】如图①:AD=;如图②:AD=;如图③:AD=;∴AD的最小值为故答案为:【点睛】本题依据两点之间线段最短考查了长方体的侧面展开解析:10【分析】将长方体展开,可分三种情况,求出其值最小者,即为最短路程.【详解】如图①:AD=22311130+=;如图②:AD=22+==;8610010如图③:AD=22+=;95106∴AD的最小值为10.故答案为:10.【点睛】本题依据“两点之间,线段最短”,考查了长方体的侧面展开图,解答时利用勾股定理进行分类讨论是解题的关键.19.【分析】由勾股定理求出AB再由勾股定理求出DE即可得出CD的长【详解】解:连接ABAD如图所示:∵AD=AB=∴DE=∴CD=故答案为:【点睛】本题考查了勾股定理由勾股定理求出ABDE是解题的关键解析:37-【分析】由勾股定理求出AB,再由勾股定理求出DE,即可得出CD的长.【详解】解:连接AB,AD,如图所示:∵AD=AB=222222+=,∴DE=()22-=,2217-.∴CD=37-.故答案为:37【点睛】本题考查了勾股定理,由勾股定理求出AB、DE是解题的关键.20.25π【分析】沿过A点和过B点的母线剪开展成平面连接AB则AB的长是蚂蚁在圆柱表面从A点爬到B点的最短路程求出AC和BC的长根据勾股定理求出斜边AB即可【详解】解:如图所示:沿过A点和过B点的母线剪解析:25π【分析】沿过A点和过B点的母线剪开,展成平面,连接AB,则AB的长是蚂蚁在圆柱表面从A点爬到B点的最短路程,求出AC和BC的长,根据勾股定理求出斜边AB即可.【详解】解:如图所示:沿过A点和过B点的母线剪开,展成平面,连接AB,则AB 的长是蚂蚁在圆柱表面从A 点爬到B 点的最短路程,AC =12×2π×24=24π,∠C =90°,BC =7π, 由勾股定理得:AB =()()2222274AC BC ππ+=+=25π.故答案为:25π.【点睛】考核知识点:勾股定理.把问题转化为求线段长度是关键.三、解答题21.(1)2.5;(2)2或2.5或1.5【分析】(1)根据格点C 在线段AB 右侧,且满足AC=BC ,画出周长最小的格点△ABC ,即可求出△ABC 的面积;(2)根据格点D 在线段AB 左侧,且满足AD ⊥BD ,分别画出格点△ABD ,即可得三角形的面积.【详解】解:(1)如图,△ABC 即为所求;△ABC 的面积为:1552⨯⨯=2.5, 故答案为:2.5;(2)如图点D 1,D 2,D 3 即为所求;△ABD 的面积分别为:12222, 1552, 1132⨯⨯=1.5, 故答案为:2或2.5或1.5.【点睛】此题主要考查了格点图形的性质,把握格点图形的定义,正确画出格点三角形是解决问题的关键.22.证明见解析.【分析】根据ACD ABC ABD BCD ABCD S SS S S =+=+四边形即可得证.【详解】如图,过点D 作DF BC ⊥,交BC 延长线于点F ,连接BD ,则DF CE =,由全等三角形的性质得:AC DE b ==,DF CE AC AE b a ∴==-=-,ACD ABC ABD BCD ABCD S S S S S =+=+四边形,11112222AC DE AC BC AD AB BC DF ∴⋅+⋅=⋅+⋅, 即221111()2222b bac a b a +=+⋅-, 整理得:222+=a b c .【点睛】本题考查了勾股定理的证明,掌握“面积法”是解题关键.23.(1)见解析;(2)AC 的长为12.5.【分析】(1)计算△BCD 各边的平方,看是否满足勾股定理的逆定理,依此判断直线的位置关系;(2)用方程思想,表达勾股定理计算即可.【详解】(1)证明:2222129225CD BD +=+=,2225BC =,222CD BD BC ∴+=,90CDB ∴∠=︒,CD AB ∴⊥;(2)设AB AC x ==,则9AD x =-,在Rt ACD 中,90ADC ∠=︒,222AD CD AC ∴+=,222(9)12x x ∴-+=,解得12.5x =,AC ∴的长为12.5.【点睛】本题考查了勾股定理及其逆定理的应用,熟练掌握定理,逆定理并灵活运用是解题的关键. 24.见解析【分析】根据总面积=以c 为边的正方形的面积+2个直角边长为,a b 的三角形的面积=以b 为上底、(a+b)为下底、高为b 的梯形的面积+以a 为上底、(a+b)为下底、高为a 的梯形的面积,据此列式求解.【详解】 证明:总面积()()21112222S c ab a b b b a a b a =+⨯=++⋅+++⋅ 222c a b ∴=+【点睛】此题考查的是勾股定理的证明,用两种方法表示同一图形的面积是解题关键. 25.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;(2)梯子的顶端下滑了4米,则20a =米,利用勾股定理求出b 的值,判断是否梯子的底部在水平方向也滑动了4米.【详解】(1)如图,由题意得此时a =24米,c =25米,由勾股定理得222+=a b c , ∴2225247b =-=(米);(2)不是,如果梯子的顶端下滑了4米,此时20a =米,25c =米,由勾股定理,22252015b =-=(米),1578-=(米),即梯子的底部在水平方向滑动了8米.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法. 26.(1)见解析;(2)图见解析,13【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用轴对称求最短路线求法得出P 点位置.【详解】(1)分别找到各点的对称点,顺次连接可得△A ′B ′C ′.(2)连接B 'C ,则B 'C 与l 的交点即是点P 的位置,求出PB +PC 的值即可.【解答】解:(1)如图所示:(2)如图所示:连接B′C ,与直线l 交于点P ,此时PB+PC 最短,PB+PC=PB'+PC=B'C222313则这个最短长度的平方值是13.【点睛】本题考查了轴对称作图及最短路线问题,以及勾股定理,解答本题的关键是掌握轴对称的性质,难度一般.。
北师大版八年级第一章勾股定理练习题【带答案解析】

北师⼤版⼋年级第⼀章勾股定理练习题【带答案解析】第⼀章勾股定理分节练习第1节探索勾股定理⼀、求边长问题. ★★★题型⼀:已知直⾓三⾓形的两边,求第三边.1、【基础题】求出下列两个直⾓三⾓形中x和y边的长度.、【基础题】(1)求斜边长为17 cm,⼀条直⾓边长为15 cm的直⾓三⾓形的⾯积.(2)已知⼀个Rt△的两边长分别为3和4,则第三边长的平⽅是________.、【综合Ⅰ】已知⼀个等腰三⾓形的两腰长为5 cm,底边长6 cm,求这个等腰三⾓形的⾯积.、【综合Ⅰ】如图,有两棵树,⼀棵⾼10⽶,另⼀棵⾼4⽶,两树相距8⽶,⼀只⼩鸟从⼀棵树的树梢飞到另⼀棵树的树梢,问⼩鸟⾄少飞⾏()A.8⽶ B.10⽶C.12⽶D.14⽶、【综合Ⅰ】强⼤的台风使得⼀根旗杆在离地⾯9⽶处折断倒下,旗杆顶部落在离旗杆底部12⽶处,求旗杆折断之前有多⾼?、【综合Ⅱ】如图,某储藏室⼊⼝的截⾯是⼀个半径为 m的半圆形,⼀个长、宽、⾼分别是 m、1 m、 m的箱⼦能放进储藏室吗?题型⼆:⽤“勾股定理 + ⽅程”来求边长.2、【综合Ⅱ】⼀个直⾓三⾓形的斜边为20 cm,且两直⾓边的长度⽐为3∶4,求两直⾓边的长.【综合Ⅱ】如图,⼩明想知道学校旗杆的⾼,他发现旗杆顶端的绳⼦垂到地⾯还多1⽶,当他把绳⼦的下端拉开5⽶后,下端刚好接触地⾯,求旗杆AC的⾼度.、【综合Ⅱ】在我国古代数学著作《九章算术》中记载了⼀个有趣的问趣,这个问题的意思是:如左下图,有⼀个边长是10尺的正⽅形⽔池,在⽔池正中央有⼀根芦苇,它⾼出⽔⾯1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边中点的⽔⾯,请问这个⽔池的深度和这根芦苇的长度各是多少?【综合Ⅲ】如右上图,有⼀块直⾓三⾓形纸⽚,两直⾓边AC=6 cm,BC=8 cm,现将直⾓边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.【提⾼题】(2011年北京市竞赛题)两张⼤⼩相同的纸⽚,每张都分成7个⼤⼩相同的矩形,放置如图所⽰,重合的顶点记作A,顶点C在另⼀张纸的分隔线上,若BC=28,则AB的长是 ______ .类型三:“⽅程+等⾯积”求直⾓三⾓形斜边上的⾼.3、直⾓三⾓形两直⾓边分别为5、12,则这个直⾓三⾓形斜边上的⾼为().(A)6 (B)(C)(D)⼆、⾯积问题. ★4、【基础题】求出左下图中A、B字母所代表的正⽅形的⾯积.、【综合Ⅰ】如右上图,所有的四边形都是正⽅形,所有的三⾓形都是直⾓三⾓形,请在图中找出若⼲图形,使它们的⾯积之和等于最⼤正⽅形1的⾯积,尝试给出两种⽅案.则正⽅形A ,B ,C ,D 的⾯积之和为___________cm 2.、【综合题】如右上图2,以Rt△ABC 的三边为斜边分别向外作等腰直⾓三⾓形.若斜边AB =3,则图中阴影部分的⾯积为().(A )9 (B )3 (C )(D )5、【综合Ⅲ】如图,在直线l 上依次摆放着七个正⽅形,已知斜放置的三个正⽅形的⾯积分别是1、2、3,正放置的四个正⽅形的⾯积依次是1S 、2S 、3S 、4S ,则1S +2S +3S +4S =________三、证明问题 6、【综合Ⅲ】1876年,美国总统加菲尔德利⽤右图验证了勾股定理,你能利⽤左下图验证勾股定理吗?说⼀说这个⽅法和本节的探索⽅法的联系.7、【提⾼题】如右上图,在Rt △ABC 中,∠A = 90,D 为斜边BC 的中点,DE ⊥DF ,求证:222CF BE EF +=.8、【提⾼题】如图,AD 是△ABC 的中线,证明:)+(=+22222CD AD AC AB的尺⼨如图所⽰,这个零件符合要求吗?并求出四边形ABCD 的⾯积. 、【综合Ⅰ】如左下图,6个三⾓形分别标号,哪些三⾓形是直⾓三⾓形,哪些不是,请说明理由.、【综合Ⅰ】如右上图,在正⽅形ABCD 中,4=AB ,2=AE ,1=DF ,图中有⼏个直⾓三⾓形,说明理由. 10、【基础题】下列各组中,不能构成直⾓三⾓形三边长度的是()(A )9,12,15 (B )15,32,39 (C )16,30,34 (D )9,40,41 、【基础题】(1)如果将直⾓三⾓形的三条边长同时扩⼤⼀个相同的倍数,得到的三⾓形还是直⾓三⾓形吗?(2)下表中第⼀列每组数都是勾股数,补全下表,这些勾股数的2倍、3倍、4倍、10倍还是勾股数吗?任意、【综合Ⅰ】如图,直⾓三⾓形ABC 的周长为24,AB 是斜边且AB :BC=5:3,则AC =()(A )6 (B )8 (C )10 (D )12第三节勾股定理的应⽤11、【综合Ⅰ】如左下图,有⼀个圆柱,⾼是12 cm,底⾯半径是3 cm,在圆柱下底⾯的A点有⼀只蚂蚁,它想吃到上底⾯与A点相对的B点处的⾷物,那么它沿圆柱侧⾯爬⾏的最短路程是多少?(的值取3)、【综合Ⅰ】如右上图,有⼀圆柱形油罐,底⾯周长为24 m,⾼为10 m,从A处环绕油罐建梯⼦,梯⼦的顶端正好到达A点的正上⽅B点,问所建梯⼦最短需多长?12、【综合Ⅰ】如左下图,⼀个⽆盖的长⽅体盒⼦的长、宽、⾼分别为8 cm、8 cm、12cm,⼀只蚂蚁想从盒底的A点沿长⽅体的表⾯爬到盒顶的B点,请问蚂蚁爬⾏的最短路程是多少?、【综合Ⅱ】如右上图,长⽅体的长为15,宽为10,⾼为20,点B离点C的距离是5,⼀只蚂蚁如果要沿着长⽅体的表⾯从点A 爬到点B,需要爬⾏的最短路程是多少?13、【基础题】⼀艘帆船由于风向的原因先向正东⽅向航⾏了160千⽶,然后向正北⽅向航⾏了120千⽶,这时它离出发点有多远?、【基础题】甲、⼄两位探险者到沙漠进⾏探险,某⽇早晨8:00甲先出发,他以6 km/h 的速度向正东⾏⾛,1⼩时后⼄出发,他以5 km/h的速度向正北⾏⾛,上午10:00时,甲⼄⼆⼈相距多远?14、【基础题】如左下图,⼀座城墙⾼⽶,墙外有⼀条宽为9⽶的护城河,那么⼀个长为15⽶的云梯能否到达墙的顶端?、【综合Ⅰ】如右上图,⼀架云梯长25⽶,如图斜靠在⼀⾯墙上,梯⼦底端离墙7⽶.(1)这个梯⼦的顶端距地⾯有多⾼?(2)如果梯⼦的顶端下滑了4⽶,那么梯⼦的底部在⽔平⽅向也滑动了4⽶吗?、【综合Ⅰ】如右上图,在四边形ABCD 中,AD =4 cm ,CD =3 cm ,AD ⊥CD ,AB =12 cm ,BC =13 cm ,求四边形ABCD 的⾯积. 16、【综合Ⅲ】如图,Rt△ABC 中,AB =9,BC =6,∠B=90°,将△ABC 折叠,使点A 与BC 的中点D 重合,折痕为MN ,则线段BN 的长为() A.35 B. 25C. 4D. 517、【综合Ⅰ】将⼀根长24 cm 的筷⼦置于底⾯直径为5 cm 、⾼为12 cm 的圆柱形⽔杯中,那么筷⼦露在⽔杯外⾯的长度 h (cm )的取值范围是、【提⾼题】装修⼯⼈购买了⼀根装饰⽤的⽊条,乘电梯到⼩明家安装,如果电梯的长、宽、⾼分别是 m 、 m 、 m ,那么能放⼊电梯内的⽊条的最⼤长度⼤约是多少⽶?你能估计出装修⼯⼈买的⽊条⾄少是多少⽶吗?、【综合Ⅰ】如图,⼩⽅格是边长为1的正⽅形,求ABCD的⾯积.19、【提⾼题】如右上图,是由5个边长相同的⼩正⽅形组成的⼗字,A、B、C均在顶点上,则∠BAC=.⼀、求边长问题. ★★★题型⼀:已知直⾓三⾓形的两边,求第三边. 1、【答案】 x =10,y =12 【总结】知道直⾓三⾓形的两边,可以求出第三边,这是勾股定理最常见的应⽤,也是基本的题型。
北师大版数学八年级上册第1章勾股定理 检测卷 (含答案)

第1章检测卷勾股定理(时间:100分钟满分:120分)题号一二三总分得分一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是 ( )A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a²=c²−b²D. a:b:c=3:4:62.下列各组数中,不能作直角三角形三边长的是 ( )A.3,4,5B.5,12,13C.7,24,25D.7,9,133.若直角三角形的三边长为6,8,m,则m²的值为 ( )A.10B.100C.25D.100 或284.如图,D为△ABC的边BC上一点,已知AB=13,AD=12,AC=15,BD=5,则BC的长为( )A.13B.14C.15D.165.将一根长为25 cm的筷子置于底面直径为5cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外的长为h cm,则 h的取值范围是 ( )A.12≤h≤13B.11≤h≤12C.11≤h≤13D.10≤h≤126.如图,高速公路上有A,B两点相距10km,点 C,D 为两村庄,已知DA=4km,CB=6km. DA⊥AB于点A,CB ⊥AB于点B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,则EA的长是( )A. 4kmB. 5kmC.6kmD.7 km7.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草( )A.1B.2C.3D.48.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为 ( )A.0.7 米B.1.5米C.2.2 米D.2.4米9.在我国古代数学著作《九章算术》的第九章《勾股》中记载了这样的一个问题:“今天有开门去阔(kǔn)一尺,不合二寸,问门广几何?”意思是:如图,推开两扇门(AD 和BC),门边缘 D,C 两点到门槛AB的距离是1 尺(1尺=10寸),两扇门的间隙CD为2寸,那么门的宽度(两扇门的宽度和)AB为 ( )A.101 寸B.100寸C.52寸D.96寸10.如图,圆柱形容器高为18 cm,底面周长为24 cm,在杯内壁离杯底4 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B 处的最短距离为( )A.13cmB.12 cmC.16 cmD.20cm二、填空题(每小题3分,共15 分)11.三个正方形如图摆放,其中两个正方形的面积分别为S₁=25,S₂=144,则第三个正方形的面积为S₃=.12.如图,∠C=90°,AB=12,BC=3,CD=4,AD=13,则∠ABD=.13.一直角三角形的两边长分别为4和5,明明以第三边为正方形的一边,画了个正方形,则明明画的这个正方形的面积等于 .14.如图,每个小正方形的边长都为1,则△ABC的三边长a,b,c的大小关系是 .(用“>”连接)15.如图为一个三级台阶,每一级台阶的长、宽、高分别是50cm,30cm,10cm,A 和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到 B 点,最短路线的长是 cm.三、解答题(本大题共8个小题,共75分)16.(8分)有一朵荷花,花朵高出水面1尺,一阵大风把它吹歪,使花朵刚好落在水面上,此时花朵离原位置的水平距离为3尺,此水池的水深有多少尺?17.(8分)如图所示的一块草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块草坪的面积.18.(8 分)如图,在长方形ABCD 中,AB=3cm,AD=9cm,,将此长方形折叠,使点 B 与点 D 重合,折痕为 EF,求△ABE的面积.19.(9 分)如图,在△ABC中,D 是BC 上一点,若AB=10,BD=6,AD=8,AC=17.(1)求 DC 的长;(2)求△ABC的面积.20.(9分)如图,长方体中AB=BB′=2,AD=3,,一只蚂蚁从A点出发,在长方体表面爬到C′点,求蚂蚁怎样走最短,最短路径是多少.21.(10分)如图,牧童在A 处放羊,其家在B 处,A,B 到河岸的距离分别为AC=400m,BD=200m,C,D间的距离为800 m,牧童从A处把羊牵到河边饮水后再回家,试问:羊在何处饮水所走路程最短?在图中画出最短路径并求出最短路径的长度是多少.22.(11 分)如图,在△ABC中,∠C=90°,AB=5cm,BC=3cm..若点 P 从点 A出发,以每秒2cm的速度沿A→C→B→A运动,设运动时间为ts(t⟩0).(1)当点P在AC上,且满足.PA=PB时,求t的值;(2)若点 P 恰好在∠BAC的平分线上,求t的值.23.(12分)勾股定理神秘而美妙,它的证法多样,其中的巧妙各有不同,其中的“面积法”给了小聪灵感,他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明勾股定理.下面是小聪利用图1 证明勾股定理的过程.将两个全等的直角三角形按图1所示的方式摆放,其中∠DAB=90°.试说明:a²+b²=c².解:连接DB,过点D作DF⊥BC,,交 BC的延长线点于点 F,则DF=EC=b−a.因为S四边形ADCB =SACD+SABC=12b2+12ab,S四边形ADCB =SABD+SDCB=12c2+12a(b−a).所以12b2+12ab=12c2+12a(b−a).所以a²+b²=c².请参照上述方法,回答下面的问题.将两个全等的直角三角形按图2所示的方式摆放,其中∠DAB=90°.试说明:a²+b²=c².第1章检测卷勾股定理1. D2. D3. D4. B5. A6. C7. D8. C9. A 10. D 11.16912.90° 13.41或9 14. c>a>b 1 5.13016.解:设水深x尺,那么荷花径的长为(x+1)尺.由勾股定理得x²+3²=(x+1)².解得x=4.答:水池的水深有4 尺.17.解:如图,连接AC,则在Rt△ADC中,AC²=AD²+CD²=12²+9²=225,所以AC=15.在△ABC中,.AB²=1521.因为AC²+BC²=15²+36²=1521,所以AB²=AC²+BC².所以△ABC是直角三角形,∠ACB=90°.所以SABC −SAcD=12AC⋅BC−12AD⋅CD=12×15×36−12×12×9=270-54=216(m²).答:这块草坪的面积是216平方米.18.解:因为四边形ABCD 是长方形,所以∠A=90°.设BE=x cm.由折叠的性质可得DE=BE=x cm.所以AE=AD-DE=(9-x) cm.在Rt△ABE中,BE²=AE²+AB²,所以x²=(9−x)²+3².解得x=5.所以DE=BE=5cm,AE=4 cm.所以SABE =12AB⋅AE=12×3×4=6(cm2).19.解:(1)因为在△ABD中,.AB=10,BD=6,AD=8,所以AB²=100,BD²+AD²=36+64=100.所以AB²=BD²+AD².所以△ABD是直角三角形.所以AD⊥BC,即∠ADC=90°.在Rt△ADC中,AD=8,AC=17,由勾股定理得DC²=17²−8²=225,所以DC=15.(2)SABC =12AD⋅BC=12AD⋅(BD+DC)=84.20.解:①如图1,把长方体沿.A→A′→D′→C′→C→D→A剪开,则成长方形ACC'A',宽为AA′=BB′=2,长为AD+DC=AD+AB=5.连接AC',则点A,C,C'构成直角三角形,由勾股定理得AC′²= (AD+DC)²+DD′²=5²+2²=29.②如图2,把长方体沿. A→A ′→B ′→C ′→D ′→D→A 剪开,则成长方形ADC'B',宽为AD=3,长为 DD ′+D ′C ′=BB ′+AB =4.连接AC',则点A,D,C'构成直角三角形,由勾股定理得 AC ′²=AD²+(DD ′+D ′C ′)=3²+4²=25.因为25<29,所以最短路径是5.21.解:作点 B 关于 CD 的对称点 B',连接AB'交 CD 于点 P,连接PB,此时PA+PB 的值最小,最小值为AB'的长.过点 A 作AE⊥B'B 交B'B 的延长线于点 E.在 Rt△AED'中,因为AE=CD=800 m,B'E=AC +B'D =AC +BD=400+200=600(m),所以 AB ′²=AE²+B ′E²=800²+600².所以 AB ′=1000m.即最短路程的长度是1 000 m.22.解:(1)因为AB=5cm,BC =3cm,∠C=90°,所以由勾股定理得 AC²=AB²−BC²=5²−3²=16,所以 A C=4 cm.当PA=PB =2t cm 时,PC=(4-2t) cm.在 Rt△PCB 中,由勾股定理得 PC²+BC²=PB².即 (4−2t )²+3²=(2t )².解得 t =2516.所以PA=PB 时,t 的值为 2516.(2)当点 P 在∠BAC 的平分线上时,如图,过点 P 作 PE⊥AB 于点 E.此时BP=(7-2t) cm,PE=PC=(2t-4) cm,BE=5-4=1(cm),其中0<t<3.5.在 Rt△BEP 中,由勾股定理得 PE²+BE²=BP².即 (2t−4)²+1²=(7−2t )²,解得 t =83.当t=6时,点P 与点A 重合,也符合条件.所以点 P 恰好在∠BAC 的平分线上时,t 的值为 83或6.23.解:连接BD,过点B 作BF⊥DE,交DE 的延长线于点 F,易知BF=b-a.因为S CBED =S ABC +S ABD +S BDE =12ab +12c 2+ 12a (b−a ),S ACBED =S ACBE +S ADE =12b (a +b )+12ab,所以12ab +12c 2+12a (b−a )=12b (a +b )+12ab.所以 a²+b²=c².。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图6
北师大版八年级数学第一章勾股定理测试题(1)
一、填空题(每小题5分,共25分): 1.已知一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边上的高为.
2..三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三条边长是.
3.△中,10,16,边上的中线6,则.
4.将一根长24 的筷子,置于底面直径为5,高为12的圆柱形水杯中(如图1),设筷子露在杯子外面的长度是为 ,则h 的取值范围是.
5.如图2所示,一个梯子长2.5米,顶端A 靠墙上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在上的位置上,如图3,测得的长0.5米,则梯子顶端A 下落了米. 二、选择题(每小题5分,共25分):
6.在下列长度的四组线段中,不能组成直角三角形的是( ).
A .9 41 40
B .5 5
2
C .3:4:5
D .11 12 15
7.若△中,13,15,高12,则的长是( ).
A .14
B .4
C .14或4
D .以上都不对
8. 2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小小正方形拼成的一个大正方形
(如图4所示),如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2)(b a +的值为( ).
A .13
B .19
C .25
D .169
9. 如图5,四边形中,3,4,12,13,且∠900
,则四边形的面积是( ).
A .84
B .30
C .2
51 D .无法确定
10.如图6,已知矩形沿着直线折叠,使点C 落在处,B 交于E ,8,4,则的长为( ). A .3 B .4 C .5 D .6 三、解答题(此大题满分50分): 11.(7分)在ABC Rt ∆中,∠900
.
图1
图2
图3 图4
图5
(1)已知15,25==b c ,求a ; (2)已知060,12=∠=A a ,求b 、c .
12.(7分)阅读下列解题过程:已知a 、b 、c 为△的三边,且满足442222b a c b c a -=-,试判定△的形状. 解:∵ 442222b a c b c a -=-, ①
∴ ))(()(2222222b a b a b a c -+=-, ② ∴ 222b a c +=, ③ ∴ △为直角三角形.
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号;
(2)错误的原因是;
(3)本题正确的结论是.
13.(7分)细心观察图7,认真分析各式,然后解答问题:
21)1(
2=+ 21
1=
S 31)2(2=+ 22
2=S
41)3(2=+ 23
3=S
┉┉ ┉┉
(1) 用含有n (n 是正整数)的等式表示上述变化规律;
(2)推算出10的长;
(3)求出2
10
232221S S S S ++++Λ的值.
14.(7分)已知直角三角形的周长是62+,斜边长
2,求它的面
积.
图7
15.(7分)小东拿着一根长竹杆进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果杆比城门高1米,当他把杆斜着时,两端刚好顶着城门的对角,问杆长多少米?16.(7分)小明向西南方向走40米后,又走了50米,再走30米回到原地.小明又走了50米后向哪个方向走的?再画出图形表示
17.(8分)如图8,公路和公路在点P处交汇,且∠300,点A处有一所中学,160米,假设拖拉机行驶时,周围100米以内会受到噪音的影响,那么拖拉机在公路上沿方向行
驶时,学校是否回受到噪声的影响?说明理
由.如果受影响,已知拖拉机的速度为18千
米/时,那么学校受影响的时间为多少秒?
图8
北师大版八年级数学(勾股定理)自测题(2)
一、选择题(共4小题,每小题4分,共16分.在四个选项中,只有一项是符合题目要求的,请把符合要求一项的字母代号填在题后括号内.)
1.下列说法正确的有( )
①△是直角三角形,∠90°,则a222. ②△中,a22≠c2,则△不是直角三角形. ③若△中,a222,则△是直角三角形. ④若△是直角三角形,则()()2. A.4个 B.3个 C.2个 D.1个
2.已知△中,∠90°,若14,10,则△的面积是( )
A.242
B.362
C.482
D.602
3.已知,如图,一轮船以20海里/时的速度从港口A出发向东北方向航行,另一轮船以15海里/时的速度同时从港口A出发向东南方向航行,则2小时后,两船相距( )
A.35海里
B.40海里
C.45海里
D.50海里
4.如图,已知矩形沿着直线折叠,使点C落在C'处,'交于E,
8,4,则的长为( )
A.3
B.4
C.5
D.6
二、填空题(共4小题,每小题4分,共16分.把答案填在题后
的横线上.)
5.如图,学校有一块长方形草坪,有极少数人为了
避开拐角走
“捷径”,在草坪内走出了一条"路".他们仅仅少走了
步路(假设2步为1米),却踩伤了青草.
6.如图,圆柱形玻璃容器高20,底面圆的周长为48,在外
侧距下底1的点A处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1的点B处有一只苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为.
7.如果三条线段的长度分别为8、、18,这三条线段恰好能组成一个直角三角形,那么以x为边长的正方形的面积为.
8.已知△的三边a、b、c满足等式12145|,则△的面积为.
三、解答题(共6小题,1、2题各10分,3-6题各12分,共68分.
解答应写出文字说明,证明过程或演算步骤.)
9.如图是一块地,已知8m,6m,∠90°,26m,24m,求这块地的面积.
10.如图,将一根30㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和24㎝的长方体无盖盒子中,求细木棒露在盒外面的
最短长度是多少?
11.如图,铁路上A、B两点相距25, C、D为两村庄,⊥于A,⊥于B,若1015,现要在上建一个周转站E,使得C、D两村到E 站的距离相等,则周转站E应建在距A点多远处?12.如图,折叠矩形纸片,先折出折痕(对角线),再折叠使边与重合,得折痕,若3,4,求的长.
13.如图,A、B两个小镇在河流的同侧,到河流的距离分别为10,
30,且30,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每3万元,请你在河流上选择建水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?
14.“交通管理条例”规定:小汽车在城街路上行驶速度不得超过
70千米/小时,如图,一辆小汽车在一条城市街路上直线行驶,
某一时刻刚好行驶到车速检测仪所在位置A处正前方30米的C 处,过了2秒后,测得小汽车所在位置B处与车速检测仪间距离为50米,这辆小汽车超速了吗?
附加题(10分,不计入总分)
如图,P是矩形内一点,1,5,7,则.
一、1 2 3 4
二、5.4 6.30 7.260或388 8.30
三、9.解:连接.……1分
在△中,∵86m,∠90°,
∴由勾股定理,222=82+62=10010. ……3分
在△中,22=102+242=6762=676,
∴222. ∴△是直角三角形.……6分
∴……8分
答:求这块地的面积是96m2.……10分
10.解:由勾股定理,82+62=102,……3分
102+242=262.……6分
∴30-26=4.……8分
答:细木棒露在盒外面的最短长度是4.……10分11.解:设E点建在距A点处.……1分
如图,则长,长(25).……2分
∵⊥,∴△是直角三角形.
由勾股定理,222=1022.……5分
同理,在△中,22=152+(25)2.……7分
依题意,1022=152+(25)2,…… 9分
解得,15. ……11分
答:E应建在距A15处.……12分
12.解:在上截取,连接.……1分
依题意,, , ∠∠90°.……3分
在△中,3,4,
∴2=32+42=255. ∴5-3=2. ……5分
设长为x,则4. ……7分
在△中,222,即(4)22+22.……9分
解得,. ……11分
答:的长为.……12分
13.解:作点A关于的对称点E,连接,交于M. 则10公里 (2)
分过点A作⊥,垂足为F.
过点B作的平行线交延长线于G,得矩形.……4分
则30公里,30公里,30+10=40里.……7分
在△中,由勾股定理,222=302+40250,……9分
∴3×50=150(万元).……11分
答:铺设水管的总费用最少为150万元. ……12分
14.解:依题意,在△中,30米,50米,
由勾股定理,222=502-30240米.……3分
∴小汽车由C到B的速度为40÷2=20米/秒. ……5分∵20米/秒=72千米/小时,……8分
72>70,……10分
因此,这辆小汽车超速了. ……12分
附加题解:过点P作∥交于点M,交
于点N,
则,.……2分
∵∠∠90°,
∴222,222.……4分
∴2222.……5分
同理,2222.……7分
∴2222.又1,5,7,……8分
∴222+2=12-52+72,5.……10分。