北师大版八年级上册数学第一章勾股定理单元测试卷含答案解析
第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、若,,为的三边长,则下列条件中不能判定是直角三角形的是()A. ,,B.C.D.2、如图,矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2,则矩形的面积为()A. B.2 C.4 D.3、如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cmB.12cmC.16cmD.20cm4、如图,O是正内一点,,,,将线段BO以点B为旋转中心逆时针旋转得到线段,下列五个结论中,其中正确的结论是()可以由绕点B逆时针旋转得到;点O与的距离为4;;;.A. B. C. D.5、如图:图形A的面积是()A.225B.144C.81D.无法确定6、如图,一个小球沿倾斜角为的斜坡向下滚动,经过5秒时,测得小球的平均速度为米秒.已知,则小球下降的高度是()A.1米B.1.5米C.2米D.2.5米7、用圆心角为120°,半径为3 cm的扇形纸片卷成一个圆锥形无底纸冒(如图所示),则这个纸冒的高是()A.3 cmB.2 cmC.3 cmD.4 cm8、在Rt△ABC中,∠C=90°,AB=15,AC:BC=3:4,则这个直角三角形的面积是()A.24B.48C.54D.1089、如图,在△ABC中,AB=AC=5,P是BC边上除B、C点外的任意一点,则代数式AP2+PB•PC等于()A.25B.15C.20D.3010、如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,点M,N分别是AB,AC的中点,则线段MN长的最大值为()A.5B.C.5D.11、在直角坐标系中,点P(-2,3)到原点的距离是( )A. B. C. D.212、如图所示,点B,D在数轴上,OB=3,OD=BC=1,∠OBC=90°,以D为圆心,DC长为半径画弧,与数轴正半轴交于点A,则点A表示的实数是()A. B. 1 C. 1 D.不能确定13、如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b 2+(b﹣a)2B.b 2+a 2C.(b+a)2D.a 2+2ab14、如图,在矩形中,,,过对角线交点作交于点,交于点,则的长是( )A.1B.C.2D.15、如图,将等腰直角三角形()沿折叠,使点落在边的中点处,,那么线段的长度为()A.5B.4C.4. 25D.二、填空题(共10题,共计30分)16、如图,等边的边与轴交于点,点是反比例函数图像上一点,若为边的三等分点时,则等边的边长为________.17、如图,在△ABC中,AB=BC=6,AO=BO,P是射线CO上在AB下方的一个动点,∠AOC =45°.则当△PAB为直角三角形时,AP的长为________.18、如图,巳知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD= ,则线段BC的长度等于________.19、《九章算术》中有一个“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC=________尺.20、已知△ABC中,AB=5,AC=3,BC=4,P为边AB上一点,且△APC为等腰三角形,则CP 的长为________21、如图,已知菱形ABCD的周长为16,面积为8 ,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为________.22、如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要________cm.23、如图,线段AB=2,过点B作BD⊥AB,使BD= AB,连接AD,在AD上截取DE=DB.在AB上截取AC=AE.那么线段AC的长为________.24、在⊙O中,弦AB=24cm,圆心O到弦AB的距离为5cm,则⊙O的半径为________cm.25、如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA8的长度为________.三、解答题(共5题,共计25分)26、如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求AB的长.27、如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD 在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E、交OA于点G,连结CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.(1)求线段CE的长;(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t的函数关系式及t的取值范围;(3)连结DF,①当t取何值时,有DF=CD?②直接写出ΔCDF的外接圆与OA相切时t的值.28、在Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,点P为BC边上一点,把△PBD沿PD翻折,点B落在点E处,设PE交AC于F,连接CD(1)求证:△PCF的周长=CD;(2)设DE交AC于G,若, CD=6,求FG的长29、将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B (0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S= 时,求点M的坐标(直接写出结果即可).30、如图,AB是的直径,弦于点E,若,,求的长.参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、C5、C6、B7、B8、C9、A10、D11、B12、C13、A14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、29、30、。
第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、分别以下列四组数为一个三角形的边长:(1)6,8,10,;(2)5,12,13;(3)8,15,17;(4)4,5,6,其中能构成直角三角形的有 ( )A.4组B.3组C.2组D.1组2、下列判断中正确的有()个①直角三角形的两边为3和4,则第三边长为5②有一个内角等于其它两个内角和的三角形是直角三角形③若三角形的三边满足b2=a2﹣c2,则△ABC是直角三角形④若△ABC中,∠A:∠B:∠C=8:15:17,则△ABC是直角三角形A.1B.2C.3D.43、如图,等边三角形OAB的顶点O在坐标原点,顶点A在x轴上,OA=2,将等边三角形OAB绕原点顺时针旋转105°至OA′B′的位置,则点B′的坐标为()A.(,- )B.(- ,)C.(- , )D.(,- )4、四边形中,,则的值为()A.15B.C.D.205、如图,点C是线段AB上一点,分别以AC,BC为边在线段AB的同侧作等边△ACD和等边△BCE,连结DE,点F为DE的中点,连结CF.若AB=2a(a为常数,a>0),当点C在线段AB上运动时,线段CF的长度l的取值范围是()A. B. C. D.6、如图,平面直角坐标系中,与轴分别交于、两点,点的坐标为,.将沿着与轴平行的方向平移多少距离时与轴相切()A.1B.2C.3D.1或37、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为208、如图,已知在4 4的网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠CAB的值为()A. B. C. D.9、一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4B.8C.10D.1210、在中,若,,,则下列结论正确的是()A. B. C. D. 不是直角三角形11、直角三角形三边的长分别为3、4、x,则x可能取的值为()A.5B.C.5或D.不能确定12、如图,将半径为4cm的圆折叠后圆弧正好经过圆心,问折痕长()A. cmB. cmC. cmD. cm13、如图,有一块直角三角形纸片,两直角边分别为AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( )A.2cmB.3cmC.4cmD.5cm14、⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4B.6C.7D.815、如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7二、填空题(共10题,共计30分)16、如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是________.17、如图为某楼梯的侧面,测得楼梯的斜长AB为5米,高BC为3米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.18、如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C 恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H 处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG= S△FGH;④AG+DF=FG.其中正确的是________.(把所有正确结论的序号都选上)19、如图,已知A为⊙O外一点,连结OA交⊙O于P,AB为⊙O的切线,B为切点,AP=5㎝,AB=㎝,则劣弧与AB,AP所围成的阴影的面积是________.20、已知的三边长分别是,则的面积是________.21、如图,已知菱形ABCD中,∠BAD=120°,AD=8,则这个菱形的面积为________。
北师大八年级数学上《第1章勾股定理》单元检测试题(含答案)

八年级数学上册第1章勾股定理单元检测试题班级:__________姓名:__________一、单选题(共10题;共30分)1.下列各组数中,能构成直角三角形的是()A. 4,5,6B. 6,8,11C. 1,1,D. 5,12,22.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A. 25B. 14,C. 7D. 7或253.已知a、b、c是三角形的三边长,如果满足(a-6)2+=0,则三角形的形状是( )A. 底与腰不相等的等腰三角形B. 等边三角形C. 钝角三角形D. 直角三角形4.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5m,消防车的云梯最大升长为13m,则云梯可以达到该建筑物的最大高度是()A. 12mB. 13mC. 14mD. 15m5.一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面积为()A. 60B. 30C. 24D. 126.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为()A. 1B. 2C. 3D. 47.一个三角形的三边的长分别是3、4、5,则这个三角形最长边上的高是()A. 4B.C.D.8.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A. 12B. 14C. 16D. 189.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A. 0B. 1C.D.10.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A. ∠A+∠B=∠CB. ∠A:∠B:∠C=1:2:3C. a2=c2﹣b2D. a:b:c=3:4:6二、填空题(共8题;共24分)11.如图为某楼梯的侧面,测得楼梯的斜长AB为13米,高BC为5米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.12.在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2=________.13.一直角三角形的一条斜边和一直角边的长度分别是4和3,则它的另一直角边长是________.14.已知直角三角形的两边的长分别是3和4,则第三边长为________.15.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是________ .16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________17.要在一个长方体中放入一细直木条,现知长方体的长为2,宽为,高为,则放入木盒的细木条最大长度为________ .18.如图,一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,则旗杆折断之前有________米.三、解答题(共66分)19.已知:如图,在△ABC 中,∠C=90°,D 是BC 的中点,AB=10,A C=6.求AD 的长度.20.求如图的Rt△ABC的面积.21.如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?23.铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D 两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.24.如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是13海里,A、B两艇的距离是5海里;反走私艇B 测得距离C艇12海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?25.已知在中,,,.(1)判断△ABC的形状,并说明理由;(2)试在下面的方格纸上补全△ABC,使它的顶点都在方格的顶点上。
北师大版八年级数学上册 第一章 勾股定理单元测试卷(含答案)

第一章勾股定理单元测试卷一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4 C.2D.4(第1题) (第4题) (第5题)2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:63.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC 的长为()A.﹣1 B.+1 C.﹣1 D.+15.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C.D.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5 C.5,10,13 D.2,3,47.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里(第7题) (第9题) (第10题)8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42 B.32 C.42或32 D.不能确定9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3 B.6 C.D.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.1011.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米(第11题) (第12题)12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5m B.4m C.3m D.2m二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△P AB为直角三角形时,AP的长为.(第13题) (第14题) (第15题) 14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为cm.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.参考答案一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4 C.2D.4【解答】解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故选A.2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D.3.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.http://www、czsx、com、cn4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC 的长为()A.﹣1 B.+1 C.﹣1 D.+1【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.5.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C. D.【解答】解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=,故选:A.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5 C.5,10,13 D.2,3,4【解答】解:A、12+12≠()2,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、52+102≠132,不能构成直角三角形,故此选项错误;D、22+32≠42,不能构成直角三角形,故此选项错误.故选B.7.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里【解答】解:连接BC,由题意得:AC=16×2=32(海里),AB=12×2=24(海里),CB==40(海里),故选:C.8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42 B.32 C.42或32 D.不能确定【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故选:C.9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3 B.6 C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,AB=,BC=2,∴AC==3,∴这个直角三角形的面积=AC•BC=3,故选A.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.10【解答】解:根据勾股定理可得a2+b2=17,四个直角三角形的面积是:ab×4=17﹣5=12,即:ab=6.故选:B.11.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米【解答】解:由题意可知.BE=CD=1、5m,AE=AB﹣BE=4、5﹣1、5=3m,BD=5m由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选A.12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5m B.4m C.3m D.2m【解答】解:在RT△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=0A+AB=20m,在RT△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD﹣OC=2m,故选:D.二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△P AB为直角三角形时,AP的长为2或2.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠AOC=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠∠PBA=30°,∴AP=AB=2;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠AOC=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=4×=2;当∠BAP=90°时,如图3,∵∠AOC=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=2×=2.故答案为:2或2.14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯2米.【解答】解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′=6m.则AA′=8﹣6=2m.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是11cm≤a≤12cm.【解答】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′==3,∠D′DA+∠ADC=90°由勾股定理得CD′==,∴BD=CD′=,故答案为:.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为5cm.【解答】解:设矩形的相邻两边的长度分别为3acm,4acm,由题意3a+4a=7,a=1,所以矩形的相邻两边分别为3cm,4cm,所以对角线长==5cm,故答案为5.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴在Rt△ACB中,AC═==,∴在Rt△ACD中,AD===,在Rt△ADE中,AE===2.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.【解答】证明:∵如图,边BC的垂直平分线DE交AB于点E,∴CE=BE.∵在Rt△ABC中,∠A=90°,∴由勾股定理得到:CE2=AC2+AE2∴BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.【解答】解:(1)S2+S3=S1,由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(2)∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(3)∵S1=AB2,S2=BC2,S3=AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.。
北师大版八年级数学(上册)第一章 勾股定理 单元测试卷(附参考答案析)

第一章勾股定理单元测试卷(考试时间:100分钟满分:100分)一、填空题(每小题3分,共21分)1.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到B点,则AB= 米.2.如图1所示,太阳能热水器的支架AB的长为90 cm,与AB垂直的BC的长为120 cm,则太阳能真空管AC的长是.图13.如图2所示的是一长方形公园示意图,若某人从景点A走到景点C,则最少要走米.图24.在△ABC中,AB=16 cm,BC=12 cm,要使∠B=90°,则AC的长度为.5.如图3所示,在△ABC中,AB=AC,AD⊥BC于点D.若AB=10cm,BC=16 cm,则AD= cm.图36.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为 .7.如图4所示,在直线l上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .图4二、选择题(每小题3分,共30分)8.若Rt△ABC中,∠C=90°,且c=13,a=12,则b等于( )A.11B.8C.5D.39.下列长度的3条线段,能围成直角三角形的是( )①8,15,17;②4,5,6;③7.5,4,8.5;④24,25,7;⑤5,8,17.A.①②④B.②④⑤C.①③⑤D.①③④10.若长方形的一条对角线的长为10 cm,一边长为6 cm,则它的面积为( )A.60 cm2B.64 cm2C.24 cm2D.48 cm211.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的( )A.1倍B.2倍C.3倍D.4倍12.如图5所示,分别以直角三角形的三边作三个半圆,其面积分别为S1,S2,S3.已知S1=30,S2=40,则S3等于( )图5A.60B.40C.50D.7013.如图6所示,一圆柱体的底面周长为24 cm,高AB为5 cm,BC 是直径,一只蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短距离是( )图6A.6 cmB.12 cmC.13 cmD.16 cm14.两只小鼹鼠在地下打洞,从同一地点开始挖,一只朝东挖,每分钟挖8 cm,另一只朝南挖,每分钟挖6 cm,10分钟后两只小鼹鼠相距( )A.50 cmB.100 cmC.140 cmD.80 cm15.如图7所示,王大伯家屋后有一块长12 m,宽8 m的长方形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用( )图7A.3 mB.5 mC.7 mD.9 m16.在Rt△ABC中,AC=3,BC=4,斜边AB上的高为( )A.2.2B.2.3C.2.4D.2.517.在△ABC中,∠A=90°,则下列式子中,成立的是( )A.AB2=AC2+BC2B.AC2=AB2+BC2C.BC2=AB2-AC2D.BC2=AB2+AC2三、解答题(共49分)18.(8分)求下图中阴影部分的面积.19.(7分)有一块如图8所示的四边形钢板,其中AB=20cm,BC=15 cm,CD=7 cm,AD=24 cm,∠B=90°.你能求出∠D的度数吗?若能,请求出它的度数;若不能,请说明理由.图820.(8分)如图9,甲轮船以16海里/时的速度从港口A出发,向东北方向航行,乙轮船以32海里/时的速度从相同的港口出发,向东南方向航行,甲轮船行驶了1.5小时后到达C地,乙轮船行驶1小时后到达B地,则B,C相距多远?图921.(8分)一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的验证方法.如图10所示,火柴盒的一个侧面ABCD倒下到达AB’C’D’的位置,连接CC’.设AB=a,BC=b,AC=c,请利用四边形BCC’D’的面积验证勾股定理:a2+b2=c2.图1022.(9分)如图11所示的是某厂的大门示意图,它是由一个正方形和一个半圆组成的,正方形的边长为5米,一辆装货的卡车宽为4米,高为6米,则这辆卡车能否通过此门?并说明理由.图1123.(9分)为了丰富少年儿童的业余生活,某社区要在如图12所示AB所在的直线上建一图书室,该社区有两所学校,所在的位置在点C和点D处,CA⊥AB于点A,DB⊥AB于点B.已知AB=25 km,CA=15 km,DB=10 km,试问:图书室E应该建在距点A多远处,才能使它到两所学校的距离相等?图12参考答案1.152.150 cm3.3404.20 cm5.66.14或47.4 8.C 9.D 10.D 11.B 12.D 13.C 14.B15.A 16.C 17.D18.解:S 阴=132-122=25(cm 2).S 阴=π·25=72π(cm 2).19.解:能求出∠D 的度数.连接AC.∵∠B=90°,AB=20,BC=15,∴AC 2=AB 2+BC 2=202+152=625.在△ACD 中,AD=24,CD=7,AD 2+CD 2=242+72=625=AC 2,∴△ACD 是直角三角形,且∠D=90°.20.解:在Rt △ABC 中,∵∠CAB=90°,AC=16×1.5=24(海里),AB=32×1=32(海里), ∴BC 2=AB 2+AC 2=322+242=402.∴BC=40(海里),即B,C 两地相距40海里.21.证明:∵四边形BCC ’D ’为直角梯形,∴S 梯形BCC ’D ’=(BC+C ’D ’)·BD ’=.由已知易得Rt△ABC≌Rt△AB’C’,∴∠BAC=∠B’AC’.∴∠CAC’=∠CAB’+∠B’AC’=∠CAB’+∠BAC=90°.∴S梯形BCC’D’=S△ABC+S△CAC’+S△D’AC’=1ab + 1c2+ab=c. ∴(a =2 c. ∴a2+b2=c2. 22.解:这辆卡车能通过此大门.理由如下:如图所示: 让卡车在门的中央通过,两侧各有0.5米的空隙,故OE=2米,过E点作FP⊥OB,交半圆于点F,交CD于点P,连接OF,则OF=2.5米,EP=BD=5米.在Rt△FOE中,EF2=OF2-OE2=2.52-22=2.25,∴EF=1.5米.∴FP=EF+EP=1.5+5=6.5(米)>6(米).∴这辆卡车能通过此大门.23.解:设AE=x km,则BE=(25-x)km.在Rt△ACE中,由勾股定理,得CE2=AE2+AC2=x2+152.同理可得DE2=(25-x)2+102.若CE=DE,则x2+152=(25-x)2+102.解得x=10.答:图书室E应该建在距A点10 km处,才能使它到两所学校的距离相等.。
北师大版八年级数学上册第一章勾股定理章节训练试题(详解版)

北师大版八年级数学上册第一章勾股定理章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()B.C.D.A2、若a,b为直角三角形的两直角边,c为斜边,下列选项中不能..用来证明勾股定理的是()A.B.C.D.3、如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A B C D4、如图,嘉嘉在A时测得一棵4米高的树的影长DF为8m,若A时和B时两次日照的光线互相垂直,则B时的影长DE为()A.2m B.C.4m D.5、《九章算术》被尊为古代数学“群经之首”,其卷九勾股定理篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深CD等于1寸,锯道AB长1尺,则圆形木材的直径是()(1尺=10寸)A .12寸B .13寸C .24寸D .26寸6、如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A ,B ,C 的面积依次为2,4,3,则正方形D 的面积为( )A .9B .8C .27D .457、下列各组数据为三角形的三边,能构成直角三角形的是( )A .4,8,7B .2,2,2C .2,2,4D .13,12,58、如图,Rt ABC 中,90ACB ∠=︒,一同学利用直尺和圆规完成如下操作:①以点C 为圆心,以CB 为半径画弧,交AB 于点G ;分别以点G 、B 为圆心,以大于12GB 的长为半径画弧,两弧交点K ,作射线CK ;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于N,分别以M、N为圆心,以大于12MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;过点D作DF AB⊥交AB的延长线于点F,若12AC=,5BC=,则CE的长为()A.13 B.132C.52D.1529、两只小鼹鼠在地下打洞,一只朝正北方向挖,每分钟挖8cm,另一只朝正东方向挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.50cm B.120cm C.140cm D.100cm10、如图,正方体盒子的棱长为2,M为BC的中点,则一只蚂蚁从A点沿盒子的表面爬行到M点的最短距离为()A.BC D第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是_______尺.2、在△ABC中,∠C=90°,AB=10,AC=8,则BC的长为_____.3、如图,在网格中,每个小正方形的边长均为1.点A、B,C都在格点上,若BD是△ABC的高,则BD的长为__________.4、如图,台风过后,某希望小学的旗杆在离地某处断裂,且旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部________m位置断裂.5、如图,折叠直角三角形纸片ABC,使得两个锐角顶点A、C重合,设折痕为DE,若AB=4,BC=3,则△ADC的周长是__________三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的长.2、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲的形式进行宣传防控措施,如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假设宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?3、我方侦查员小王在距离东西向公路400米处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外线测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?4、勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD⊥CD,AE⊥BD于点E,且△ABE≌△BCD.求证:AB2=BE2+AE2.5、某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B 是CD的中点,E是BA延长线上的一点,且∠CED=90°,测得AE=16.6海里,DE=60海里,CE=80海里.(1)求小岛两端A,B的距离.(2)过点C作CF⊥AB交AB的延长线于点F,求BFBC值.-参考答案-一、单选题1、A【解析】【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【详解】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH在Rt△AHC中,∠ACB=45°,=∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,90BFD CKDBDF CDKBD CD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC综上所述,AE+BF故选:A .【考点】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.2、A【解析】【分析】由题意根据图形的面积得出,,a b c 的关系,即可证明勾股定理,分别分析即可得出答案【详解】解:A 、不能利用图形面积证明勾股定理;B 、根据面积得到()2222142c ab a b a b =⨯+-=+; C 、根据面积得到()22142a b ab c +=⨯+,整理得222+=a b c ; D 、根据面积得到22111()2222a b c ab +=+⨯,整理得222+=a b c . 故选:A.【考点】本题考查勾股定理的证明,熟练掌握利用图形的面积得出,,a b c 的关系,即可证明勾股定理.3、A【解析】【详解】先用勾股定理耱出三角形的三边,再根据勾股定理的逆定理判断出△ABC 是直角三角形,最后设BC 边上的高为h ,利用三角形面积公式建立方程即可得出答案.解:由勾股定理得:AC =AB 221310BC ,222(5)+= ,即222AB AC BC += ∴△ABC 是直角三角形,设BC 边上的高为h ,则1122ABCS AB AC h BC =⋅=⋅,∴AB AC h BC ⋅=故选A.点睛:本题主要考查勾股理及其逆定理.借助网格利用勾股定理求边长,并用勾股定理的逆定理来判断三角形是否是直角三角形是解题的关键.4、A 【解析】【分析】根据勾股定理,求出FC=DE =x ,在Rt CDE △中,EC 2=22DE CD +,在Rt CFE 中,EC 2=22FE CF -=22DE CD +,代入求解即可.【详解】解:由题意,得∠ECF =∠CDF =∠CDE =90°,CD =4m ,DF =8m ,由勾股定理,得FC=EC 2=22DE CD +,EC 2=22FE CF -,∴22FE CF -=22DE CD +,令DE =x ,则EF =x +8,∴222816x x +-=+(), 整理,得16x =32,解得x =2.故选:A .【考点】本题考查利用勾股定理求线段长,拓展一元一次方程,正确的运算能力是解决问题的关键.5、D【解析】【分析】连接OA 、OC ,由垂径定理得AC =BC =12AB =5寸,连接OA ,设圆的半径为x 寸,再在Rt △OAC 中,由勾股定理列出方程,解方程可得半径,进而直径可求.【详解】解:连接OA 、OC ,如图:由题意得:C 为AB 的中点,则O 、C 、D 三点共线,OC ⊥AB ,AB=5(寸),∴AC=BC=12设圆的半径为x寸,则OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圆材直径为2×13=26(寸).故选:D【考点】本题主要考查了垂径定理的应用,勾股定理的应用,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.6、A【解析】【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可.【详解】∵正方形A、B、C的面积依次为2、4、3,∴根据图形得:2+4=x−3.解得:x=9.故选A.【考点】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的关键.7、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和是否等于最大的边的平方即可进行判断.【详解】A、42+72≠82,故不能构成直角三角形;B、22+22≠22,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D.【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.8、D【解析】【分析】先证明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,设CE=CD=DF=x,在Rt△ADF中,利用勾股定理构建方程求解即可.【详解】解:由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB +∠3=∠2+∠CDE =90°,∴∠CEB =∠CDE ,∴CD =CE ,在△DBC 和△DBF 中,21BCD BFD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BDC ≌△BDF (AAS ),∴CD =DF ,BC =BF =5,∵∠ACB =90°,AC =12,BC =5,∴AB13,设EC =CD =DF =x ,在Rt △ADF 中,则有(12+x )2=x 2+182,∴x =152, ∴CE =152,【考点】本题考查作图-复杂作图,全等三角形的判定和性质,等腰三角形的判定,以及勾股定理等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.9、D【解析】【分析】画出图形,利用勾股定理即可求解.【详解】解:如图,81080OA =⨯=cm ,61060OB =⨯=cm ,∴在Rt AOB ∆中,100AB ===cm ,故选:D【考点】本题考查了勾股定理的应用,理解题意,画出图形是解题的关键.10、B【分析】先利用展开图确定最短路线,再利用勾股定理求解即可.【详解】解:如图,蚂蚁沿路线AM 爬行时距离最短;∵正方体盒子棱长为2,M 为BC 的中点,∴23AD MD ==,,∴AM =故选:B .【考点】本题考查了蚂蚁爬行的最短路径为题,涉及到了正方形的性质、正方体的展开图、勾股定理、两点之间线段最短等知识,解题关键是牢记相关概念与灵活应用.二、填空题1、25.【解析】【详解】 解:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题.=(尺).25故答案为:25.2、6【解析】【分析】根据勾股定理求解即可.【详解】∵Rt△ABC中,∠C=90°,AB=10,AC=8,∴BC故答案为:6.【考点】本题考查勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3【解析】【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【详解】】解:由勾股定理得:AC=∵S △ABC =3×4-12×1×2-12×3×2-12×2×4=4, ∴12AC •BD =4,∴12=4,∴BD【考点】本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.4、6【解析】【分析】设AC x =,则16AB x =-,在Rt ACB △中,利用勾股定理列方程,即可求解.【详解】解:如图,由题意知,90C ∠=︒,8BC =,设AC x =,则16AB x =-,在Rt ACB △中,222AB AC BC =+,即222(16)8x x -=+,解得6x =,因此旗杆在离底部6m 位置断裂.故答案为:6.【考点】本题考查勾股定理的实际应用,读懂题意,根据勾股定理列出方程是解题的关键.5、454【解析】【分析】首先根据勾股定理设DB x =,求出AD 、CD ,再求出AB ,相加即可.【详解】解:∵折叠直角三角形ABC 纸片,使两个锐角顶点A 、C 重合,∴AD DC =,设DB x =,则4AD x =-,故4DC x =-,∵90DBC ∠=︒,∴222DB BC DC +=,即2223(4)x x +=-, 解得78x =,∴78 BD=.则725488 AD CD==-=在Rt ABC中,由勾股定理得222AB BC AC+=∴AC=5∴ADC周长为AD+CD+AB=454.故答案为:454.【考点】本题考查了勾股定理的应用以及折叠的性质,掌握勾股定理和折叠的性质是解题的关键.三、解答题1、AB=2,CD=4【解析】【分析】此题为几何题,看题目只是一个四边形,要求两条未知边,那肯定要添辅助线.过点D作DH⊥BA延长线于H,作DM⊥BC于M.构建矩形HBMD.利用矩形的性质和解直角三角形来求AB、CD的长度.【详解】如图,过点D作DH⊥BA延长线于H,作DM⊥BC于点M.∵∠B=90°,∴四边形HBMD 是矩形.∴HD=BM ,BH =MD ,∠ABM=∠ADC=90°,又∵∠C=60°,∴∠ADH=∠MDC=30°,∴在Rt△AHD 中,AD =1,∠ADH=30°,则AH =12AD =12,DH∴MC=BC -BM =BC -DH =2∴在Rt△CMD 中,CD =2MC =4DM CD .∴AB=BH -AH =DM -AH 12=2 【考点】 本题考查了勾股定理和矩形的判定与性质.此题的关键是根据题意作出辅助线,构建矩形.2、(1)村庄能听到宣传,理由见解析;(2)村庄总共能听到8分钟的宣传.【解析】【分析】(1)直接比较村庄A 到公路MN 的距离和P 广播宣传距离即可;(2)过点A 作AB MN ⊥于点B ,利用勾股定理运算出广播影响村庄的路程,再除以速度即可得到时间.【详解】解:(1)村庄能听到宣传,理由:∵村庄A 到公路MN 的距离为600米<1000米,∴村庄能听到宣传;(2)如图:过点A 作AB MN ⊥于点B ,假设当宣讲车行驶到P 点开始影响村庄,行驶Q 点结束对村庄的影响,则1000AP AQ ==米,600AB =米,∴800BP BQ ==(米),∴1600PQ =米,∴影响村庄的时间为:16002008÷=(分钟),∴村庄总共能听到8分钟的宣传.【考点】本题主要考查了垂线的性质,勾股定理,仔细审题获取相关信息合理作出图形是解题的关键.3、速度为30米每秒【解析】【分析】根据勾股定理求得BC 的长度,再根据速度等于路程除以时间即可求得敌方汽车的速度.【详解】400,500,90AB AC B ==∠=︒,300BC ∴,3001030÷=米每秒,答:敌方汽车的速度为30米每秒.【考点】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.4、证明见解析【解析】【分析】连接AC ,根据四边形ABCD 面积的两种不同表示形式,结合全等三角形的性质即可求解.【详解】解:连接AC ,∵△ABE ≌△BCD ,∴AB =BC ,AE =BD ,BE =CD ,∠BAE =∠CBD ,∵∠ABE +∠BAE =90°,∴∠ABE +∠CBE =90°,∴∠ABC =90°,∴S 四边形ABCD =2111111222222ABD BDC S S BD AE BD CD AE AE BD BE AE BD BE ∆∆+=⋅+⋅=⋅+⋅=+⋅, 又∵S 四边形ABCD =2111111222222ABC ADC S S AB BC CD DE AB AB BE DE AB BE DE ∆∆+=⋅+⋅=⋅+⋅=+⋅, 2211112222AE BD BE AB BE DE +⋅=+⋅,∴AB 2=AE 2+BD •BE -BE •DE ,∴AB 2=AE 2+(BD -DE )•BE ,即AB 2=BE 2+AE 2.【考点】本题考查了勾股定理的证明,解题时,利用了全等三角形的对应边相等,对应角相等的性质.5、 (1)33.4海里 (2)725【解析】【分析】(1)利用勾股定理求出CD ,再根据斜边的中线等于斜边的一半求出BE ,则AB 可求;(2)设BF =x 海里.利用勾股定理先表示出CF 2,在Rt △CFE 中,∠CFE =90°,利用勾股定理有CF 2+EF 2=CE 2,即222500-(50)6400x x ++=,解方程即可得解.(1)在△DCE 中,∠CED =90°,DE =60海里,CE =80海里,由勾股定理可得100CD =(海里),∵B 是CD 的中点, ∴1502BE CD ==(海里),∴AB =BE -AE =50-16.6=33.4(海里)答:小岛两端A 、B 的距离是33.4海里;(2)设BF =x 海里.在Rt △CFB 中,∠CFB =90°,∴CF 2=CB 2-BF 2=502-x 2=2500-x 2,在Rt △CFE 中,∠CFE =90°,∴CF 2+EF 2=CE 2,即222500-(50)6400x x ++=,解得x =14, ∴725BF BC 答:BF BC 值为725. 【考点】本题主要考查了勾股定理的实际应用的知识,在直角三角形中灵活利用勾股定理是解答本题的关键.。
北师大版数学八年级上册第一章勾股定理单元测试卷(含答案)

八(上)第一章 勾股定理单元检测班级_______ 姓名_______ 分数________一、填空题(每题3分,共24分)1.三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定2.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2十338=10a +24b +26c ,则△ABC 的面积是( )A.338B.24C.26D.303.若等腰△ABC 的腰长AB =2,顶角∠BAC =120°,以 BC 为边的正方形面积为( ) A.3 B.12 C.427 D.3164.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A.42 B.32 C.42 或32 D.37 或 335.直角三角形三条边的比是3∶4∶5.则这个三角形三条边上的高的比是( )A.15∶12∶8B. 15∶20∶12C. 12∶15∶20D.20∶15∶126.在△ABC 中,∠C =90°,BC =3,AC =4.以斜边AB 为直径作半圆,则这个半圆的面积等于( )A.258π B. 254π C. 2516πD.25π 7.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A.2cmB.3 cmC.4 cmD.5 cm图1D 18cm图2B8.如图2,一个圆桶儿,底面直径为16cm,高为18cm,则一只小虫底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.20cmB.30cmC.40cmD.50cm二、填空题(每小题3分,共24分)9.在△ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的长方形的面积是___.10.一个长方体同一顶点的三条棱长分别是3、4、12,则这个长方体内能容下的最长的木棒为___.11.在△ABC中,∠C=90°,BC=60cm,CA=80cm,一只蜗牛从C点出发,以每分20cm的速度沿CA→AB→BC的路径再回到C点,需要___分的时间.12.如图3,一艘船由岛A正南30海里的B处向东以每小时20海里的速度航行2小时后到达C处.则AC间的距离是___.13.在△ABC中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,则这个距离是___.14.已知两条线段长分别为5cm、12cm,当第三条线段长为___时,这三条线段可以组成一个直角三角形,其面积是___.15.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;图3 列举:7、24、25,猜想:72=24+25;…………列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=___,c=___.16.已知:正方形的边长为1.(1)如图4(a ),可以计算出正方形的对角线长为2;如图(b),两个并排成的矩形的对角线的长为___;n个并排成的矩形的对角线的长为___.(2)若把(c)(d)两图拼成如图5“L”形,过C作直线交DE于A,交DF于B .若DB =53,则 DA 的长度为___.三、解答题(共58分)17.如图6,折叠长方形一边AD ,点D 落在BC 边的点F 处,BC =10cm ,AB =8cm ,求:(1)FC 的长;(2)EF 的长.18.为了丰富少年儿童的业余生活,某社区要在如图7所示AB 所在的直线建一图书室,本社区有两所学校所在的位置在点C 和点D 处,CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB =25km ,CA =15km ,DB =10km ,试问:图书室E 应该建在距点A 多少km 处,才能使它到两所学校的距离相等?19.一艘渔船正以30海里/时的速度由西向东追赶渔群,在A 处看见小岛C 在船北偏东 60°.40分钟后,渔船行至 B 处,此时看见小岛 C 在船的北偏东30°,已知小岛C 为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续航行(追赶鱼群),是否有进入危险区的可能?图5EF BCAD图4(a ) (b ) (c ) (d )图6图7E DCBA20.在Rt△ABC中,AC=BC,∠C=90°,P、Q在AB上,且∠PCQ=45°试猜想分别以线段AP、BQ、PQ为边能组成一个三角形吗?若能试判断这个三角形的形状.21.如图8,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:图8①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由.参考答案一、1.A 2.D 3.B 4.C 5.D.提示:由三角形面积公式,可得12·AB ·CD =12·BC ·AC .设BC =3k ,AC =4k ,AB =5k ,则5k ·CD =2k ·4k .所以CD =135k .所以AC ∶BC ∶CD =4k ∶3k ∶125k =20∶15∶12;6.A.提示:在Rt △ABC 中,由勾股定理可以得到AB 2=42+32=25,所以AB =5.所以半圆的面积S =12π252⎛⎫ ⎪⎝⎭=258π;7.B 8.B.二、9.108 10.13 11.12 12.由勾股定理,可以得到AB 2+BC 2=AC 2,因为AB=30,BC =20×2=40,所以302+202=AC 2,所以AC =50,即AC 间的距离为50海里;13.314.13cm ,30cm 2或522 15.84、85 16、52. 三、17.(1)在Rt △ABC 中,由勾股定理可以得到AF 2=AB 2+BF 2,也就是 102=82+BF 2.所以BF =6,FC =4(cm) (2)在Rt △ABC 中,由勾股定理,可以得到EF 2=FC 2+(8-EF )2.也就是EF 2=42+(8-EF )2.所以EF =5(cm)18.10米;19.设小岛C 与AB 的垂直距离为a ,则易求得a 2=300>102,所以这艘渔船继续航行不会进入危险区;20.能组成一个三角形,且是一个以PQ 为斜边的直角三角形.理由是:可将△CBQ 绕点C 顺时针旋转90°,则CB 与CA 重合,Q 点变换到Q ′点,此时,AQ ′=BQ ,△APQ ′是直角三角形,即AP 2+AQ ′2=PQ ′2,另一方面,可证得△CPQ ′≌△CPQ (SAS ),于是,PQ ′=PQ ,则AP 2+BQ 2=PQ 2.21.①能.设AP =x 米,由于BP 2=16+x 2,CP 2=16+(10-x )2,而在Rt △PBC 中,有BP 2+ CP 2=BC 2,即16+x 2+16+(10-x )2=100,所以x 2-10x +16=0,即(x -5)2=9,所以x -5=±3,所以x =8,x =2,即AP =8或2,②能.仿照①可求得AP =4.第一章勾股定理单元检测题班级_____ 姓名_____ 分数_____一、选择题(每小题3分,共30分)1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .321,421,521 C .3,4,5 D .4,721,821 2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A .1倍 B .2倍 C .3倍 D .4倍 3.在下列说法中是错误的( )A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形B .在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3则△ABC 为直角三角形 C .在△ABC 中,若a =53c ,b =54c ,则△ABC 为直角三角形 D .在△ABC 中,若a ∶b ∶c =2∶2∶4,则△ABC 为直角三角形4.四组数:①9,12,15;②7,24,25;③32,42,52;④3a ,4a ,5a (a >0)中,可以构成直角三角形的边长的有( )A .4组B .3组C .2组D .1组5.三个正方形的面积如图1,正方形A 的面积为( ) A . 6 B . 36 C . 64 D . 86.一块木板如图2所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( )A .60B .30C .24D .127.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( ) A .6cm B .8.5cm C .1330cm D .1360cm8.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm9.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( )A .8cmB .10cmC .12cmD .14cm10.在△ABC 中,∠ACB =90°,AC =40,CB =9,M 、N 在AB 上且AM =AC ,BN =BC ,则MN 的长为( )A .6B .7C .8D .9 二、填空题(每小题3分,共30分)A DBC图211.在△ABC中,∠C=90°,若a=5,b=12,则c=___.12.在△ABC中,∠C=90°,若c=10,a∶b=3∶4,则ab=.13.等腰△ABC的面积为12cm2,底上的高AD=3cm,则它的周长为___.14.等边△ABC的高为3cm,以AB为边的正方形面积为___.15.直角三角形三边是连续整数,则这三角形的各边分别为___.16.在Rt△ABC中,斜边AB=2,则AB2+BC2+CA2=___.17.有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了___米.18.一座桥横跨一江,桥长12m,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m,则小船实际行驶___m.19.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是___.20.在Rt△ABC中,∠C=90°,中线BE=13,另一条中线AD2=331,则AB=___.三、解答题(每小题8分,共40分)21.某车间的人字形屋架为等腰△ABC,跨度AB=24m,上弦AC=13m.求中柱CD (D为底AB的中点).22.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺.求竹竿高与门高.23.如图3,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部什么位置断裂的吗?请你试一试.图3OB′图4BAA′24.如图4所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m.现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离为3m,同时梯子的顶端B下降到B′,那么BB′也等于1m吗?25.在△ABC中,三条边的长分别为a,b,c,a=n2-1,b=2n,c=n2+1(n>1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角?与同伴一起研究.参考答案:A卷:一、1.B2.B3.D4.B5.B6.C7.D8.B9.C10.C二、11.1312.4813.1814.1215.3、4、516.817.518.1319.2400 20.20三、21.5米22.设门高为x尺,则竹杆长为(x+1)尺,依题意由勾股定理,得x2+42=(x+1)2,解得x=7.5,所以门高为7.5尺,则竹杆长为8.5尺.23.设旗杆在离底部x m位置断裂,则根据题意,得(x+1)2-x2=64,解得x=6,即旗杆在离底部6m位置断裂.cb a cba ED CBACABcb a24.在Rt △ABO 中,梯子AB 2=AO 2+BO 2=22+72=53.在Rt △A ′B ′O 中,梯子A ′B ′2=53=A ′O 2+B ′O 2=32+B ′O 2,所以,B ′O>2×3=6.所以BB ′=OB -OB ′<1.25.因为a 2=n 4-2n 2+1,b 2=4n ,c 2=n 4+2n 2+1,a 2+b 2=c 2,所以△ABC 是直角三角形,∠C 为直角.北师大版八年级数学上册第一章 勾股定理 提高培优讲义:勾股定理、逆定理及应用 基础知识梳理模块一:勾股定理及证明 1.勾股定理:如果直角三角形的两直角边分别是a ,b ,斜边为c ,那么222a b c +=. 即直角三角形中两直角边的平方和等于斜边的平方. 注:勾——较短的边、股——较长的直角边、弦——斜边. 2.勾股定理的证明: (1)弦图证明DC BAGF E H内弦图 外弦图221()42ABCD S a b c ab =-=+⨯正方形 221()42EFGH S c a b ab ==-+⨯正方形∴222a b c += ∴222a b c += (2)“总统”法(半弦图)如图所示将两个直角三角形拼成直角梯形:2()()112222ABCD a b a b S ab c +-==⨯+梯形∴222a b c += 3.勾股数:满足222a b c +=的三个正整数,称为勾股数.(1)3、4、5;6、8、10;9、12、15;12、16、20;15、20、25等.(2)(,,)a b c 是组勾股数,则(,,)ka kb kc (k 为正整数)也是一组勾股数. (3)3、4、5;5、12、13;7、24、25;9、40、41;11、60、61等 (4)21a n =+,222b n n =+,2221c n n =++(n 为大于1的自然数) (5)22a m n =-,2b mn =,22c m n =+(m n >,且m 和n 均为正整数) 模块二:勾股定理逆定理及应用 1.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么前两边的夹角一定是直角.即在ABC △中,如果222AC BC AC +=,那么ABC △是直角三角形.2.勾股定理的常见题型. 模块三:例题精讲(1)勾股证明的方法成百上千种,其中《几何原本》中的证法非常经典,是在一个我们非常熟悉的几何图形中实现的(如图所示),如果直角三角形ABC 的三边长为a ,b ,c (c 为斜边),以这三边向外作三个正方形,试利用此图证明222a b c +=.cbaNMHFE DCBAABCEFHMNP(2)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为__________.【解析】(1)如上图可知:ACF ADB △△≌,2ACED ADB S S =正方形△,2AFGP ACF S S =矩形△,∴2AFGP b S =矩形,同理2GHBP a S =矩形,∴222a b c +=. (2)49cm 2.(1)若把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( ). A .1倍 B .2倍 C .3倍 D .4倍(2)若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为________.(3)下面几组数:①7,8,9;②12,9,15;③22m n +,22m n -,2mn (m ,n 均为正整数,m n >);④2a ,21a +,22a +.其中能组成直角三角形的三边长的是( ).A .①②B .②③C .①③D .③④【解析】(1)B ;(2)可知三边为3,4,5,所以周长为12; (3)B ;容易知道①错误②正确,对于③,由2224224()2m n m m n n -=-+,222(2)4mn m n =,2224224()2m n m m n n +=++所以2222422422222()(2)(2)4()m n mn m m n n m n m n -+=-++=+. 所以,以这三条线段的长为边的三角形是直角三角形.答案选B .ABC △中,BC a =,AC b =,AB c =.若90C ∠=︒,如图3-1,根据勾股定理,则222a b c +=.若ABC △不是直角三角形,如图3-2,90C ∠<︒;如图3-3,90C ∠<︒.请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.图1a b c a b c cb a A BCA B C C B Aa bca bcA ABC C Ba bcABC B图3-1 图3-2 图3-3【解析】图2猜想:222a b c +>.证明:过点A 作AD BC ⊥于D ,设CD x =,222AD b x =-, 22222222()()2c a x b x a ax x b x =-+-=-++-, 即22220a b c ax +-=>,故222a b c +>. 图3猜想:222a b c +<.证明:过B 作BD AC ⊥,交AC 的延长线于D . 设CD 为x ,则有222BD a x =-.根据勾股定理,得2222()b x a x c ++-=. 即2222a b bx c ++=,∵0b >,0x >,∴20bx >,∴222a b c +<.(1)如果直角三角形的两边长为4、5,则第三边长为________.(2)如果直角三角形的三边长为10、6、x ,则最短边上的高为________.(3)若|1|0a b --=,则以a 、b 为边的直角三角形的第三边为________.在ABC △中,15AB =,13AC =,高12AD =,则三角形的周长是_________.【解析】32或42.DabcACBDa bcABC【提示】题型:已知三角形的两边及第三边高求第三边,B 卷填空必考题,一般题目无图,为易错题,切记要分类讨论,分形内高和形外高.(1)如图6-1,四边形ABCD 中,AB BC ⊥,1AB =,2BC =,2CD =,3AD =,求四边形ABCD 的面积.(2)如图6-2,在四边形ABDC 中,BD CD ⊥,6BD =,8CD =,24AB =,26AC =,求该四边形面积.ABC DDCB A图6-1 图6-2(2)96.四边形ABDC 的面积为96. 连接BC ,根据勾股定理可得10BC =,因为222BC AB AC +=,所以ABC △为直角三角形,故四边形ABDC 的面积1202496ABC BCD S S S =-=-=△△.(1)如图,梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 位置,BD 长0.5米,则梯子顶端A 下落了________米.(2)梯子靠在墙上,梯子的底端A 到墙根O 的距离2米,梯子的顶端B 到地面的距离为7米,现将梯子的底端向外移动到C ,使梯子底端C 到墙根O 的距离等于3米,同时梯子的顶端B 下降至D ,那么BD ( )A .等于1米B .大于1米C .小于1米D .以上结果都不对(3)如图,梯子AB 斜靠在墙面上,AC BC ⊥,AC BC =,当梯子的顶端A 沿AC 方向下滑x 米时,梯子B 沿CB 方向滑动y 米,则x 与y 的大小关系是( ) A .x y = B .x y >C .x y <D .不确定【解析】(1)0.5;(2)C ;(3)选B ,设AC BC a==米,化简得222()0a x y x y -=+>,x y >.EAB CD(1)若直角三角形斜边长为4,周长为432+,则三角形面积等于________.(2)如图,ABC △中,90BAC ∠=︒,AD BC ⊥于点D ,若455AD =,25BC =,请求出ABC △的周长.【解析】(1)12; (2)222(25)45255AB AC AB AC ⎧+=⎪⎨⨯=⨯⎪⎩,解得6AB BC +=,625ABC C =+△.(1)已知9-1,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,如果8cm AB =,10cm BC =,求EC 的长.(2)如图9-2,已知矩形ABCD 沿着直线BD 折叠,使点C 落在'C 处,'BC 交AD 于E ,16AD =,8AB =,则DE 的长度为________.(3)如图9-3,矩形纸片ABCD 的长9cm AD =,宽3cm AB =,沿EF 将其折叠,使点D 与点B 重合,则折痕EF 的长为________cm .EDC'C BA图9-1 图9-2 图9-3【解析】(1)由题意得,10cm AF AD ==.在ABF △中,应用勾股定理得,6cm BF =. 所以1064FC BC BF cm =-=-=.在CEF △中,应用勾股定理,设cm EC x =, 得222(8)4x x -=+.解得3x =,即3cm EC =. (2)设ED x =,因为CBD EBD EDB ∠=∠=∠, 则EB ED x ==,16AE AD ED x =-=-, 在Rt E AB △中,由勾股定理可得:222(16)8x x +=-,∴10x =,即10DE =.(3)设AE x =,因为BEF DEF BFE ∠=∠=∠, 则9BE DE B x F ===-,根据勾股定理得:222AB AE BE +=,即222239(9)x x x +=+=-,解得:4x =;∴4AE =,∴5DE BF ==,∴4CF DM ==,∴1EM =,根据勾股定理得:EF ==;若0x >,0y >且12x y +=【解析】如下图,不妨设12AB =,AC AB ⊥,BD AB ⊥,2AC =,3BD =,y 2+9x 2+432y xPDC B AD CA P为线段AB 上的动点,AP x =,于是PB y =,PC,PD 问题转化为求点C ,D 之间距离的最小值.当P ,C ,D 三点不共线时,有PC PDCD +>;当P ,C ,D 共线时,PC PD CD +=. 于是点C ,D 13.【教提示】数形结合,几何构造,将军饮马.模块四:课后作业设计1、如图1-1,分别以直角三角形A 、B、C 三边为边向外作三个正方形,其面积分别用1S 、2S 、3S 表示,则不难证明123S S S =+.) (1)如图1-2,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用1S 、2S 、3S 表示,那么1S 、2S 、3S 之间有什么关系?(不必证明)(2)如图1-3,分别以直角三角形A 、B 、C 三边为边向外作三个正三角形,其面积分别用1S 、2S 、S 表示,请你确定S 、S 、S 之间的关系并加以证明.B C S 1S 2图图图1A B C S 1S 3S 2图图2A BCS 1S 3S 2图3图1-1图1-2图1-3【解析】(1)设BC 、CA 、AB 长分别为a 、b 、c ,则222c a b =+,123S S S =+;(2)123S S S =+.证明如下:显然,21S =,22S =,23S ,AB D C∴22223133()44S S a b c S +=+==. 【点评】分别以直角三角形ABC 三边为一边向外作“相似形”,其面积对应用1S 、2S 、3S 表示,则123S S S =+(设斜边所做图形面积为1S ).2、已知a ,b ,c 是三角形的三边长,222a n n =+,21b n =+,2221c n n =++(n 为大于1的自然数),试说明ABC △为直角三角形.【解析】因为222212221n n n n n ++>+>+,222222(221)(22)441(21)n n n n n n n ++-+=++=+.所以22222(21)(22)(221)n n n n n +++=++,所以ABC △为直角三角形.3、如图,四边形ABCD 中,6cm AB =,8cm BC =,24cm CD =,26cm DA =,且90ABC ∠=︒,则四边形ABCD 的面积是( )cm 2.A .336B .144C .102D .无法确定【解析】答案:B .连接AC ,运用勾股定理逆定理.4、如图,一根长5米的竹篙AB 斜靠在与地面垂直的墙上,顶端A 距离墙根4米,若竹篙顶端A 下滑1米,则底端B 向外滑行了多少米?【解析】设竹篙顶端下滑1米到1A 点,底端向外滑行到1B 点.由题意得AA 1=1m ,113m AC AC AA =-=, 在11Rt ACB △中:2211114m B C A B AC -, 在Rt ABC △中:223m BC AB AC =-=, 111BB B C BC m =-=,即竹篙顶端A 下滑1米,则底端B 向外滑行了1米.5、(1)(在ABC △中15AB =,13AC =,高12AD =,则ABC S =△_______.(2)如图,ABC △中,90BAC ∠=︒,AD BC ⊥于点D ,若3AD =,23BC =ABC △的周长为________.【解析】(1)24或84(分类讨论:行外高和行内高,对应例5)ABC(2)423+.(对应例8考查直角三角形与知二推二综合).6、(1)如图6-1,已知ABC △是直角边长为1的等腰直角三角形,以Rt ABC △的斜边AC 为直角边,画第二个等腰Rt ACD △,再以Rt ACD △的斜边AD 为直角边,画第三个等腰Rt ADE △,……,依此类推,第n 个等腰直角三角形的斜边长是________.(2)如图6-2,矩形ABCD 中,5cm AB =,3cm BC =,如图所示折叠矩形纸片ABCD ,使D 点落在边AB 上一点E 处,折痕端点G 、F 分别在边AD 、DC 上,则当折痕端点F 恰好与C 点重合时,AE 的长为________cm .GFED CB A图6-1 图6-2(3)若0x >,0y >且15x y +=2264144x y ++________.【解析】(1)由题意可得:第1个等腰直角三角形,ABC △中,斜边长1AB BC ==,22112AC+==; 第2个等腰直角三角形,ACD △中,斜边长2222(2)AD AC CD =+==; 第3个等腰直角三角形,ADE △中,斜边长22322(2)AE AD DE =+=; 依此类推,……第n 个等腰直角三角形中,斜边长为(2)n . (2)F 点与C 点重合时(如图),∵在矩形ABCD 中,5AB =,3BC =, ∴5CD AB ==,90B ∠=︒,由折叠的性质可得:5CE CD ==, ∴224CE BE BC -=, ∴1AE AB BE =-=.(3)答案:25(对应例题10,几何构造).北师大版八年级数学上册 第一章 勾股定理 章末培优卷一、选择题:(共30分)1、一个圆柱形铁桶的底面半径为12cm ,高为32cm ,则桶内所能容下的木棒最长为( )A .20cmB .50cmC .40cmD .45cm2、已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为A. 4B. 16C.D. 4或3、如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的平方为( )A 2524 B. 8 C. 25196 D.5 4、如图,一棵大树被大风刮断后,折断处离地面8m ,树的顶端离树根6m ,则这棵树在折断之前的高度是( ) A.18mB .10mC .14mD .24m5、如图,在4×4方格中作以AB 为一边的Rt △ABC ,要求点C 也在格点上,这样的Rt △ABC 能作出( ) A .2个 B .3个 C .4个D .6个二、填空题(共24分)11、ABC ∆的三边长c b a ,,满足:03018)602(2=-+-+-+c b b a ,则ABC ∆是 三角形;12、如图,在平行四边形A BCD 中,C A ⊥A B ,若A B=3,BC=5,则平行四边形A BCD 的面积为 。
(常考题)北师大版初中数学八年级数学上册第一单元《勾股定理》测试题(有答案解析)

一、选择题1.如图是由4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,大正方形面积为48,小正方形面积为6,若用x ,y 表示直角三角形的两直角边长(x>y ),则()2x y +的值为( )A .60B .79C .84D .902.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个结,然后将绳子底端拉到离旗杆底端5米的地面某处,发现此时绳子底端距离打结处约1米,则旗杆的高度是( )A .12B .13C .15D .243.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是2,5,1,2.则最大的正方形E 的面积是( )A .10B .8C .6D .154.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点A ,B ,C 均在网格的格点上,则△ABC 的三条边中边长是无理数的有( )A .0条B .1条C .2条D .3条5.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D .122CD BC AB =+ 6.下列几组数中,能作为直角三角形三边长度的是( ) A .2,3,4a b c === B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 7.如图,原来从A 村到B 村,需要沿路A →C →B (90C ∠=︒)绕过两地间的一片湖,在A ,B 间建好桥后,就可直接从A 村到B 村.已知5km AC =, 12km BC =,那么,建好桥后从A 村到B 村比原来减少的路程为( )A .2kmB .4kmC .10 kmD .14 km 8.下列四组数中,是勾股数的是( ) A .5,12,13 B .4,5,6 C .2,3,4 D .1,2,5 9.在Rt ABC 中,90C ∠=︒,且4c =,若3a =,那么b 的值是( )A .1B .5C .7D .510.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地 送行二步与人齐,五尺人高曾记. 仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB 长度为1尺.将它往前水平推送10尺时,即A C '=10尺,则此时秋千的踏板离地距离A D '就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA 长为( )A .13.5尺B .14尺C .14.5尺D .15尺 11.满足下列条件时,ABC 不是直角三角形的是( ) A .41AB =,4BC =,5AC = B .::3:4:5AB BC AC =C .::3:4:5A B C ∠∠∠=D .40A ∠=︒,50B ∠=︒ 12.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB =1;再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,那么点P 表示的数是( )A .2.2B .5C .1+2D .6二、填空题13.直角三角形纸片的两直角边长分别为6,8.现将ABC 如图那样折叠,使点A 与点B 重合,折痕为DE .则CE CB的值是__________.14.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABCD 的方法证明了勾股定理(如图),若Rt ABC △的斜边10AB =,=6BC ,则图中线段CE 的长为______.15.已知一个直角三角形的两边长分别为3和4,则斜边上的高是_________. 16.如图,一只蚂蚁从长、宽都是2,高是5的长方体纸盒的A 点沿纸盒面爬到B 点,那么它所行的最短路线的长是________.17.现有两根木棒,长度分别为5dm 和12dm ,若要钉成一个直角三角形框架,那么所需的第三根木棒的长度可以是________dm .18.一根长16cm 牙刷置于底面直径为5cm 、高为12cm 的圆柱形水杯中.牙刷露在杯子外面的长度为hcm ,则h 的取值范围是___.19.已知等边三角形的边长为2,则其面积等于__________.20.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.三、解答题21.如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为10的线段PQ ,其中P 、Q 都在格点上;(2)面积为13的正方形ABCD ,其中A 、B 、C 、D 都在格点上.22.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求作图:(1)在图15(2)在图2中画一个面积为5的直角三角形.23.如图,在△ABC 中,∠ACB =90°,BC =AC =6,D 是AB 边上任意一点,连接CD ,以CD 为直角边向右作等腰直角△CDE ,其中∠DCE =90°,CD =CE ,连接BE .(1)求证:AD =BE ;(2)当△CDE 的周长最小时,求CD 的值;(3)求证:2222AD DB CE +=.24.(1)问题:如图①,在Rt ABC ∆中,AB AC =,D 为BC 边上一点(不与点,B C 重合),将线段AD 绕点A 逆时针旋转90︒得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的等量关系式为___________;(2)探索:如图②,在Rt ABC ∆与Rt ADE ∆中,AB AC =,AD AE =,将ADE ∆绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明结论;(3)应用:如图3,在四边形ABCD 中,45ABC ACB ADC ∠=∠=∠=︒.若12BD =,4CD =,求AD 的长.25.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b ,斜边长为c 的4个直角三角形,请根据图2利用割补的方法验证勾股定理.26.如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,∠C =60°,BC =CD =6,现将梯形折叠,点B 恰与点D 重合,折痕交AB 边于点E ,则CE =_____.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据勾股定理流出方程,进而利用完全平方公式解答即可.【详解】解:∵大正方形的边长是直角三角形的斜边长,∴根据勾股定理可得:2248x y +=,根据小正方形面积可得()26x y -=,∴2xy +6=48,∴2xy =42,则()222290x y x y xy +=++=,故选:D .【点睛】本题考查勾股定理、完全平方公式,解题的关键是利用方程的思想解决问题,学会整体恒等变形的思想.2.A解析:A【分析】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5,利用勾股定理即可解答.【详解】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5m ,在Rt ABC 中,222AC BC AB +=()22251x x ∴+=+解得:12x =故选:A .【点睛】本题考查了勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,利用勾股定理与方程的结合解决实际问题. 3.A解析:A【分析】设正方形A 的边长为a ,正方形B 的边长为b ,正方形F 的边长为c ,如图,则由勾股定理可得222+=a b c 及正方形面积公式可得正方形F 的面积为7,同理可求解问题.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,正方形F 的边长为c ,如图,由勾股定理可得222+=a b c ,∴由正方形的面积计算公式可得正方形F 的面积为2+5=7,同理可得正方形H 的面积为1+2=3,正方形E 的面积为7+3=10;故选A .【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理是解题的关键.4.C解析:C【分析】根据勾股定理求出三边的长度,再判断即可.【详解】解:由勾股定理得:22345AC =+=,是有理数,不是无理数;222313BC =+=,是无理数;221526AB =+=,是无理数,即网格上的△ABC 三边中,边长为无理数的边数有2条,故选:C .【点睛】本题考查了无理数和勾股定理,能正确根据勾股定理求出三边的长度是解此题的关键. 5.B解析:B【分析】利用直角三角形的性质、三角形内角和定理、勾股定理、全等三角形的判定与性质等知识对各选项的说法分别进行论证,即可得出结论.【详解】解:如图,连接BD 、AD ,过点D 作DM ⊥BC 于M ,DN ⊥CA 的延长线于N ,A 、在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∴60BAC ∠=︒.故此选项说法正确;B 、∵DM ⊥BC ,DN ⊥CA∴∠DNC =∠DMC =90°,∵CD 平分∠ACB ,∴∠DCN =∠DCM =45°.∴∠DCN =∠CDN =45°.∴CN=DN .则△CDN 是等腰直角三角形.同理可证:△CDM 也是等腰直角三角形,∴222DN CN DN +=.222DM CM DM +,∴DM=DN= CM=CN ,∠MDN =90°.∵DE 垂直平分AB ,∴BD=AD ,AB=2BE .∴Rt △BDM ≌△ADN ,∴∠BDM=∠AND .∴∠BDM+∠ADM =∠AND+∠ADM =∠MDN .∴∠ADB=90°.∴=.即.∵在Rt △AND 中,AD 是斜边,DN 是直角边,∴AD >DN.∴2BE >CD .故此选项说法错误.C 、∵BD=AD ,∠ADB=90°,∴△ABD 是等腰直角三角形.∴DE=12AB . 在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∴AC=12AB . ∴DE=AC .故此选项说法正确.D 、∵Rt △BDM ≌△ADN ,∴BM=AN .∴CN=AC+AN=AC+BM=CM .∴BC=BM+CM=AC+2BM .∵, ∴.∵AC=12AB , ∴12AB+BC .故此选项说法正确. 故选:B .【点睛】本题属于三角形综合题,考查了直角三角形的性质,全等三角形的判定与性质,勾股定理等知识,难度较大,准确作出辅助线并灵活运用所学知识是解题的关键.6.C解析:C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键7.B解析:B【分析】直接利用勾股定理得出AB的长,进而得出答案.【详解】解:由题意可得:2222AB AC BC km51213则打通隧道后从A村到B村比原来减少的路程为:512134(km).故选:B.【点睛】此题主要考查了勾股定理的应用,正确得出AB的长是解题关键.8.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A. ∵5,12,13是正整数,且52+122=132,∴5,12,13是勾股数;B. ∵42+52≠62,∴4,5,6不是勾股数;C. ∵22+32≠42,∴2,3,4不是勾股数;D. ∵∴1故选A.【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.9.C解析:C【分析】根据勾股定理计算,即可得到答案.【详解】在Rt△ABC中,∠C=90°,由勾股定理得,b=故选:C.【点睛】本题考查的是勾股定理,关键是掌握“如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2”.10.C解析:C【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【详解】解:设绳索有x尺长,则102+(x+1-5)2=x2,解得:x=14.5.故绳索长14.5尺.故选:C.【点睛】本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.11.C解析:C【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.【详解】A、22245=+符合勾股定理的逆定理,故A选项是直角三角形,不符合题意;B、32+42=52,符合勾股定理的逆定理,故B选项是直角三角形,不符合题意;C、根据三角形内角和定理,求得各角分别为45°,60°,75°,故C选项不是直角三角形,符合题意;D、根据三角形内角和定理,求得各角分别为90°,40°,50°,故D选项是直角三角形,不符合题意.故选:C【点睛】.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12.B解析:B【分析】根据题意可知AOB为直角三角形,再利用勾股定理即可求出OB的长度,从而得出OP 长度,即可选择.【详解】∵AB OA⊥∴AOB为直角三角形.∴在Rt AOB中,OB根据题意可知2=1OA AB =,, ∴OB又∵OB OP =,∴P故选:B .【点睛】本题考查数轴和勾股定理,利用勾股定理求出OB 的长是解答本题的关键.二、填空题13.【分析】先设CE=x 再根据图形翻折变换的性质得出AE=BE=8-x 再根据勾股定理求出x 的值进而可得出的值【详解】解:设CE=x 则AE=8-x ∵△BDE 是△ADE 翻折而成∴AE=BE=8-x 在Rt △B 解析:724【分析】先设CE =x ,再根据图形翻折变换的性质得出AE =BE =8-x ,再根据勾股定理求出x 的值,进而可得出CE CB的值. 【详解】 解:设CE =x ,则AE =8-x ,∵△BDE 是△ADE 翻折而成,∴AE =BE =8-x ,在Rt △BCE 中,BE 2=BC 2+CE 2,即(8-x )2=62+x 2,解得x =74, ∴CE CB =746=724, 故答案为:724. 【点睛】本题考查的是图形翻折变换的性质及勾股定理,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.14.【分析】根据勾股定理求出AC 根据全等三角形的性质得到AF =BC =6EF =AC =8求出FC 根据勾股定理计算得到答案【详解】解:在Rt △ABC 中AC =∵Rt △ACB ≌Rt △EFA ∴AF =BC =6EF =A解析:【分析】根据勾股定理求出AC,根据全等三角形的性质得到AF=BC=6,EF=AC=8,求出FC,根据勾股定理计算,得到答案.【详解】解:在Rt△ABC中,AC=22221068AB BC-=-=,∵Rt△ACB≌Rt△EFA,∴AF=BC=6,EF=AC=8,∴FC=AC﹣AF=2,∴CE=222282217EF FC+=+=,故答案为:217.【点睛】本题考查的是勾股定理、全等三角形的性质,掌握勾股定理、全等三角形的对应边相等是解题的关键.15.或【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3利用勾股定理求得第三边再利用等面积法即可得出斜边上的高【详解】解:分为两种情况:①3和4都是直角边由勾股定理得:第三边长∴斜边上解析:125或374【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3.利用勾股定理求得第三边,再利用等面积法即可得出斜边上的高.【详解】解:分为两种情况:①3和4都是直角边,由勾股定理得:第三边长22435=+=∴斜边上的高为3412 55⨯=;②斜边是4有一条直角边是3,由勾股定理得:第三边长22437=-,∴斜边上的高为373744⨯=; 故答案为:125或37. 【点睛】 本题考查勾股定理解直角三角形.注意分类讨论和等面积法(在本题中主要用到直角三角形的面积等于两直角边乘积的一半也等于斜边与斜边高的乘积的一半)的运用.16.【解析】如图(1)所示:AB=;如图(2)所示:AB=∵>∴最短路径为答:它所行的最短路线的长是故答案为点睛:本题考查了平面展开---最短路径问题解题的关键是将长方体展开构造直角三角形然后利用勾股定解析:41【解析】如图(1)所示:222(25)=53++如图(2)所示:2245=41+,∵5341∴414141点睛:本题考查了平面展开---最短路径问题,解题的关键是将长方体展开,构造直角三角形,然后利用勾股定理解答.17.13或【分析】分情况讨论当的木棒为直角边时以及当的木棒为斜边时利用勾股定理解答即可【详解】解:当的木棒为直角边时第三根木棒的长度为;当的木棒为斜边时第三根木棒的长度为;故答案为:13或【点睛】本题考 解析:13119【分析】分情况讨论当12dm 的木棒为直角边时以及当12dm 的木棒为斜边时,利用勾股定理解答即可.【详解】解:当12dm的木棒为直角边时,第三根木棒的长度为22+=;51213dm当12dm的木棒为斜边时,第三根木棒的长度为22125119dm-=;故答案为:13或119.【点睛】本题考查勾股定理的应用,分情况讨论是解题的关键.18.3≤h≤4【分析】先根据题意画出图形再根据勾股定理解答即可【详解】解:当牙刷与杯底垂直时h最大h最大=16-12=4cm当牙刷与杯底及杯高构成直角三角形时h最小如图所示:此时AB==13cm故h=1解析:3≤h≤4【分析】先根据题意画出图形,再根据勾股定理解答即可.【详解】解:当牙刷与杯底垂直时h最大,h最大=16-12=4cm.当牙刷与杯底及杯高构成直角三角形时h最小,如图所示:此时,2222AC BC+=+=13cm,125故h=16-13=3cm.故h的取值范围是3≤h≤4.故答案是:3≤h≤4.【点睛】此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,有一定难度.19.【分析】根据等边三角形三线合一的性质可得D为BC的中点即BD=CD在直角三角形ABD中已知ABBD根据勾股定理即可求得AD的长即可求三角形ABC的面积即可解题【详解】等边三角形三线合一即D为BC的中3【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【详解】等边三角形三线合一,即D 为BC 的中点,∴BD=DC=1,在Rt △ABD 中,AB=2,BD=1,∴AD==3,∴△ABC 的面积为BC•AD=333.20.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】 由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.【详解】∵90C ∠=︒ ∴222217815BC AB AC -=-=同理 22221086CD AD AC =-=-=∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.三、解答题21.(1)见解析;(2)见解析.【分析】(1)由勾股定理可知当直角边为1和310,由此可得线段PQ ;(2)由勾股定理可知当直角边为2和313可得到面积为13的正方形ABCD .【详解】(1)(2)如图所示:【点睛】本题考查了勾股定理的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.22.(1)见解析;(2)见解析【分析】(1)根据22521=+,可以得到作图方法;(2)根据22221212452⨯+⨯+=可以得到一种作图方法. 【详解】(1)如图1;(2)如图2.【点睛】本题考查给定边长或面积的作图问题,解题关键是熟练掌握面积的计算公式以及勾股定理的应用.23.(1)见解析;(2)323)见解析【分析】(1)先判断出∠ACD=∠BCE ,得出△ADC ≌△CBE (SAS ),即可得出结论;(2)先判断出2CD ,进而得出△CDE 的周长为(2)CD ,进而判断出当CD ⊥AB 时,CD 最短,即可得出结论;(3)先判断出∠A=∠ABC=45°,进而判断出∠DBE=90°,再用勾股定理得出BE 2+DB 2=DE 2,即可得出结论.【详解】证明:(1)∵∠ACB =∠DCE =90°,∴∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2.∵BC =AC ,CD =CE ,∴△CAD ≌△CBE ,∴AD =BE .(2)∵∠DCE =90°,CD =CE .∴由勾股定理可得CE 2DC .∴△CDE 周长等于CD +CE +DE =22CD CD =(22)CD +.∴当CD 最小时△CDE 周长最小.由垂线段最短得,当CD ⊥AB 时,△CDE 的周长最小.∵BC =AC =6,∠ACB =90°,∴AB =2.此时AD =CD =11623222BD AB ==⨯ ∴当CD 32=时,△CDE 的周长最小.(3)由(1)易知AD =BE ,∠A =∠CBA =∠CBE =45°,∴∠DBE =∠CBE +∠CBA =90°.在Rt △DBE 中:222BE BD DE +=.222AD BD DE ∴+=在Rt △CDE 中:222CD CE DE +=.222CE CE DE ∴+=∴2222AD BD CE +=.【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD ⊥AB 时,CD 最短是解本题的关键.24.(1)BC =DC +EC ;(2) BD 2+CD 2=2AD 2,见解析;(3)8【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=12,根据勾股定理计算即可.【详解】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)探索 BD2+CD2=2AD2,理由如下:连接CE,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即,在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩∴△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)应用作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩∴△BAD≌△CAE(SAS),∴BD=CE=12,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴22222124128DE CE CD=-=-=∵∠DAE=90°,∠EDA=45°,∴BD2+CD2=EC2=2AD2=128∴AD=8【点睛】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.见解析【分析】根据总面积=以c为边的正方形的面积+2个直角边长为,a b的三角形的面积=以b为上底、(a+b)为下底、高为b的梯形的面积+以a为上底、(a+b)为下底、高为a的梯形的面积,据此列式求解.【详解】证明:总面积()()21112222S c ab a b b b a a b a =+⨯=++⋅+++⋅ 222c a b ∴=+【点睛】此题考查的是勾股定理的证明,用两种方法表示同一图形的面积是解题关键.26.43【分析】连接DE ,BD ,由题意可证△BCD 是等边三角形,可得BD =BC =6,∠DBC =60°,由直角三角形的性质可求AD =3,AB =33,由直角三角形的性质可求BE =23,由勾股定理可求解.【详解】解:如图,连接DE ,BD ,∵∠BCD =60°,BC =CD =6,∴△BCD 是等边三角形,∴BD =BC =6,∠DBC =60°,∵∠B =90°,AD ∥BC , ∴∠DAB =90°,∠ABD =30°,∠ADB =∠DBC =60°,∴AD =12BD =3,AB 3=3 ∵折痕交AB 边于点E ,∴BE =DE ,∵∠DBE =∠BDE =30°,∴∠ADE =30°,∴DE =2AE ,∴BE =2AE ,∵AE +BE =AB =3∴BE =3∴EC 22BC BE +=3612+3,故答案为:3【点睛】本题考查了折叠和勾股定理的应用,解题的关键是掌握折叠的性质和勾股定理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年秋八年级上学期第一章勾股定理单元测试卷数学试卷考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图①,美丽的弦图,蕴含着四个全等的直角三角形.已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c.如图②,现将这四个全图②等的直角三角形紧密拼接,形成飞镖状,已知外围轮廓(实线)的周长为24,OC=3,则该飞镖状图案的面积()A.6 B.12 C.24 D.2432.(4分)如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.643.(4分)如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A .B .C .D .4.(4分)下列各组数中,是勾股数的为( ) A .1,2,3 B .4,5,6 C .3,4,5 D .7,8,95.(4分)如图,小明将一张长为20cm ,宽为15cm 的长方形纸(AE >DE )剪去了一角,量得AB=3cm ,CD=4cm ,则剪去的直角三角形的斜边长为( )A .5cmB .12cmC .16cmD .20cm6.(4分)如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A .2cmB .3cmC .4cmD .5cm7.(4分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .π+13B .23C .2432π+D .213π+8.(4分)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC=3,AB=5,则CE 的长为( )A .23 B .34 C .35D .589.(4分)如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 的高是( )A .210B .410 C .510 D .510.(4分)如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC 的顶点都在格点上,AB 边如图所示,则使△ABC 是直角三角形的点C 有( )A .12个B .10个C .8个D .6个评卷人得 分二.填空题(共4小题,满分20分,每小题5分)11.(5分)已知△ABC 的三边长为a 、b 、c ,满足a +b=10,ab=18,c=8,则此三角形为 三角形.12.(5分)如图,已知△ABC 中,AB=10,AC=8,BC=6,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则CD= .13.(5分)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A 处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).14.(5分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=.评卷人得分三.解答题(共9小题,满分90分)15.(8分)如图,在△ADC中,∠C=90°,AB是DC边上的中线,∠BAC=30°,若AB=6,求AD的长.16.(8分)如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=2,求△ABC的周长.17.(8分)如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=2,求△ABC的面积.18.(8分)如图,已知在四边形ABCD中,∠A=90°,AB=2cm,AD=5cm,CD=5cm,BC=4cm,求四边形ABCD的面积.19.(10分)我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.20.(10分)方格纸中小正方形的顶点叫格点.点A和点B是格点,位置如图.(1)在图1中确定格点C使△ABC为直角三角形,画出一个这样的△ABC;(2)在图2中确定格点D使△ABD为等腰三角形,画出一个这样的△ABD;(3)在图2中满足题(2)条件的格点D有个.21.(12分)(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?22.(12分)为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?23.(14分)(1)阅读理解:我们知道在直角三角形中,有无数组勾股数,例如:5、12、13;9、40、41;…但其中也有一些特殊的勾股数,例如:3、4、5;是三个连续正整数组成的勾股数.解决问题:①在无数组勾股数中,是否存在三个连续偶数能组成勾股数?答:,若存在,试写出一组勾股数:.②在无数组勾股数中,是否还存在其它的三个连续正整数能组成勾股数?若存在,求出勾股数,若不存在,说明理由.③在无数组勾股数中,是否存在三个连续奇数能组成勾股数?若存在,求出勾股数,若不存在,说明理由.(2)探索升华:是否存在锐角△ABC三边也为连续正整数;且同时还满足:∠B>∠C >∠A;∠ABC=2∠BAC?若存在,求出△ABC三边的长;若不存在,说明理由.2018年秋八年级上学期 第一章 勾股定理 单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分) 1.【分析】根据飞镖状图案的周长求出AB +AC 的长,在直角三角形AOB 中,利用勾股定理求出AC 的长,进而确定出OA 的长,求出三角形AOB 面积,即可确定出所求. 【解答】解:根据题意得:4(AB +AC )=24,即AB +AC=6,OB=OC=3, 在Rt △AOB 中,根据勾股定理得:AB 2=OA 2+OB 2, 即(6﹣AC )2=32+(3+AC )2, 解得:AC=1, ∴OA=3+1=4, ∴S △AOB =21×3×4=6, 则该飞镖状图案的面积为24, 故选:C .【点评】此题考查了勾股定理的证明,以及三角形面积,熟练掌握勾股定理是解本题的关键. 2.【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即为所求正方形的面积. 【解答】解:∵正方形PQED 的面积等于225, ∴即PQ 2=225,∵正方形PRGF 的面积为289, ∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得: PR 2=PQ 2+QR 2,∴QR 2=PR 2﹣PQ 2=289﹣225=64, 则正方形QMNR 的面积为64.故选:D .【点评】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键. 3.【分析】过C 作CD ⊥AB 于D ,依据AB=6,AC=8,可得CD ≤8,进而得到当CD 与AC 重合时,CD 最长为8,此时,∠BAC=90°,△ABC 的面积最大. 【解答】解:如图,过C 作CD ⊥AB 于D , ∵AB=6,AC=8, ∴CD ≤8,∴当CD 与AC 重合时,CD 最长为8, 此时,∠BAC=90°,△ABC 的面积最大, ∴BC=2286 =10,∴四个三角形中面积最大的三角形的三边长分别为6,8,10, 故选:C .【点评】本题主要考查了三角形的面积以及勾股定理的逆定理,关键在于正确的表示出斜边、直角边的长度,熟练运用勾股定理的逆定理进行分析. 4.【分析】根据勾股定理的逆定理分别对各组数据进行检验即可.【解答】解:A 、错误,∵12+22=5≠32=9,∴不是勾股数; B 、错误,∵42+52=41≠62=36,∴不是勾股数; C 、正确,∵32+42=25=52=25,∴是勾股数; D 、错误,∵72+82=113≠92=81,∴不是勾股数. 故选:C .【点评】此题比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可. 5.【分析】解答此题只要把原来的图形补全,构造出直角三角形解答. 【解答】解:延长AB 、DC 相交于F ,则BFC 构成直角三角形, 运用勾股定理得:BC 2=(15﹣3)2+(20﹣4)2=122+162=400, 所以BC=20.则剪去的直角三角形的斜边长为20cm . 故选:D .【点评】本题主要考查了勾股定理的应用,解答此题要延长AB 、DC 相交于F ,构造直角三角形,用勾股定理进行计算. 6.【分析】根据勾股定理,可求出AD 、BD 的长,则AD +BD ﹣AB 即为橡皮筋拉长的距离. 【解答】解:Rt △ACD 中,AC=21AB=4cm ,CD=3cm ; 根据勾股定理,得:AD=22CD AC =5cm ; ∴AD +BD ﹣AB=2AD ﹣AB=10﹣8=2cm ; 故橡皮筋被拉长了2cm . 故选:A .【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用. 7.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A 、C 的最短距离为线段AC 的长.在Rt △ADC 中,∠ADC=90°,CD=AB=3,AD 为底面半圆弧长,AD=1.5π,所以AC=243233222ππ+=⎪⎭⎫ ⎝⎛+,故选:C .【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答. 8.【分析】根据三角形的内角和定理得出∠CAF +∠CFA=90°,∠FAD +∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE ,即可得出EC=FC ,再利用相似三角形的判定与性质得出答案.【解答】解:过点F 作FG ⊥AB 于点G , ∵∠ACB=90°,CD ⊥AB , ∴∠CDA=90°,∴∠CAF +∠CFA=90°,∠FAD +∠AED=90°, ∵AF 平分∠CAB , ∴∠CAF=∠FAD , ∴∠CFA=∠AED=∠CEF , ∴CE=CF ,∵AF 平分∠CAB ,∠ACF=∠AGF=90°,∴FC=FG ,∵∠B=∠B ,∠FGB=∠ACB=90°, ∴△BFG ∽△BAC , ∴ACFGAB BF =, ∵AC=3,AB=5,∠ACB=90°, ∴BC=4, ∴354FGFC =-, ∵FC=FG ,∴354FGFC =-, 解得:FC=23,即CE 的长为23.故选:A .【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE . 9.【分析】根据所给出的图形求出AB 、AC 、BC 的长以及∠BAC 的度数,再根据三角形的面积公式列出方程进行计算即可. 【解答】解:根据图形可得: AB=AC=2221+=5, BC=103122=+, ∠BAC=90°,设△ABC 中BC 的高是x , 则AC•AB=BC•x ,x •=⨯1055,x=210. 故选:A .【点评】此题考查了勾股定理,用到的知识点是勾股定理、三角形的面积公式,关键是根据三角形的面积公式列出关于x 的方程. 10.【分析】根据正六边形的性质,分AB 是直角边和斜边两种情况确定出点C 的位置即可得解.【解答】解:如图,AB 是直角边时,点C 共有6个位置,即有6个直角三角形, AB 是斜边时,点C 共有4个位置,即有4个直角三角形, 综上所述,△ABC 是直角三角形的个数有6+4=10个. 故选:B .【点评】本题考查了正多边形和圆,难点在于分AB 是直角边和斜边两种情况讨论,熟练掌握正六边形的性质是解题的关键,作出图形更形象直观.二.填空题(共4小题,满分20分,每小题5分) 11.【分析】对原式进行变形,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵a +b=10,ab=18,c=8, ∴(a +b )2﹣2ab =100﹣36 =64, c 2=64,∴a 2+b 2=c 2,∴此三角形是直角三角形. 故答案为:直角.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形. 12.【分析】直接利用勾股定理的逆定理得出△ABC 是直角三角形,进而得出线段DE 是△ABC 的中位线,再利用勾股定理得出AD ,再利用线段垂直平分线的性质得出DC 的长. 【解答】解:∵AB=10,AC=8,BC=6, ∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形, ∵DE 是AC 的垂直平分线,∴AE=EC=4,DE ∥BC ,且线段DE 是△ABC 的中位线, ∴DE=3,∴AD=DC=22DE AE =5. 故答案为:5【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD 的长是解题关键. 13.【分析】将杯子侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求. 【解答】解:如图:将杯子侧面展开,作A 关于EF 的对称点A′,连接A′B ,则A′B 即为最短距离,A′B=22221216+=+'BD D A =20(cm ). 故答案为20.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力. 14.【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF ,即可得出结论.【解答】解:如图,过点A 作AF ⊥BC 于F , 在Rt △ABC 中,∠B=45°, ∴BC=2AB=2,BF=AF=22AB=1, ∵两个同样大小的含45°角的三角尺, ∴AD=BC=2,在Rt △ADF 中,根据勾股定理得,DF=322=-AF AD ∴CD=BF +DF ﹣BC=1+3﹣2=3﹣1, 故答案为:3﹣1.【点评】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.三.解答题(共9小题,满分90分) 15.【分析】求出AC 、CD ,利用勾股定理求出AD 即可; 【解答】解:在Rt △ABC 中,∠C=90°,∠BAC=30°,AB=6, ∴BC=21AB=3, 在Rt △ABC 中,AC=3322=-BC AB , ∵AB 是DC 边上的中线,∴DB=BC=3, 所以CD=6,在Rt △ACD 中,AD=()736332222=+=+CD AC .答:AD 的长是37【点评】本题考查勾股定理,中线的定义,直角三角形30度角性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 16.【分析】根据垂直求出∠ADB=∠ADC=90°,求出AC=2AD=4,AD=BD=2,根据勾股定理求出CD 和AB ,即可求出答案. 【解答】解:∵AD ⊥BC , ∴∠ADB=∠ADC=90°,∵在Rt △ADB 中,∠DAB=90°﹣∠B=90°﹣45°=45°=∠B , ∴AD=BD=2,由勾股定理得:AB=222222=+; ∵在Rt △ADC 中,∠C=30°,AD=2, ∴AC=2AD=4,由勾股定理得:CD=322422=-,∴△ABC 的周长是AC +AB +BC=4+22+2+23=6+22+23.【点评】本题考查了等腰三角形的判定、三角形内角和定理、勾股定理、含30°角的直角三角形的性质等知识点,能灵活运用定理进行计算是解此题的关键. 17.【分析】求出BD=AD=2,AC=2AD=22,根据勾股定理求出CD ,根据三角形的面积公式求出即可.【解答】解:∵AD ⊥BC , ∴∠ADB=∠ADC=90°,在Rt △ADB 中,∵∠B +∠BAD=90°,∠B=45°, ∴∠B=∠BAD=45°, ∴BD=AD=2,在Rt △ADC 中,∵∠C=30°, ∴AC=2AD=22, ∴CD=()()622222=-,BC=BD +CD=2+6,∴S △ABC =21×BC ×AD=21×(2+6)×2=1+3.【点评】本题考查了含30°角的直角三角形的性质、等腰三角形的判定、勾股定理、三角形的面积等知识点,能求出各个边的长度是解此题的关键. 18.【分析】连接BD ,根据勾股定理求得BD 的长,再根据勾股定理的逆定理证明△BCD 是直角三角形,则四边形ABCD 的面积是两个直角三角形的面积和. 【解答】解:连接BD .∵∠A=90°,AB=2cm ,AD=5, ∴根据勾股定理可得BD=3, 又∵CD=5,BC=4, ∴CD 2=BC 2+BD 2,∴△BCD 是直角三角形,∴∠CBD=90°,∴S 四边形ABCD =S △ABD +S △BCD =21AB•AD +21BC•BD=21×2×5+21×4×3=5+6(cm 2).【点评】此题考查勾股定理和勾股定理的逆定理的应用,辅助线的作法是关键.解题时注意:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形. 19.【分析】(1)分析所给四组的勾股数:3、4、5;5、12、13;7、24、25;9、40、41;可得下一组一组勾股数:11,60,61;(2)根据所提供的例子发现股是勾的平方减去1的二分之一,弦是勾的平方加1的二分之一.【解答】解:(1)11,60,61;(2)后两个数表示为212-n 和212+n ,又∵n ≥3,且n 为奇数,∴由n ,212-n ,212+n 三个数组成的数是勾股数.故答案为:11,60,61.【点评】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及关系式进行猜想、证明即可. 20.【分析】(1)A 所在的水平线与B 所在的竖直线的交点就是满足条件的点; (2)根据勾股定理可求得AB=5,则到A 的距离是5的点就是所求;(3)到A 点的距离是5的格点有2个,同理到B 距离是5的格点有2个,据此即可求解.【解答】解:(1)(2)如图所示:(3)在图2中满足题(2)条件的格点D有4个.故答案是:4.【点评】本题考查了等腰三角形,勾股定理,正确对等腰三角形的顶点讨论是关键.21.【分析】(1)如图1,设⊙O半径为r,纸盒长度为h',则CD=3r,BC=23r.根据圆柱的体积和棱柱的体积公式分别求得圆柱型唇膏和纸盒的体积,然后求其比值;(2)求得易拉罐总体积和纸箱容积,然后求得比值;(3)利用(1)(2)的数据进行解答.【解答】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h',则CD=3r,BC=23r则圆柱型唇膏和纸盒的体积之比为:∴第二种包装的空间利用率大.【点评】考查了勾股定理的应用,圆的有关计算,立体图形的体积公式,综合性较强,需要学生对所学知识的系统掌握. 22.【分析】(1)连接BD ,在直角三角形ABD 中,利用勾股定理求出BD ,再利用勾股定理的逆定理判断得到三角形BCD 为直角三角形,四边形ABCD 面积等于三角形ABD 面积+三角形BCD 面积,求出即可;(2)由(1)求出的面积,乘以200即可得到结果. 【解答】解:(1)连接BD ,在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52, 在△CBD 中,CD 2=132,BC 2=122, 而122+52=132, 即BC 2+BD 2=CD 2, ∴∠DBC=90°,则S 四边形ABCD =S △BAD +S △DBC =21•AD•AB +21DB•BC=21×4×3+21×12×5=36;(2)所以需费用36×200=7200(元).【点评】此题考查了勾股定理的应用,熟练掌握勾股定理及逆定理是解本题的关键. 23.【分析】(1)①6,8,10;②设这三个正整数为n ﹣1,n ,n +1,根据勾股定理列方程可得方程解x=4,得出还是3,4,5这三个数,可得结论不存在;③设这三个奇数分别为:2n ﹣1,2n +1,2n +3,同理列方程,方程无整数解,可知,不存在;(2)设AB=x ,AC=x +1,BC=x ﹣1,作辅助线,构建等腰三角形,证明△CAB ∽△CDA ,列比例式,可得方程,解出即可.【解答】解:(1)①存在三个连续偶数能组成勾股数,如6,8,10,(3分) 故答案为:存在;6,8,10; ②答:不存在,(4分)理由是:假设在无数组勾股数中,还存在其它的三个连续正整数能组成勾股数, 设这三个正整数为n ﹣1,n ,n +1, 则(n ﹣1)2+n 2=(n +1)2,(5分) n 1=4,n 2=0(舍),当n=4时,n ﹣1=3,n +1=5, ∴三个连续正整数仍然是3,4,5,∴不存在其它的三个连续正整数能组成勾股数;(6分) ③答:不存在,(7分)理由是:在无数组勾股数中,存在三个连续奇数能组成勾股数, 设这三个奇数分别为:2n ﹣1,2n +1,2n +3(n >1的整数), (2n ﹣1)2+(2n +1)2=(2n +3)2,n 1=27,n 2=﹣21,∴不存在三个连续奇数能组成勾股数;(8分)(2)答:存在,三边长分别是4,5,6,(9分)理由是:如图,在△ABC 中,设AB=x ,AC=x +1,BC=x ﹣1,则:∠B >∠C >∠A ;∠ABC=2∠BAC ,延长CB 至D ,使BD=AB ,连接AD ,∴∠BAD=∠BDA ,(10分)∵∠ABC=∠BAD +∠BDA=2∠BDA ,∵∠ABC=2∠BAC ,∴∠BAC=∠BDA ,∵∠C=∠C ,∴△CAB ∽△CDA , ∴AC BC CD AC , ∴AC 2=BC•DC , ∴(x +1)2=(x ﹣1)[(x ﹣1)+x ], x=5或0(舍), 当x=5时,x ﹣1=4,x +6, ∴BC=4,AB=5,AC=6, 答:满足条件的△ABC 三边的长为4,5,6.(12分) 【点评】本题是阅读材料问题,考查了勾股数的有关问题,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断,本题熟练掌握勾股定理列方程是关键.。