细胞生物学溶酶体
细胞生物学溶酶体

– 还有一部分可返回至高尔基体
三、溶酶体的形成☆
溶酶体膜 形成
吞噬体 吞饮体
异溶酶体 次 级
异溶酶体
溶
初级溶酶体 异噬作用
内体 胞外消化
自噬作用
酶
体
自噬体
分泌颗粒
自溶酶体
残体
三、溶酶体的形成☆
• 溶酶体酶的形成和转运
第三节 溶酶体 (Lysome)
一、溶酶体的一般特征 二、溶酶体的种类 三、溶酶体的形成 四、溶酶体的功能 五、溶酶体与疾病
二、溶酶体的种类☆
• 根据溶酶体是否与底物结合分为两种:
初级溶酶体(primary lysosome) 次级溶酶体(secondary lysosome)
在高尔基体成熟面上形成的新生溶 酶体,形态与高尔基体的小泡相似
甘露糖-6-磷酸 (mannose 6-phosphate, M6P)
溶酶体的酶是由rER上的核糖体合成 rER腔内
运输小泡 高尔基复合体 (加工修饰)
溶酶体的酶内含有甘露糖-6-磷酸,高尔基复合体反面囊膜上有甘露糖-6-磷酸 受体,能特异与其结合,诱导溶酶体酶聚集并‘出芽’离开高尔基复合体形成溶 酶体。
• 治疗时,一般在改善病人微循环的同时,常应用 大剂量糖皮质激素来稳定溶酶体膜,避免细胞发 生不可逆损伤。
五、溶酶体与疾病☆
3. 酶的转运异常产生的溶酶体病
– 典型的例子是I-细胞病(inclusion-cell disease) ,它 是由于溶酶体酶缺失M6P,而使其无法聚集到溶 酶体中。
– 属于单基因隐性遗传病。是由于基因缺欠导致N乙酰氨基磷酸转移酶异常,使得溶酶体酶不能在 高尔基体进行分选和包装;溶酶体的水解酶几乎 全部丢失,造成消化的底物蓄积在溶酶体中,最 终在病人的细胞中形成大的包涵体。
《细胞生物学》溶酶体

泰-萨病(黑朦性痴呆)
AR
氨基己糖苷酯酶A缺乏
糖酯降解受阻 脑中神经节苷脂M2增加
(100-300) 双眼失明、2-6岁死亡
谢谢
溶酶体 (lysosome)
生命科学学院 刘艳平
溶酶体(lysosome)
是细胞内由一层单位膜包围
的膜性细胞器,内含多种酸性水 解酶,能分解各种内源性或外源 性物质,称为细胞内的消化器官。
主要内容:
一、形态结构和化学组成 二、类型 (重点) 三、形成 (重点) 四、功能 (重点) 五、病理变化
一、形态结构及化学组成 (一)形态结构
一个较短的N-端信号肽序列 一个高度糖基化的腔内区 一个单次跨膜区 一个由10个左右的氨基酸残基组成 的C-端胞质尾区
二、溶酶体的类型 (一)按功能状态不同分为三种类型
1.初级溶酶体(primary lysosome)
是指通过形成途径刚刚产生的溶 酶体。
初级溶酶体囊腔中的酶通常处于 非活性状态。
箭头示初级溶酶体
• 细胞器更新的重要方式 • 机体和细胞的自我保护
四、溶酶体的功能
•细胞正常的消化功能 •保护和防御作用 •参与激素的生成
原 料
合成 甲状腺球蛋白
水解
吞饮 泡
甲状腺素
lysosome
碘化
碘化甲 状腺球 蛋白
甲状腺滤泡上皮细胞
甲状腺素的合成过程
四、溶酶体的功能
•细胞正常的消化功能 •保护和防御作用 •参与激素的生成 •参与器官组织变态和退化
吞噬体
内体性溶酶体
液态物
吞饮体
异噬性溶酶体
出胞
残余小体 残渣 小分子
留胞堆积
细胞质中 重新利用
异噬作用的意义
细胞生物学溶酶体名词解释

细胞生物学溶酶体名词解释
细胞生物学中溶酶体的名词解释如下:
溶酶体是细胞内一种单层膜包被的囊状结构,是细胞内进行细胞内消化和分解的重要细胞器。
溶酶体内含有多种水解酶,能够分解许多种物质以及衰老、损伤的细胞器,被比喻为细胞内的“酶仓库”和“消化系统”。
溶酶体的功能主要包括:
分解并清除进入细胞内的外来物质,如病原体和有毒有害物质;
清除衰老、损伤或异常的细胞器;
参与分泌过程的调节,如激素的降解;
形成具有特定功能的细胞突起,如神经细胞的轴突和树突。
溶酶体的形成过程:初级溶酶体来源于高尔基器,或近于高尔基器分泌面的光滑内质网的特化区,囊内仅含有水解酶。
次级溶酶体是初级溶酶体与细胞内由吞噬或胞饮作用所形成的小囊泡,或与细胞器受损后的膜片等结构相融合而形成的。
次级溶酶体经酶解后的残余物质称为残体或终末溶酶体,即在光学显微镜下所见的脂褐质等。
除少数细胞如哺乳类红细胞外,各种动物细胞都有溶酶体。
在植物细胞中有类似溶酶体的细胞器,如自体吞噬泡、圆球体和糊粉粒等。
细胞生物学中的溶酶体结构与功能研究进展

细胞生物学中的溶酶体结构与功能研究进展细胞是构成生物体的基本单位,其中一个重要的细胞器是溶酶体。
溶酶体是各种细胞中的一种小泡状细胞器,它在维持细胞内环境平衡、废弃物的降解以及防御外界病原体等方面起着重要作用。
在近年来的研究中,科学家们对溶酶体的结构和功能进行了广泛的研究,并取得了一系列重要的进展。
一、溶酶体的结构及其与其他细胞器的关系溶酶体主要由膜限定的囊泡组成,其内含有多种不同的水解酶和蛋白酶等。
在细胞内,溶酶体与其他细胞器之间存在着密切的联系和相互作用。
1. 溶酶体与内质网:内质网是细胞质内一个分布广泛的膜系统,与溶酶体之间通过膜融合和膜蛋白的转运等方式相互交换物质和信息。
2. 溶酶体与高尔基体:高尔基体是细胞内的一个平突起的膜系统,它与溶酶体之间通过小泡的融合和膜蛋白的转运等方式相互联系。
3. 溶酶体与线粒体:溶酶体在线粒体的功能维持和垃圾清除过程中起关键作用,两者之间通过膜融合和酶的直接传递等方式相互联系。
上述结构关系的研究为溶酶体的功能和机理提供了重要的基础。
二、溶酶体的功能1. 废物降解:溶酶体是细胞内垃圾处理站,在细胞的新陈代谢过程中,产生的异常或蛋白质降解产物等废弃物被吞噬进入溶酶体,并在其中被水解酶和蛋白酶等降解为小分子物质,再进一步由细胞运输出去。
2. 感染防御:当细胞受到病原体的侵袭时,溶酶体会合成出一系列的酶,如溶菌酶和胞内溶酶体蛋白等,这些酶能够杀死病原体,并将其分解为无害的物质,保护细胞免受病原体的侵害。
3. 调节细胞凋亡:溶酶体参与了细胞凋亡的过程,当细胞需要自毁时,溶酶体会释放酶类物质,诱导细胞凋亡。
4. 路标功能:溶酶体通过与其他细胞器的相互作用,发挥了一种“路标”的作用,能够引导细胞内物质的运输和分配。
三、研究进展近年来,科学家们在溶酶体的结构和功能研究方面取得了一系列重要的突破。
1. 结构分析:利用冷冻电镜和光学显微镜等高分辨率的技术手段,科学家们成功地解析了溶酶体的分子结构,揭示了其复杂的内部结构。
细胞生物学全套资料--第五节溶酶体与过氧化物酶体

第五节溶酶体与过氧化物酶体一、溶酶体的结构* 1955年de Duve与Novikoff,首次发现溶酶体(lysosome)* 它是单层膜围绕、内含多种酸性水解酶类的囊泡其主要功能是进行细胞内消化* 具有异质性,形态、大小及其内含的水解酶种类都可能有很大的不同,标志酶为酸性磷酸酶。
* 根据完成其生理功能的不同阶段,可分为:初级溶酶体(primary lysosome)次级溶酶体(secondary lysosome)残体(residual body)。
1、初级溶酶体* 直径约0.2~0.5um膜厚7.5nm内含物均一,无明显颗粒是高尔基体分泌形成的(图6-27)* 含有多种水解酶,但没有活性只有当溶酶体破裂or 其它物质进入,才有酶活性* 其水解酶包括:蛋白酶,核酸酶、脂酶、磷酸酶、硫酸酯酶、磷脂酶类,已知60余种,均属于酸性水解酶,反应的最适pH值为5左右* 溶酶体膜与质膜厚度相近,但成分不同主要区别是:①膜有质子泵,将H+泵入溶酶体,使其pH值降低②膜蛋白高度糖基化,可能利于防止自身膜蛋白降解图6-27 初级溶酶体引自http://www.uni-mainz.de/2、次级溶酶体* 都是消化泡(图6-28)正在进行or 完成消化作用的溶酶体内含水解酶和相应的底物* 分为异噬溶酶体,消化的物质来自外源自噬溶酶体消化的物质,是细胞本身的各种组分图6-28 次级溶酶体引自http://www.uni-mainz.de/3、残体* 又称后溶酶体已失去酶活性,仅留未消化的残渣故名* 残体可通过外排作用,排出细胞也可能留在细胞内,逐年增多如,肝细胞中的脂褐质(图6-29)图6-29 肝细胞中的脂褐质引自《细胞生物学超微结构图谱》1989二、溶酶体的功能溶酶体的主要作用:* 消化作用,是细胞内的消化器官* 细胞自溶、防御&对某些物质的利用均与溶酶体的消化作用有关1、细胞内消化对高等动物而言细胞的营养物质,主要来源于血液中的小分子物质而一些大分子物质,通过内吞作用进入细胞如,内吞低密度脂蛋白,获得胆固醇(溶酶体中)对一些单细胞真核生物,溶酶体的消化作用更为重要2、细胞凋亡个体发生过程中往往涉及组织or 器官的改造or 重建如,昆虫、蛙类的变态发育等等此过程是在基因控制下实现的,称为程序性细胞死亡注定要消除的细胞以出芽的形式,形成凋亡小体被巨噬细胞吞噬并消化3、自体吞噬清除细胞中无用的生物大分子,衰老的细胞器等如,许多生物大分子的半衰期,只有几小时至几天肝细胞中线粒体的平均寿命约10天左右。
简述溶酶体的发生过程

简述溶酶体的发生过程
溶酶体的发生过程是一个复杂的细胞生物学过程。
在细胞内,溶酶体是由高度分化的细胞器发生而来的。
通常,溶酶体的生成路径有两种主要方式:一种是内质网-高尔基体-溶酶体途径,另一种是内吞作用-早期内体-晚期内体-溶酶体途径。
内质网-高尔基体-溶酶体途径:在这种途径中,内质网上的蛋白质会经过翻译、修饰和分泌等过程后被运输到高尔基体。
在高尔基体内,这些蛋白质会被一系列酶催化,并形成泡状物质,称为前体溶酶体。
这些前体溶酶体随后会被运输到溶酶体。
在溶酶体内,前体溶酶体会被进一步催化和分解,形成成熟的溶酶体。
内吞作用-早期内体-晚期内体-溶酶体途径:这种途径主要是通过内吞作用将外部物质或细胞器内的有害物质吞噬入细胞内。
这些被吞噬的物质会形成内体,并在细胞质内游走。
在早期内体阶段,内体会被运输到高尔基体进行修饰和分泌。
在晚期内体阶段,内体会进一步分化成为溶酶体。
总之,溶酶体的发生过程是一个复杂的细胞学过程,与细胞内多种机制有关,包括内质网、高尔基体、内吞作用等。
溶酶体的形成对于维持细胞的正常代谢和生存起着重要的作用。
- 1 -。
溶酶体名词解释细胞生物学

溶酶体名词解释细胞生物学
溶酶体是一种细胞质中的膜限定泡状结构,主要包含水解酶和各种酸性酶,是细胞内部分解和消化的主要机构。
它们在细胞内的功能非常重要,可以参与各种溶解和分解反应,如细胞内蛋白质降解、膜脂分解、糖原降解、细胞吞噬等过程。
溶酶体通常由两种主要的膜组成:内膜和外膜。
内膜是一个细胞质向内的薄膜,由高度糖基化的蛋白质组成,可以防止溶酶体水解酶和酸性酶逸出到细胞质中。
外膜则是一个较稳定的膜,可以保护内膜免受外部损伤。
溶酶体的形成是通过内质网与高尔基体之间的转运和转化过程。
在内质网上合成的酸性酶以囊泡形式转运到高尔基体中,然后再被分泌到溶酶体中。
此外,溶酶体还可以吞噬和消化不需要的细胞成分或外来细胞,通过溶酶体消化酶的作用进行消化分解,使细胞获得新的能量和营养。
总之,溶酶体是细胞内分解和消化的重要机构,通过其中的酸性酶和水解酶对不需要的细胞成分或外来物质进行消化分解,从而保证细胞的正常运作和生长发育。
医学细胞生物学--第六章-3节-2-溶酶体和微体

Chapter 6 Lysosome
溶酶体
一、基 本 特 性 二、溶酶体的存在状态与类型 三、溶酶体的发生 四、溶酶体与疾病 五、溶酶体的功能
基本特性
溶酶体
1955年, C. de Duve: 酸性磷酸酶活性
——溶酶体(lysosome)
溶酶体
单层膜包围 多种酸性水解酶
形态和大小 形态
溶酶体酶的特异性信号为甘露糖6-磷酸(M6P);磷 酸 转 移 酶 有 识别信号:依赖于溶酶体酶三级结构所形成的信号斑(signal patch)
信号肽
信号肽与信号斑的结构图解
信号斑
溶酶体酶的识别机制:
溶酶体
(M6P)
溶酶体水解酶的识别机制
GlcNAc磷酸转移酶的催化UDP-GlcNAc的GlcNAc-P转移到 溶酶体水解酶的甘露糖残基上,形成了具有M6P的溶酶体酶
(a) (b)
过氧化物酶体的电镜图
(a)大鼠肝细胞中的过氧化物酶体,电子致密核心为尿酸氧化酶; (b)植物叶肉细胞中具有晶格状核心的过氧化物酶体,常紧邻叶绿体
微体
过氧化物酶体中的氧化酶均含有与蛋白质结合的 黄素辅基,故称为黄素氧化酶。
其反应途径如下:
黄素氧化酶 RH2 + O2 ———— R + H2O2
清除衰老的生物大分子和细胞器
溶酶体 清除多余的细胞器
清除暂不需要的酶或某些代谢产物
“细胞内 清洁工”
M M
溶酶体
4. 发育过程中细胞的清除功能
在蝌蚪变态过程中尾部溶酶体的组织蛋白酶活性与尾长度的关系
发育过程中细胞的清除功能
溶酶体
♂
吴尔夫管 米勒氏管
胚胎
米勒氏管退化 输精管
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9、4溶酶体(l y s o s o me)溶酶体就是动物细胞中一种膜结合细胞器,含有多种水解酶类,在细胞内起消化与保护作用,可与吞噬泡或胞饮泡结合,消化与利用其中的物质。
也可以消化自身细胞破损的细胞器或残片,有利于细胞器的重新组装、成分的更新及废物的消除。
9、4、1溶酶体的形态结构■溶酶体的形态溶酶体就是一种异质性(h e t e r o g e n e o u s)的细胞器,不同来源的溶酶体形态、大小,甚至所含有酶的种类都有很大的不同。
溶酶体呈小球状,大小变化很大,直径一般0、25~0、8μm,最大的可超过1μm,最小的直径只有25~50n m。
图9-36就是肝组织的K u p p e r细胞(肝星形细胞)中不同大小的溶酶体,该细胞主要就是吞噬衰老的红细胞。
图9-36溶酶体的形态大小具吞噬作用的肝K u p p e r细胞中不同大小的溶酶体,图中示出至少10个不同大小的溶酶体。
■溶酶体膜的稳定性溶酶体的外被就是一层单位膜,内部没有任何特殊的结构。
由于溶酶体中含有各种不同的水解酶类,所以溶酶体在生活细胞中必须就是高度稳定的。
溶酶体的稳定性与其膜的结构组成有关:●溶酶体膜中嵌有质子运输泵(H+-AT P a s e),将H+泵入溶酶体内,使溶酶体中的H+浓度比细胞质中高;同时,在溶酶体膜上有C l-离子通道蛋白,可向溶酶体中运输C l-离子,两种运输蛋白作用的结果,就等于向溶酶体中运输了H C l,以此维持溶酶体内部的酸性环境(p H约为4、6~4、8)。
●溶酶体膜含有各种不同酸性的、高度糖基化膜整合蛋白,这些膜整合蛋白的功能可能就是保护溶酶体的膜免遭溶酶体内酶的攻击,有利于防止自身膜蛋白的降解。
●溶酶体膜含有较高的胆固醇,促进了膜结构的稳定。
9、4、2溶酶体的发现与溶酶体的酶类溶酶体内含有50多种酶类,这些酶的最适p H值就是5、0,故均为酸性水解酶(a c i d h yd r o l a s e s)。
图9-37就是典型的溶酶体的大小、所含主要酶类及膜中的V-型质子泵等。
酸性磷酸酶就是溶酶体的标志酶,正就是对这种酶的细胞定位研究导致溶酶体的发现。
图9-37溶酶体的形态、大小、及所含主要酶类示意图■酸性磷酸酶的定位研究与溶酶体的发现在二十世纪的五十年代初期,C h r i s t i a n d e D u v e与她的同事在研究亚细胞组分时发现了溶酶体,不过,溶酶体的发现带有很大的偶然性。
您了解溶酶体的发现过程不?■溶酶体的酶溶酶体的酶都有一个共同的特点∶都就是水解酶类,在酸性p H条件下具有最高的活性。
溶酶体的酶包括∶蛋白酶、核酸酶、脂酶、糖苷酶等,主要类型的酶列于表9-8。
表9-8溶酶体的主要酶类酶天然底物酶天然底物磷酸酶类酸性磷酸酶磷酸单脂酸性磷酸二脂酶磷酸二脂■植物溶酶体●圆球体(s p h e ro s o me)就是植物细胞中由一层单位膜包裹的含有细微结构的球形颗粒,直径为0、5~1μm,内含酸性水解酶,相当于动物细胞的溶酶体。
●植物细胞的液泡(v a c u o l e s)植物细胞的液泡几乎占据了细胞总体积的90%,它含有多种水解酶类,并具有与动物细胞的溶酶体酶的类似的功能。
液泡膜上具有H+-A T P a s e,能够将H+运输到液泡中,同时在液泡膜上还有一些运输蛋白,帮助液泡行使一些特殊的功能(图9-38)。
图9-38植物液泡膜的运输系统及液泡内离子与蔗糖浓度梯度的建立液泡膜含有两种类型的质子泵:V-型H+-AT P a s e与单向焦磷酸水解质子泵。
这两种泵可以维持液泡中低p H,并建立正电动势,促使C l-与N O3-从离子通道蛋白进入液泡。
通过H+质子梯度的力,促使N a+、C a2+与蔗糖从胞质溶胶运入液泡。
9、4、3溶酶体的类型由于溶酶体在形态上的多样性与异质性,曾发现各种不同类型的溶酶体。
根据溶酶体处于完成其生理功能的不同阶段,大致分为以下几种:■初级溶酶体(p r i ma r y l y s o s o me)此类溶酶体就是刚刚从反面高尔基体形成的小囊泡,仅含有水解酶类,但无作用底物,外面只有一层单位膜,其中的酶处于非活性状态。
■次级溶酶体(s e c o n d a r y l y s o s o me)此类溶酶体中含有水解酶与相应的底物,就是一种将要或正在进行消化作用的溶酶体。
根据所消化的物质来源不同,分为自噬性溶酶体、异噬性溶酶体。
●自噬性溶酶体(a u t o l ys o s o me)就是一种自体吞噬泡,作用底物就是内源性的,即细胞内的蜕变、破损的某些细胞器或局部细胞质。
这种溶酶体广泛存在于正常的细胞内,在细胞内起“清道夫”作用。
●异噬性溶酶体(h e t e r o l y s o s o me)又称异体吞噬泡,它的作用底物就是外源性的,即细胞经吞噬、胞饮作用所摄入的胞外物质。
异噬性溶酶体实际上就是初级溶酶体同内吞泡融合后形成的。
9、4、4溶酶体的功能溶酶体的主要功能就是消化作用(图9-39)。
其消化底物的来源有三种途径:①自体吞噬(a u t o p h a g y),吞噬的就是细胞内原有的物质;②通过吞噬形成的吞噬体(p h a g o s o me)提供的有害物质;③通过内吞作用(e n d o c yt o s i s)提供的营养物质。
由于吞噬作用与内吞作用提供的被消化的物质都就是来自细胞外,又将这两种来源的物质消化作用统称为异体吞噬(h e t e r o p h a g y)。
图9-39溶酶体的类型及在细胞消化过程中的作用图中简示了溶酶体的四种消化作用:A、吞噬作用;B自噬作用;C、自溶作用;D、细胞外消化作用。
■吞噬作用(p h a g o c y t o s i s)外来的有害物质被吞入细胞后,即形成由膜包裹的吞噬小体(p h a g o s o me),初级溶酶体很快同吞噬体融合形成次级溶酶体,此时溶酶体中的底物就是从细胞外摄取的,故为异噬性的溶酶体,在异噬性的溶酶体中吞噬物被酶水解(图9-40)。
图9-40吞噬作用吞噬作用的第一阶段就是细胞质膜上的受体与细菌结合,然后将被感染的细菌包裹起来形成吞噬体,接着就是溶酶体与吞噬体融合,通过溶酶体酶的作用将被吞噬的细菌降解。
●吞噬细胞多细胞的动物具有专门的吞噬细胞,即巨噬细胞(m a c r o p h a g e s)与中性粒细胞(n e u t r o p h i l s)担任机体中的保护防御任务。
吞噬作用也就是细胞获取营养的一种方式,细胞通过内吞作用将一些营养物质包进内吞体,最后与溶酶体融合,在溶酶体酶的作用下,将吞进的营养物质消化形成可直接利用的小分子用于合成代谢。
吞噬作用也包括对衰老的、进入编程死亡的细胞的吞噬。
■自噬作用(a u t o p h a g y)自噬作用主要就是清除降解细胞内受损伤的细胞结构、衰老的细胞器、以及不再需要的生物大分子等(图9-41)。
图9-41自噬作用电镜照片所示就是衰老的线粒体与过氧化物酶体被包裹在一个双层膜结构中,该膜来自于内质网。
被E R膜包裹而成的自噬体将会与溶酶体融合,进而被溶酶体酶降解。
●自噬作用的意义自噬作用对细胞的生命活动有什么意义?●吞噬过程被吞噬的细胞器与生物大分子先要被内质网的膜包裹起来形成自噬泡(a u t o p h a g i c v a c u o l e,图9-42),然后与初级溶酶体融合形成次级溶酶体,即自噬性的溶酶体,融合后的底物被溶酶体酶消化。
图9-42自体吞噬泡形成的机制内质网形成一个双膜的杯形结构(a,b),衰老的细胞器(线粒体)从杯口进入(c),然后封口(d),形成双膜的小泡。
小泡与成熟的溶酶体融合(e),或与来自溶酶体分泌小泡融合(f),溶酶体的酶降解融合泡中的底物(g)。
■自溶作用(a u t o l y s i s)自溶作用就是细胞的自我毁灭(c e l l u l a r s e l f-d e s t r u c t i o n),即溶酶体将酶释放出来将自身细胞降解。
在正常情况下,溶酶体的膜就是十分稳定的,不会对细胞自身造成伤害。
如果细胞受到严重损伤,造成溶酶体破裂,那么细胞就会在溶酶体酶的作用下被降解,如某些红细胞常会有这种情况发生。
在多细胞生物的发育过程中,自溶对于形态建成具有重要作用。
■细胞外的消化作用(e x t r a c e l l u l a r d i g e s t i o n)溶酶体除了在细胞内具有消化作用外,也可以将水解酶释放到细胞外消化细胞外物质。
如精子头部的顶端质膜下方有一膜包裹的囊状结构,称为顶体(a c r o s o me),就是一种特殊的溶酶体,在受精过程中,通过顶体反应,将顶体中的溶酶体的酶释放到细胞外(图9-43),消化卵外膜滤泡细胞,使精子抵达卵子质膜,卵子与精子的细胞质膜相互融合,达到受精的目的。
图9-43顶体反应(a)海胆精子前端的顶体,正好位于细胞核的前面;(b)当精子的质膜与卵细胞周围物质接触时,精子释放出顶体中溶酶体的酶,消化卵细胞外的物质,使精子得以与卵细胞接触。
9、4、5溶酶体的生物发生溶酶体的形成就是一个相当复杂的过程,涉及的细胞器有内质网、高尔基体与内体等。
比较清楚的就是甘露糖-6-磷酸途径(ma n n o s e 6-p h o s p h a t e s o r t i n g p a t h wa y):溶酶体的酶类在内质网上起始合成,跨膜进入内质网的腔,在顺面高尔基体带上甘露糖6-磷酸标记后在高尔基体反面网络形成溶酶体分泌小泡,最后还要通过脱磷酸才成为成熟的溶酶体(图9-44)。
图9-44溶酶体的酶寻靶过程、涉及的细胞器及机理大多数溶酶体的酶在寡糖链上含有甘露糖,在顺面高尔基网络转变成甘露糖-6-磷酸。
新形成的溶酶体的酶通过高尔基复合体,在高尔基体反面网络与膜受体结合后被包进溶酶体分泌小泡,通过出芽形成自由的分泌泡。
通过H+-质子泵调节溶酶体分泌小泡中的p H,使溶酶体的酶同受体脱离,受体再循环,溶酶体酶脱磷酸后成为成熟的初级溶酶体。
■溶酶体酶蛋白的M6P标记研究发现,溶酶体的酶上都有一个特殊的标记∶6-磷酸甘露糖(m a n n o s e6-p h o s p h a t e,M6P)。
这一标记就是溶酶体酶合成后在粗面内质网与高尔基体通过糖基化与磷酸化添加上去的。
●糖基化溶酶体酶蛋白在膜旁核糖体上合成,进入内质网后进行N-连接糖基化,经加工后形成带有8个甘露糖残基与2个N-乙酰葡萄糖胺残基的糖蛋白转运到高尔基体。
●信号斑(s i g n a l p a t c h)信号斑就是溶酶体酶蛋白多肽形成的一个特殊的三维结构,它就是由三段信号序列构成的,可被磷酸转移酶特异性识别(图9-45)。