2010年高考数学一轮复习资料三
(大纲版)2010届高三数学一轮复习精品汇编:数系的扩充与复数的引入

第十六章 数系的扩充与复数的引入第1课时 复数的有关概念基础过关题1.复数:形如 ),(R b a ∈的数叫做复数,其中a , b 分别叫它的 和 .2.分类:设复数 (,)z a bi a b R =+∈:(1) 当 =0时,z 为实数;(2) 当 ≠0时,z 为虚数;(3) 当 =0, 且 ≠0时,z 为纯虚数.3.复数相等:如果两个复数 相等且 相等就说这两个复数相等.4.共轭复数:当两个复数实部 ,虚部 时.这两个复数互为共轭复数.(当虚部不为零时,也可说成互为共轭虚数).5.若z =a +bi, (a, b ∈R), 则 | z |= ; z z ⋅= .6.复平面:建立直角坐标系来表示复数的平面叫做复平面, x 轴叫做 , 叫虚轴.7.复数z =a +bi(a, b ∈R)与复平面上的点 建立了一一对应的关系.8.两个实数可以比较大小、但两个复数如果不全是实数,就 比较它们的大小.典型例题例1. m 取何实数值时,复数z =362+--m m m +i m m )152(2--是实数?是纯虚数? 解:① z 是实数503015122=⇒⎩⎨⎧≠+=--⇒m m m m ② z 为纯虚数2303060151222-==⇒⎪⎩⎪⎨⎧≠+=--≠--⇒m m m m m m m 或 变式训练1:当m 分别为何实数时,复数z=m 2-1+(m 2+3m +2)i 是(1)实数?(2)虚数?(3)纯虚数?(4)零?解:(1)m=-1,m=-2;(2)m≠-1,m≠-2;(3)m=1;(4)m=-1.例2. 已知x 、y 为共轭复数,且i xyi y x 643)(2-=-+,求x .解:设),(,R b a bi a y bi a x ∈-=+=则代入由复数相等的概念可得1,1±=±=b a变式训练2:已知复数z=1+i ,如果221z az b z z ++-+=1-i,求实数a,b 的值. 由z=1+i 得221z az b z z ++-+=()(2)a b a i i+++=(a +2)-(a +b)i从而21()1a a b +=⎧⎨-+=-⎩,解得12a b =-⎧⎨=⎩.例3. 若方程0)2()2(2=++++mi x i m x 至少有一个实根,试求实数m 的值.解:设实根为o x ,代入利用复数相等的概念可得o x =222±=⇒±m变式训练3:若关于x 的方程x 2+(t 2+3t +tx )i=0有纯虚数根,求实数t 的值和该方程的根. 解:t=-3,x 1=0,x 2=3i .提示:提示:设出方程的纯虚数根,分别令实部、虚部为0,将问题转化成解方程组.例4. 复数 (,)z x yi x y R =+∈满足|22|||i z z --=,试求y x 33+的最小值.设),(R y x yi x z ∈+=,则2=+y x , 于是692332=≥+-x x变式训练4:已知复平面内的点A 、B 对应的复数分别是i z +=θ21sin 、θθ2cos cos 22i z +-=,其中)2,0(πθ∈,设对应的复数为z .(1) 求复数z ;(2) 若复数z 对应的点P 在直线x y 21=上,求θ的值.解:(1) θ212sin 21i z z z --=-=(2) 将)sin 2,1(2θ--P 代入x y 21= 可得21sin ±=θ611,67,65,6ππππθ=⇒.归纳总结1.要理解和掌握复数为实数、虚数、纯虚数、零时,对实部和虚部的约束条件.2.设z =a +bi (a ,b ∈R),利用复数相等和有关性质将复数问题实数化是解决复数问题的常用方法.第2课时 复数的代数形式及其运算基础过关题1.复数的加、减、乘、除运算按以下法则进行:设12, (,,,)z a bi z c di a b c d R =+=+∈,则(1) 21z z ±= ;(2) 21z z ⋅= ;(3) 21z z = (≠2z ). 2.几个重要的结论:⑴ )|||(|2||||2221221221z z z z z z +=-++⑵ z z ⋅= = .⑶ 若z 为虚数,则2||z = ()2 z =≠填或3.运算律⑴ n m z z ⋅= .⑵ n m z )(= .⑶ n z z )(21⋅= ),(R n m ∈.典型例题例1.计算:ii i i i 2121)1()1(4040++-++--+ 解:提示:利用i i i i =±=±20052,2)1(原式=0变式训练1:2=(A )1-+ (B )122+ (C )122i -+ (D )1212===-+ 故选C ; 例2. 若012=++z z ,求2006200520032002z z z z +++解:提示:利用z z z ==43,1原式=2)1(432002-=+++z z z z变式训练2:已知复数z 满足z 2+1=0,则(z 6+i )(z 6-i )= ▲ .解:2例3. 已知4,a a R >∈,问是否存在复数z ,使其满足ai z i z z +=+⋅32(a ∈R ),如果存在,求出z 的值,如果不存在,说明理由解:提示:设),(R y x yi x z ∈+=利用复数相等的概念有⎩⎨⎧==++ax y y x 232220034222>∆⇒=-++⇒a y y i a a z a 216224||2-±-+=⇒≤⇒ 变式训练3:若(2)a i i b i -=+,其中i R b a ,,∈是虚数单位,则a +b =__________ 解:3例4. 证明:在复数范围内,方程255||(1)(1)2i z i z i z i -+--+=+(i 为虚数单位)无解. 证明:原方程化简为2||(1)(1)1 3.z i z i z i +--+=-设yi x z += (x 、y ∈R ,代入上述方程得22221 3.x y xi yi i +--=-221(1)223(2)x y x y ⎧+=⎪∴⎨+=⎪⎩ 将(2)代入(1),整理得281250.x x -+=160,()f x ∆=-<∴ 方程无实数解,∴原方程在复数范围内无解.变式训练4:已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a ∈R, 若12z z -<1z ,求a 的取值范围.解:由题意得 z 1=151i i-++=2+3i,于是12z z -=42a i -+,1z =13.13,得a 2-8a +7<0,1<a<7.归纳总结1.在复数代数形式的四则运算中,加减乘运算按多项式运算法则进行,除法则需分母实数化,必须准确熟练地掌握.2.记住一些常用的结果,如ω,i 的有关性质等可简化运算步骤提高运算速度.3.复数的代数运算与实数有密切联系但又有区别,在运算中要特别注意实数范围内的运算法则在复数范围内是否适用.章节测试题一、选择题1.若复数ii a 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 ( ) A 、-6 B 、13 C.32 D.13 2.定义运算bc ad d c b a -=,,,则符合条件01121=+-+ii i z ,,的复数_z 对应的点在( ) A .第一象限; B .第二象限; C .第三象限; D .第四象限;3.若复数()()22ai i --是纯虚数(i 是虚数单位),则实数a =( )A.-4;B.4;C.-1;D.1;4.复数i i ⋅--2123=( )A .-IB .IC . 22-iD .-22+i6.若复数z ai z i z 且复数满足,1)1(+=-在复平面上对应的点位于第二象限,则实数a 的取值范围是( )A .1>aB .11<<-aC .1-<aD .11>-<a a 或7.已知复数z 满足2)1()1(i z i +=-,则z =( )(A) -1+ i (B) 1+i (C) 1-i (D) -1-i8.若复数12,1z a i z i =+=-,且12z z 为纯虚数,则实数a 为 ( )A .1B .-1C .1或-1D .09.如果复数)2)(1(i ai ++的实部和虚部相等,则实数a 等于( )(A )1- (B(C )21 (D )1 10.若z 是复数,且i z 432+-=,则z 的一个值为 ( )A .1-2iB .1+2iC .2-iD .2+i11.若复数15z a i =-+为纯虚数,其中,a R i ∈为虚数单位,则51a i ai+-=( ) A . i B . i - C . 1 D . 1- 12.复数1i i+在复平面中所对应的点到原点的距离为( ) A .12 B .22C .1D . 2 二、填空题13.设z a bi =+,a ,b ∈R ,将一个骰子连续抛掷两次,第一次得到的点数为a ,第二次得到的点数为b ,则使复数z 2为纯虚数的概率为 .14.设i 为虚数单位,则41i i +⎛⎫= ⎪⎝⎭. 15.若复数z 满足方程1-=⋅i i z ,则z= .16..已知实数x ,y 满足条件5003x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,i z x y =+(i 为虚数单位),则|12i |z -+的最小值是 .17.复数z=12i+,则|z|= . 18.虚数(x -2)+ y i 其中x 、y 均为实数,当此虚数的模为1时,xy 的取值范围是( ) A .[-33,33] B .033[-∪(]330 C .[-3,3] D .[-3,0∪(0,3]19.已知ii a z --=1 (a>0),且复数)(i z z +=ω的虚部减去它的实部所得的差等于23,求复数ω的模.20..复平面内,点1Z 、2Z 分别对应复数1z 、2z ,且i a a z )10(5321-++=,22(25)1z a i a =+--, )(R a ∈其中,若21z z +可以与任意实数比较大小,求21OZ OZ ⋅的值(O 为坐标原点).章节测试题答案一、选择题1. A2.答案:A3.答案:B4.答案:B6.答案:A7.A8.B9.B10.B11.D12.B二、填空题13. 6114.2i15.1i +16.答案:221718. 答案:B ∵⎩⎨⎧≠=+-0y 1y )2x (22, 设k =x y , 则k 为过圆(x -2)2 + y 2 = 1上点及原点的直线斜率,作图如下, k≤3331=, 又∵y≠0 ,∴k≠0.由对称性 选B .【帮你归纳】本题考查复数的概念,以及转化与化归的数学思维能力,利用复数与解析几何、平面几何之间的关系求解.虚数一词又强调y≠0,这一易错点.【误区警示】本题属于基础题,每步细心计算是求解本题的关键,否则将会遭遇“千里之堤,溃于蚁穴”之尴尬. 19.解:i a a a i z z 221)(2+++=+=ω i a 3232+=⇒=⇒ω523||=⇒ω 20.解:依题意21z z +为实数,可得01522=-+a a )(53舍去或-==⇒a a8521=⋅⇒OZ OZ。
2010年江苏省数学学科高考一轮复习

第十三章统计【考试要求】1、了解简单随机抽样、系统抽样、分层抽样的意义,会用它们对简单实际问题进行抽样;2、会用样本估计总体期望值和方差;3、会用样本频率分布估计总体分布;4、知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
2⨯列联表)的基本思想、方法及其初步应用;5、了解独立性检验(只要求26、了解实际推断原理和假设检验的基本思想、方法及其初步应用;7、了解聚类分析的基本思想、方法及其初步应用;8、了解回归的基本思想、方法及其初步应用。
【复习要求】根据新课程改革在本章的教学与考试要求:抽样方法(A级);总体分布估计(A级);总体特征数估计(B级);统计案例(A级),特制定以下复习要求:1、使学生了解简单随机抽样与分层抽样的概念,会用简单随机抽样、系统抽样、分层抽样这三种常用的抽样方法从总体中抽取样本;2、让学生会用样本估计总体期望值和方差;会用样本频率分布估计总体分布;3、使学生能根据给出的线性回归方程系数公式建立线性回归方程。
2⨯列联表)的基本思想、方法及其初步应用;4、使学生了解独立性检验(只要求25、使学生了解实际推断原理和假设检验的基本思想、方法及其初步应用;6、使学生了解回归的基本思想、方法及其初步应用。
【重难注意点】1、对简单实际问题进行抽样;2、利用样本数据计算其方差和标准差估计总体的方差和标准差;3、理解样本数据的方差和标准差的意义和作用;4、掌握从实际问题中提取数据,能够列出频率分布表和频率分布直方图频率折线图和茎叶图,会用样本的频率估计总体分布;5、能根据给出的线性回归方程的系数建立线性回归方程;6、对实际问题的数据处理能力,并运用所学的知识、方法去解决实际问题。
【考题再现】1、(2006四川卷)甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生,,。
2010届高三数学一轮复习必备精品:推理与证明

第十五章 推理与证明(一)合情推理与演绎推理1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。
2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
3.了解合情推理和演绎推理之间的联系和差异。
(二)直接证明与间接证明1.了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
2.了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
(三)数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题1.推理与证明的内容是高考的新增内容,主要以选择填空的形式出现。
2.推理与证明与数列、几何、等有关内容综合在一起的综合试题多。
第1课时 合情推理与演绎推理1. 推理一般包括合情推理和演绎推理;2.合情推理包括和; 归纳推理:从个别事实中推演出,这样的推理通常称为归纳推理;归纳推理的思维过程是:、、. 类比推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其它方面也或,这样的推理称为类比推理,类比推理的思维过程是:、、.3.演绎推理:演绎推理是,按照严格的逻辑法则得到的推理过程;三段论常用格式为:①M 是P ,②,③S 是P ;其中①是,它提供了一个个一般性原理;②是,它指出了一个个特殊对象;③是,它根据一般原理,对特殊情况作出的判断.4.合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常用的思维方法;在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有得于创新意识的培养。
演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到的新结论的推理过程. 23150sin 90sin 30sin 222=++ ;23125sin 65sin 5sin 222=++ 通过观察上述两等式的规律,请你写出一般性的命题:________________________________________=23( * )并给出( * )式的证明 解:一般形式: 23)120(sin )60(sin sin 222=++++ααα证明:左边 = 2)2402cos(12)1202cos(122cos 1 +-++-+-ααα 典型例题基础过关考纲导读高考导航= )]2402cos()1202cos(2[cos 2123 ++++-ααα = -+-+- 240cos 2cos 120sin 2sin 120cos 2cos 2[cos 2123ααα]240sin 2sin α =]2sin 232cos 212sin 232cos 212[cos 2123ααααα+----= 右边=23 (将一般形式写成 2223sin (60)sin sin (60),2ααα-+++=2223sin (240)sin (120)sin 2ααα︒︒-+-+=等均正确。
2010年高考数学一轮复习精品学案(人教版A版)――-集-合

2010年高考数学一轮复习精品学案(人教版A版)――-集-合2010年高考数学一轮复习精品学案(人教版A版)――集合一.【课标要求】1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ;实数集,记作R 。
2.集合的包含关系:(1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ⊆B (或B A ⊂);集合相等:构成两个集合的元素完全一样。
若A ⊆B 且B ⊇A ,则称A 等于B ,记作A =B ;若A ⊆B 且A ≠B ,则称A 是B 的真子集,记作A B ;(2)简单性质:1)A ⊆A ;2)Φ⊆A ;3)若A ⊆B ,B ⊆C ,则A ⊆C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集);3.全集与补集:(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ;(2)若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集;(3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦSC =S 4.交集与并集:(1)一般地,由属于集合A 且属于集合B的元素所组成的集合,叫做集合A 与B 的交集。
2010届高三数学一轮复习课件最新-------指数与指数函数

5.函数f ( x) x2 bx c满足f (1 x) f (1 x)
且f (0) 3,则f (bx )与f (c x )的大小关系是( A ).
A. f (bx ) f (cx )
B. f (bx ) f (cx )
C. f (bx ) f (cx )
D.大小关系随x的不同区间而改变.
三、根式的性质
1.当 n 为奇数时, 正数的 n 次方根是一个正数, 负数的 n 次 方根是一个负数, a 的 n 次方根用符号 n a 表示.
2.当 n 为偶数时, 正数的 n 次方根有两个, 它们互为相反数, 这时, 正数的正的 n 次方根用符号 n a 表示, 负的 n 次方根用符 号 - n a 表示. 正负两个 n 次方根可以合写为 n a (a>0).
典型例题
1.化简下列各式:
(1)
(1-a)
4
1 (a-1)3
;
(2) 3 xy2· xy-1 · xy ;
解:
(1)原式=(1-a)(a-1)-
3 4
=-(a-1)(a-1)-
3 4
=-(a-1)
1 4
=-
4
a-1
.
(2)原式=[xy2(xy-1)
1 2
1
]3
1
(xy) 2
=(xy2x
1 2
y-
12)
3.求下列函数的定义域,值域:
1
(1)y 3x (2)y 5 x1
4.设 a>0,
f(x)=
ex a
-
a ex
是 R 上的奇函数. (1)求 a 的值; (2)试判
断 f(x) 的反函数 f-1(x) 的奇偶性与单调性.
2010年高考数学一轮复习学案:棱锥.doc

棱锥一. 知识回顾:棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心. [注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形) ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α)附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别多个三角形的方法). ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形. ⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直. 简证:A B ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令b AC c AD a AB ===,,l ab c BCDAa bcFD得c a c b AD BC c AD a b AB AC BC -=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅c a b b c a0=-⇒c b c a 则0=⋅AD BC .iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形. 二. 基础训练:1.给出下列命题:①底面是正多边形的棱锥是正棱锥; ②侧棱都相等的棱锥是正棱锥;③侧棱和底面成等角的棱锥是正棱锥;④侧面和底面所成二面角都相等的棱锥是正棱锥,其中正确命题的个数是( A )()A 0 ()B 1 ()C 2 ()D 3 2.如果三棱锥S ABC -的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S 在底面的射影O 在ABC ∆内,那么O 是ABC ∆的( D ) ()A 垂心 ()B 重心 ()C 外心 ()D 内心3.已知三棱锥D ABC -的三个侧面与底面全等,且3AB AC == ,2BC =,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小是( C )()A 4π ()B 3π ()C 2π()D 32π 4、若一个三棱锥中,有一条棱长为a ,其余棱长均为1,则其体积)(a F 取得最大值时a 的值为( ) A 、1 B 、23 C 、25 D 、26三.例题分析:例1.正四棱锥S ABCD -中,高26SO =,两相邻侧面所成角为γ ,23tan23γ=, (1)求侧棱与底面所成的角。
2010年高考数学一轮复习精品学案(人教版A版)――不等式性质及证明

不等式性质及证明例1.(2009安徽卷理)下列选项中,p 是q 的必要不充分条件的是 A.p:a c +>b+d , q:a >b 且c >dB.p:a >1,b>1 q:()(01)x f x a b a a =->≠,且的图像不过第二象限C.p: x=1, q:2x x =D.p:a >1, q: ()log (01)a f x x a a =>≠,且在(0,)+∞上为增函数解析 由a >b 且c >d ⇒a c +>b+d ,而由a c +>b+d a >b 且c >d ,可举反例。
选A 。
(2)(2009四川卷文)已知a ,b ,c ,d 为实数,且c >d .则“a >b ”是“a -c >b -d ”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件解析 显然,充分性不成立.又,若a -c >b -d 和c >d 都成立,则同向不等式相加得a >b 即由“a -c >b -d ”⇒“a >b ”例2.(1)(2009天津卷理)a b +<<10,若关于x 的不等式2()x b ->2()ax 的解集中的整数恰有3个,则 A.01<<-a B.10<<a C.31<<a D.63<<a 答案 C(2)(2009重庆卷理)不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为( )A .(,1][4,)-∞-+∞B .(,2][5,)-∞-+∞C .[1,2]D .(,1][2,)-∞+∞解析因为24314313x x x xa a -≤+--≤+--≤-对对任意x 恒成立,所以22343041a a a a a a -≥-≥≥≤-即,解得或题型2:基本不等式例3.(2009天津卷理)设0,0.a b >>1133aba b+与的等比中项,则的最小值为 A . 8 B . 4 C. 1 D.14解析 因为333=⋅ba ,所以1=+b a , 4222)11)((11=⋅+≥++=++=+b aa b b a a b b a b a ba ,当且仅当b a a b =即21==b a 时“=”成立,故选择C 例4.(1)若实数a 、b 满足a+b=2,则3a+3b的最小值是( )A.18B.6C.23D.243(2)若a >b >1,P =b a lg lg ⋅,Q =21(lga +lgb ),R =lg (2b a +),则( ) A.R <P <QB.P <Q <RC.Q <P <RD.P <R <Q解析:(1)答案:B ;3a+3b≥2b a b a +=⋅3233=6,当且仅当a=b=1时取等号。
2010届高三一轮复习数学精品资料:2.7 对数与对数函数

§2.7 对数与对数函数 基础自测 1.(2008·全国Ⅱ理,4)若x∈(e-1,1),a=lnx,b=2lnx,c=ln3x,则 ( ) A.a<b<c B.c<a<b C.b<a<c D.b<c<a 答案C
2.已知3a=5b=A,且ba11=2,则A的值是 ( )
A.15 B.15 C.±15 D.225 答案B 3.已知log7[log3(log2x)]=0,那么x21等于 ( ) A.31 B.63 C.42 D.33 答案C 4.(2009·新郑调研)若f(x)=logax在[2,+∞)上恒有f(x)>1,则实数a的取值范围是 ( )
A.(1,21) B.(0,21)∪(1,2)
C.(1,2) D. (0,21)∪(2,+∞) 答案C 5.如图所示的是某池塘中的浮萍蔓延的面积y (m2)与时间t(月)的关系:y=at,有以下叙述: ①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30 m2;③浮萍从4 m2蔓延到12 m2需要经过1.5个月;④浮萍每月增加的面积都相等;⑤若浮萍蔓延到2 m2、3 m2、6 m2所经过的时间分别为t1、t2、t3,则t1+t2=t3. 其中正确的是 ( ) A.①② B.①②③④ C.②③④⑤ D.①②⑤ 答案D
例1 计算:(1))32(log32 (2)2(lg2)2+lg2·lg5+12lg)2(lg2; (3)21lg4932-34lg8+lg245. 解 (1)方法一 利用对数定义求值 设)32(log32=x,则(2+3)x=2-3=321=(2+3)-1,≨x=-1.
方法二 利用对数的运算性质求解
)32(log32
= 32log 321=32log(2+3)-1=-1.
(2)原式=lg2(2lg2+lg5)+12lg2)2(lg2=lg2(lg2+lg5)+|lg2-1| =lg2+(1-lg2)=1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年高考数学一轮复习资料三19、题目 高中数学复习专题讲座不等式知识的综合应用高考要求不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其他知识综合运用的特点比较突出 不等式的应用大致可分为两类一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题、本难点提供相关的思想方法,使考生能够运用不等式的性质、定理和方法解决函数、方程、实际应用等方面的问题 重难点归纳1 应用不等式知识可以解决函数、方程等方面的问题,在解决这些问题时,关键是把非不等式问题转化为不等式问题,在化归与转化中,要注意等价性2 对于应用题要通过阅读,理解所给定的材料,寻找量与量之间的内在联系,抽象出事物系统的主要特征与关系,建立起能反映其本质属性的数学结构,从而建立起数学模型,然后利用不等式的知识求出题中的问题 典型题例示范讲解例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)命题意图本题主要考查建立函数关系式,棱锥表面积和体积的计算及用均值定论求函数的最值知识依托本题求得体积V 的关系式后,应用均值定理可求得最值错解分析在求得a 的函数关系式时易漏h >0 技巧与方法 本题在求最值时应用均值定理解 ①设h ′是正四棱锥的斜高,由题设可得 ⎪⎪⎩⎪⎪⎨⎧=+='⋅+12222412214h a a a h a 消去)0(11:.2>+='a h a h 解得 ②由)1(33122+==h h h a V (h >0) 得 2121)1(31=⋅=++=h h h h h h V 而 所以V ≤61,当且仅当h =h1即h =1时取等号 故当h =1米时,V 有最大值,V 的最大值为61立方米 例2已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1(1)证明 |c |≤1;(2)证明 当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x ) 命题意图 本题主要考查二次函数的性质、含有绝对值不等式的性质,以及综合应用数学知识分析问题和解决问题的能力 知识依托 二次函数的有关性质、函数的单调性是药引,而绝对值不等式的性质灵活运用是本题的灵魂 错解分析本题综合性较强,其解答的关键是对函数f (x )的单调性的深刻理解,以及对条件“-1≤x ≤1时|f (x )|≤1”的运用;绝对值不等式的性质使用不当,会使解题过程空洞,缺乏严密,从而使题目陷于僵局 技巧与方法 本题(2)问有三种证法,证法一利用g (x )的单调性;证法二利用绝对值不等式||a |-|b ||≤|a ±b |≤|a |+|b |;而证法三则是整体处理g (x )与f (x )的关系(1)证明 由条件当=1≤x ≤1时,|f (x )|≤1,取x =0得 |c |=|f (0)|≤1,即|c |≤1(2)证法一 依题设|f (0)|≤1而f (0)=c ,所以|c |≤1 当a >0时,g (x )=ax +b 在[-1,1]上是增函数,于是g (-1)≤g (x )≤g (1),(-1≤x ≤1)∵|f (x )|≤1,(-1≤x ≤1),|c |≤1,∴g (1)=a +b =f (1)-c ≤|f (1)|+|c |=2,g (-1)=-a +b =-f (-1)+c ≥-(|f (-2)|+|c |)≥-2,因此得|g (x )|≤2 (-1≤x ≤1);当a <0时,g (x )=ax +b 在[-1,1]上是减函数,于是g (-1)≥g (x )≥g (1),(-1≤x ≤1),∵|f (x )|≤1 (-1≤x ≤1),|c |≤1∴|g (x )|=|f (1)-c |≤|f (1)|+|c |≤2综合以上结果,当-1≤x ≤1时,都有|g (x )|≤2 证法二 ∵|f (x )|≤1(-1≤x ≤1)∴|f (-1)|≤1,|f (1)|≤1,|f (0)|≤1,∵f (x )=ax 2+bx +c ,∴|a -b +c |≤1,|a +b +c |≤1,|c |≤1, 因此,根据绝对值不等式性质得|a -b |=|(a -b +c )-c |≤|a -b +c |+|c |≤2,|a +b |=|(a +b +c )-c |≤|a +b +c |+|c |≤2,∵g (x )=ax +b ,∴|g (±1)|=|±a +b |=|a ±b |≤2,函数g (x )=ax +b 的图象是一条直线,因此|g (x )|在[-1,1]上的最大值只能在区间的端点x =-1或x =1处取得,于是由|g (±1)|≤2得|g (x )|≤2,(-1<x <1))21()21(])21()21([])21()21([)2121(])21()21[()(,)21()21(4)1()1(:22222222--+=+-+--++++=--++--+=+=∴--+=--+=x f x f c x b x a c x b x a x x b x x a b ax x g x x x x x 证法三 当-1≤x ≤1时,有0≤21+x ≤1,-1≤21-x ≤0,∵|f (x )|≤1,(-1≤x ≤1),∴|f )21(+x |≤1,|f (21-x )|≤1; 因此当-1≤x ≤1时,|g (x )|≤|f )21(+x |+|f (21-x )|≤2 (3)解 因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2,即g (1)=a +b =f (1)-f (0)=2 ①∵-1≤f (0)=f (1)-2≤1-2=-1,∴c =f (0)=-1因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),根据二次函数的性质,直线x =0为f (x )的图象的对称轴, 由此得-ab 2<0 ,即b =0 由①得a =2,所以f (x )=2x 2-1例3设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2a 1 (1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图像关于直线x =x 0对称,证明 x 0<21x 解 (1)令F (x )=f (x )-x ,因为x 1,x 2是方程f (x )-x =0的根,所以F (x )=a (x -x 1)(x -x 2) 当x ∈(0,x 1)时,由于x 1<x 2,得(x -x 1)(x -x 2)>0,又a >0,得F (x )=a (x -x 1)(x -x 2)>0,即x <f (x )x 1-f (x )=x 1-[x +F (x )]=x 1-x +a (x 1-x )(x -x 2)=(x 1-x )[1+a (x -x 2)]∵0<x <x 1<x 2<a1,∴x 1-x >0,1+a (x -x 2)=1+ax -ax 2>1-ax 2>0 ∴x 1-f (x )>0,由此得f (x )<x 1 (2)依题意 x 0=-ab 2,因为x 1、x 2是方程f (x )-x =0的两根,即x 1,x 2是方程ax 2+(b -1)x +c =0的根∴x 1+x 2=-ab 1- ∴x 0=-aax ax a x x a a b 2121)(22121-+=-+=,因为ax 2<1, ∴x 0<2211x a ax 学生巩固练习1 定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图像与f (x )的图像重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b )③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a )A ①③B ②④C ①④D ②③2 下列四个命题中 ①a +b ≥2ab ②sin 2x +x 2sin 4≥4 ③设x ,y 都是正数,若y x 91+=1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________3 某公司租地建仓库,每月土地占用费y 1与车库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站__________公里处4 已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1;(2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围 5 某种商品原来定价每件p 元,每月将卖出n 件,假若定价上涨x 成(这里x 成即10x ,0<x ≤10) 每月卖出数量将减少y 成,而售货金额变成原来的 z 倍(1)设y =ax ,其中a 是满足31≤a <1的常数,用a 来表示当售货金额最大时的x 的值; (2)若y =32x ,求使售货金额比原来有所增加的x 的取值范围 6 设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )²f (n ),且当x >0时,0<f (x )<1(1)求证 f (0)=1,且当x <0时,f (x )>1;(2)求证 f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)²f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围 7 已知函数f (x )=1222+++x c bx x (b <0)的值域是[1,3], (1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论;(3)若t ∈R ,求证 lg 57≤F (|t -61|-|t +61|)≤513 参考答案1 解析 由题意f (a )=g (a )>0,f (b )=g (b )>0,且f (a )>f (b ),g (a )>g (b )∴f (b )-f (-a )=f (b )+f (a )=g (a )+g (b )而g (a )-g (-b )=g (a )-g (b )∴g (a )+g (b )-[g (a )-g (b )]=2g (b )>0,∴f (b )-f (-a )>g (a )-g (-b )同理可证 f (a )-f (-b )>g (b )-g (-a )答案 A2 解析 ①②③不满足均值不等式的使用条件“正、定、等”④式 |x -y |=|(x -2)-(y -2)|≤|(x -2)-(y -2)|≤|x -2|+|y -2|<ε+ε=2ε答案④ 3 解析 由已知y 1=x20;y 2=0 8x (x 为仓库与车站距离) 费用之和y =y 1+y 2=0 8x + x 20≥2x x 208.0⋅=8 当且仅当0 8x =x20即x =5时“=”成立答案5公里处 4 证明 (1)设g (x )=f (x )-x =ax 2+(b -1)x +1,且x >0∵x 1<2<x 2<4,∴(x 1-2)(x 2-2)<0,即x 1x 2<2(x 1+x 2)-4,12)42(212)(212)()(2121)(21)11(21221212121210-=++->++-=++-+>-+=---⋅=-=x x x x x x x x x x a a b a b x 于是得(2)解 由方程g (x )=ax 2+(b -1)x +1=0可知x 1²x 2=a1>0,所以x 1,x 2同号 1°若0<x 1<2,则x 2-x 1=2,∴x 2=x 1+2>2, ∴g (2)<0,即4a +2b -1<0① 又(x 2-x 1)2=44)1(22=--a a b ∴2a +1=1)1(2+-b (∵a >0)代入①式得, 21)1(2+-b <3-2b② 解②得b <41 2°若 -2<x 1<0,则x 2=-2+x 1<-2 ∴g (-2)<0,即4a -2b +3<0③ 又2a +1=1)1(2+-b ,代入③式得 21)1(2+-b <2b -1④ 解④得b 47 综上,当0<x 1<2时,b <41,当-2<x 1<0时,b 7 5 解 (1)由题意知某商品定价上涨x 成时,上涨后的定价、每月卖出数量、每月售货金额分别是 p (1+10x )元、n (1-10y )元、npz 元, 因而)10)(10(1001),101()101(y x z y n x p npz -+=∴-⋅+=, 在y =ax 的条件下,z =1001[-a [x -aa )1(5-]2+100+a a 2)1(25-] 由于31≤a <1,则0<aa )1(5-≤10 要使售货金额最大,即使z 值最大,此时x =aa )1(5- (2)由z =1001 (10+x )(10-32x )>1,解得0<x <5 6 (1)证明 令m >0,n =0得 f (m )=f (m )²f (0) ∵f (m )≠0,∴f (0)=1取m =m ,n =-m ,(m <0),得f (0)=f (m )f (-m )∴f (m )=)(1m f -,∵m <0,∴-m >0,∴0<f (-m )<1,∴f (m )>1 (2)证明 任取x 1,x 2∈R ,则f (x 1)-f (x 2)=f (x 1)-f [(x 2-x 1)+x 1]=f (x 1)-f (x 2-x 1)²f (x 1)=f (x 1)[1-f (x 2-x 1)],∵f (x 1)>0,1-f (x 2-x 1)>0,∴f (x 1)>f (x 2),∴函数f (x )在R 上为单调减函数(3)由⎩⎨⎧=+-<+⎩⎨⎧θ==+->+021)(1)2()1()(2222y ax y x f y ax f f y x f 得, 由题意此不等式组无解,数形结合得 1|2|2+a ≥1,解得a 2≤3∴a ∈[-3,3] 7 (1)解 设y =1222+++x c bx x ,则(y -2)x 2-bx +y -c =0 ①∵x ∈R ,∴①的判别式Δ≥0,即 b 2-4(y -2)(y -c )≥0,即4y 2-4(2+c )y +8c +b 2≤0 ②由条件知,不等式②的解集是[1,3]∴1,3是方程4y 2-4(2+c )y +8c +b 2=0的两根⎪⎩⎪⎨⎧+=⨯+=+48312312b c c ∴c =2,b =-2,b =2(舍)(2)任取x 1,x 2∈[-1,1],且x 2>x 1,则x 2-x 1>0,且(x 2-x 1)(1-x 1x 2)>0,∴f (x 2)-f (x 1)=-)1)(1()1)((2)12(122221*********x x x x x x x x x x ++--=+--+>0,∴f (x 2)>f (x 1),lg f (x 2)>lg f (x 1),即F (x 2)>F (x 1)∴F (x )为增函数,31|)61()61(||||,61||61|)3(=+--≤+--=t t u t t u 记 即-31≤u ≤31,根据F (x )的单调性知 F (-31)≤F (u )≤F (31), ∴lg 57≤F (|t -61|-|t +61|)≤lg 513对任意实数t 成立 课前后备注数学中的不等式关系数学是研究空间形式和数量关系的科学,恩格斯在《自然辩证法》一书中指出,数学是辩证的辅助工具和表现形式,数学中蕴含着极为丰富的辩证唯物主义因素,等与不等关系正是该点的生动体现,它们是对立统一的,又是相互联系、相互影响的;等与不等关系是中学数学中最基本的关系等的关系体现了数学的对称美和统一美,不等关系则如同仙苑奇葩呈现出了数学的奇异美不等关系起源于实数的性质,产生了实数的大小关系,简单不等式,不等式的基本性质,如果把简单不等式中的实数抽象为用各种数学符号集成的数学式,不等式发展为一个人丁兴旺的大家族,由简到繁,形式各异如果赋予不等式中变量以特定的值、特定的关系,又产生了重要不等式、均值不等式等不等式是永恒的吗?显然不是,由此又产生了解不等式与证明不等式两个极为重要的问题解不等式即寻求不等式成立时变量应满足的范围或条件,不同类型的不等式又有不同的解法;不等式证明则是推理性问题或探索性问题推理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大多是与自然数n有关的证明问题,常采用观察—归纳—猜想—证明的思路,以数学归纳法完成证明另外,不等式的证明方法还有换元法、放缩法、反证法、构造法等数学科学是一个不可分割的有机整体,它的生命力正是在于各个部分之间的联系不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此不等式又可作为一个工具来解决数学中的其他问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题无一不与不等式有着密切的联系许多问题最终归结为不等式的求解或证明;不等式还可以解决现实世界中反映出来的数学问题不等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程总之,不等式的应用体现了一定的综合性,灵活多样性等与不等形影不离,存在着概念上的亲缘关系,是中学数学中最广泛、最普遍的关系数学的基本特点是应用的广泛性、理论的抽象性和逻辑的严谨性,而不等关系是深刻而生动的体现不等虽没有等的温柔,没有等的和谐,没有等的恰到好处,没有等的天衣无缝,但它如山之挺拔,峰之隽秀,海之宽阔,天之高远,怎能不让人心旷神怡,魂牵梦绕呢?20、题目高中数学复习专题讲座直线方程及其应用高考要求直线是最简单的几何图形,是解析几何最基础的部分,本章的基本概念;基本公式;直线方程的各种形式以及两直线平行、垂直、重合的判定都是解析几何重要的基础内容应达到熟练掌握、灵活运用的程度,线性规划是直线方程一个方面的应用,属教材新增内容,高考中单纯的直线方程问题不难,但将直线方程与其他知识综合的问题是学生比较棘手的重难点归纳1对直线方程中的基本概念,要重点掌握好直线方程的特征值(主要指斜率、截距)等问题;直线平行和垂直的条件;与距离有关的问题等2对称问题是直线方程的一个重要应用,中学里面所涉及到的对称一般都可转化为点关于点或点关于直线的对称中点坐标公式和两条直线垂直的条件是解决对称问题的重要工具3线性规划是直线方程的又一应用线性规划中的可行域,实际上是二元一次不等式(组)表示的平面区域求线性目标函数z=ax+by的最大值或最小值时,设t=ax+by,则此直线往右(或左)平移时,t值随之增大(或减小),要会在可行域中确定最优解4由于一次函数的图象是一条直线,因此有关函数、数列、不等式、复数等代数问题往往借助直线方程进行,考查学生的综合能力及创新能力典型题例示范讲解例1某校一年级为配合素质教育,利用一间教室作为学生绘画成果展览室,为节约经费,他们利用课桌作为展台,将装画的镜框放置桌上,斜靠展出,已知镜框对桌面的倾斜角为α(90°≤α<180°)镜框中,画的上、下边缘与镜框下边缘分别相距a m,b m,(a >b ) 问学生距离镜框下缘多远看画的效果最佳? 命题意图 本题是一个非常实际的数学问题,它不仅考查了直线的有关概念以及对三角知识的综合运用,而且更重要的是考查了把实际问题转化为数学问题的能力 知识依托三角函数的定义,两点连线的斜率公式,不等式法求最值 错解分析 解决本题有几处至关重要,一是建立恰当的坐标系,使问题转化成解析几何问题求解;二是把问题进一步转化成求tan ACB 的最大值 如果坐标系选择不当,或选择求sin ACB 的最大值 都将使问题变得复杂起来 技巧与方法 欲使看画的效果最佳,应使∠ACB 取最大值,欲求角的最值,又需求角的一个三角函数值 解 建立如图所示的直角坐标系,AO 为镜框边,AB 为画的宽度,O 为下边缘上的一点,在x 轴的正半轴上找一点C (x ,0)(x >0),欲使看画的效果最佳,应使∠ACB 取得最大值 由三角函数的定义知 A 、B 两点坐标分别为(a cos α,a sin α)、(b cos α,b sin α),于是直线AC 、BC 的斜率分别为k AC =tan xCA =x a a -ααcos sin ,.cos sin tan xb b xCB k BC -==αα 于是 tan ACB =AC BC AC BC k k k k ⋅+-1ααααcos )(sin )(cos )(sin )(2⋅+-+⋅-=++-⋅-=b a x xab b a x x b a ab x b a 由于∠ACB 为锐角,且x >0,则tan ACB ≤ααcos )(2sin )(b a ab b a +-⋅-, 当且仅当xab =x ,即x =ab 时,等号成立, 此时∠ACB 取最大值,对应的点为C (ab ,0), 因此,学生距离镜框下缘ab cm 处时,视角最大,即看画效果最佳例2预算用2000元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1 5倍,问桌、椅各买多少才行? 命题意图 利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用,本题主要考查找出约束条件与目标函数、准确地描画可行域,再利用图形直观求得满足题设的最优解 知识依托约束条件,目标函数,可行域,最优解 错解分析 解题中应当注意到问题中的桌、椅张数应是自然数这个隐含条件,若从图形直观上得出的最优解不满足题设时,应作出相应地调整,直至满足题设 技巧与方法 先设出桌、椅的变数后,目标函数即为这两个变数之和,再由此在可行域内求出最优解解 设桌椅分别买x ,y 张,把所给的条件表示成不等式组,即约束条件为⎪⎪⎩⎪⎪⎨⎧≥≥≤≥≤+0,05.120002050y x x y x y y x 由⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==+72007200,20002050y x x y y x 解得 ∴A 点的坐标为(7200,7200) 由⎪⎩⎪⎨⎧==⎩⎨⎧==+27525,5.120002050y x x y y x 解得 ∴B 点的坐标为(25,275) 所以满足约束条件的可行域是以A (7200,7200),B (25,275),O (0,0)为顶点的三角形区域(如右图) 由图形直观可知,目标函数z =x +y 在可行域内的最优解为(25,275),但注意到x ∈N ,y ∈N *,故取y =37故有买桌子25张,椅子37张是最好选择例3抛物线有光学性质 由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y 2=2px (p >0) 一光源在点M (441,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P ,折射后又射向抛物线上的点Q ,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l 2x -4y -17=0上的点N ,再折射后又射回点M (如下图所示)(1)设P 、Q 两点坐标分别为(x 1,y 1)、(x 2,y 2),证明 y 1²y 2=-p 2; (2)求抛物线的方程; (3)试判断在抛物线上是否存在一点,使该点与点M 关于PN 所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由 命题意图 对称问题是直线方程的又一个重要应用 本题是一道与物理中的光学知识相结合的综合性题目,考查了学生理解问题、分析问题、解决问题的能力 知识依托 韦达定理,点关于直线对称,直线关于直线对称,直线的点斜式方程,两点式方程 错解分析在证明第(1)问题,注意讨论直线PQ 的斜率不存在时 技巧与方法 点关于直线对称是解决第(2)、第(3)问的关键(1)证明 由抛物线的光学性质及题意知光线PQ 必过抛物线的焦点F (2p ,0),设直线PQ 的方程为y =k (x -2p ) ① 由①式得x =k 1y +2p ,将其代入抛物线方程y 2=2px 中,整理,得y 2-k p 2y -p 2=0,由韦达定理,y 1y 2=-p 2 当直线PQ 的斜率角为90°时,将x =2p 代入抛物线方程,得y =±p ,同样得到y 1²y 2=-p 2(2)解 因为光线QN 经直线l 反射后又射向M 点,所以直线MN 与直线QN 关于直线l 对称,设点M (441,4)关于l 的对称点为M ′(x ′,y ′),则 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+'⨯-+'⨯-=⨯-'-'0172442441212144y x x y 解得⎪⎩⎪⎨⎧-='='1451y x 直线QN 的方程为y =-1,Q 点的纵坐标y 2=-1,由题设P 点的纵坐标y 1=4,且由(1)知 y 1²y 2=-p 2,则4²(-1)=-p 2,得p =2,故所求抛物线方程为y 2=4x(3)解 将y =4代入y 2=4x ,得x =4,故P 点坐标为(4,4)将y =-1代入直线l 的方程为2x -4y -17=0,得x =213, 故N 点坐标为(213,-1) 由P 、N 两点坐标得直线PN 的方程为2x +y -12=0,设M 点关于直线NP 的对称点M 1(x 1,y 1)⎪⎩⎪⎨⎧-==⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+++⨯-=-⨯--14101224244121)2(4414111111y x y x x y 解得则 又M 1(41,-1)的坐标是抛物线方程y 2=4x 的解,故抛物线上存在一点(41,-1)与点M 关于直线PN 对称例3已知|a |<1,|b |<1,|c |<1,求证 abc +2>a +b +c 证明 设线段的方程为y =f (x )=(bc -1)x +2-b -c ,其中|b |<1,|c |<1,|x |<1,且-1<a <1 ∵f (-1)=1-bc +2-b -c =(1-bc )+(1-b )+(1-c )>0f (1)=bc -1+2-b -c =(1-b )(1-c )>0∴线段y =(bc -1)x +2-b -c (-1<x <1)在x 轴上方,这就是说,当|a |<1,|b |<1,|c |<1时,恒有abc +2>a +b +c 学生巩固练习1 设M =120110,1101102002200120012000++=++N ,则M 与N 的大小关系为( )A M >NB M =NC M <ND 无法判断 2 三边均为整数且最大边的长为11的三角形的个数为( ) A 15 B 30 C 36 D 以上都不对3 直线2x -y -4=0上有一点P ,它与两定点A (4,-1),B (3,4)的距离之差最大,则P 点坐标是_________4 自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x -4y +7=0相切,则光线l 所在直线方程为_________5 函数f (θ)=2cos 1sin --θθ的最大值为_________,最小值为_________6 设不等式2x -1>m (x 2-1)对一切满足|m |≤2的值均成立,则x 的范围为_________7 已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点(1)证明 点C 、D 和原点O 在同一直线上 (2)当BC 平行于x 轴时,求点A 的坐标8 设数列{a n }的前n 项和S n =na +n (n -1)b ,(n =1,2,…),a 、b 是常数且b ≠0 (1)证明 {a n }是等差数列(2)证明 以(a n ,nS n-1)为坐标的点P n (n =1,2,…)都落在同一条直线上,并写出此直线的方程(3)设a =1,b =21,C 是以(r ,r )为圆心,r 为半径的圆(r >0),求使得点P 1、P 2、P 3都落在圆C 外时,r 的取值范围 参考答案:1 解析 将问题转化为比较A (-1,-1)与B (102001,102000)及C (102002,102001)连线的斜率大小,因为B 、C 两点的直线方程为y =101x ,点A 在直线的下方,∴k AB >k AC ,即M >N答案 A2 解析 设三角形的另外两边长为x ,y ,则⎪⎩⎪⎨⎧>+≤<≤<11110110y x y x点(x ,y )应在如右图所示区域内当x =1时,y =11;当x =2时,y =10,11;当x =3时,y =9,10,11;当x =4时,y =8,9,10,11;当x =5时,y =7,8,9,10,11以上共有15个,x ,y 对调又有15个,再加上(6,6),(7,7),(8,8),(9,9),(10,10)、(11,11)六组,所以共有36个 答案 C3 解析 找A 关于l 的对称点A ′,A ′B 与直线l 的交点即为所求的P 点 答案P (5,6)4 解析 光线l 所在的直线与圆x 2+y 2-4x -4y +7=0关于x 轴对称的圆相切 答案3x +4y -3=0或4x +3y +3=05 解析 f (θ)=2cos 1sin --θθ表示两点(cos θ,sin θ)与(2,1)连线的斜率答案34 0 6 解析 原不等式变为(x 2-1)m +(1-2x )<0,构造线段f (m )=(x 2-1)m +1-2x ,-2≤m ≤2,则f (-2)<0,且f (2)<0答案213217+<<-x 7 (1)证明 设A 、B 的横坐标分别为x 1、x 2,由题设知x 1>1,x 2>1, 点A (x 1,log 8x 1),B (x 2,log 8x 2)因为A 、B 在过点O 的直线上,所以228118log log x x x x =,又点C 、D 的坐标分别为(x 1,log 2x 1)、(x 2,log 2x 2)由于log 2x 1=3log 8x 1,log 2x 2=3log 8x 2,则228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====由此得k OC =k OD ,即O 、C 、D 在同一直线上(2)解 由BC 平行于x 轴,有log 2x 1=log 8x 2,又log 2x 1=3log 8x 1 ∴x 2=x 13将其代入228118log log x x x x =,得x 13log 8x 1=3x 1log 8x 1, 由于x 1>1知log 8x 1≠0,故x 13=3x 1x 2=3,于是A (3,log 83)9 (1)证明 由条件,得a 1=S 1=a ,当n ≥2时,有a n =S n -S n -1=[na +n (n -1)b ]-[(n -1)a +(n -1)(n -2)b ]=a +2(n -1)b 因此,当n ≥2时,有a n -a n -1=[a +2(n -1)b ]-[a +2(n -2)b ]=2b 所以{a n }是以a 为首项,2b 为公差的等差数列(2)证明 ∵b ≠0,对于n ≥2,有21)1(2)1()1(2)1()11()1(11=--=--+--+=----b n b n a b n a aa b n n na a a S n S n n∴所有的点P n (a n ,nS n -1)(n =1,2,…)都落在通过P 1(a ,a -1)且以21为斜率的直线上 此直线方程为y -(a -1)= 21(x -a ),即x -2y +a -2=0(3)解 当a =1,b =21时,P n 的坐标为(n ,22-n ),使P 1(1,0)、P 2(2, 21)、P 3(3,1)都落在圆C 外的条件是⎪⎪⎩⎪⎪⎨⎧>-+->-+->+-222222222)1()3()21()1()1(r r r r r r r r r 222(1)0 1750 48100 r r r r r ⎧->⎪⎪-+>⎨⎪⎪-+>⎩①即②③由不等式①,得r ≠1 由不等式②,得r <25-2或r >25+2 由不等式③,得r <4-6或r >4+6再注意到r >0,1<25-2<4-6=25+2<4+6 故使P 1、P 2、P 3都落在圆C 外时,r 的取值范围是(0,1)∪(1,25-2)∪(4+6,+∞)课前后备注21、题目 高中数学复习专题讲座曲线的轨迹方程的求法 高考要求求曲线的轨迹方程是解析几何的两个基本问题之一 求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点重难点归纳求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念典型题例示范讲解例1如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程命题意图本题主要考查利用“相关点代入法”求曲线的轨迹方程知识依托 利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程错解分析欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题技巧与方法 对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程解 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR | 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程例2设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线命题意图本题主要考查“参数法”求曲线的轨迹方程 知识依托直线与抛物线的位置关系错解分析当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论 技巧与方法 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a由OM ⊥AB ,得m =-yx由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p = 所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒= 故x =my +4p ,用m =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -∴AB 的方程为2(2)1ky x p k =--,过定点(2,0)N p , 由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点例3某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图 本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力知识依托圆锥曲线的定义,求两曲线的交点错解分析 正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键技巧与方法 研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程 解 设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切建立如图所示的坐标系,并设⊙P 的半径为r ,则|P A |+|PO |=(1+r)+(1 5-r)=2 5∴点P 在以A 、O 为焦点,长轴长2 5的椭圆上,其方程为 3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为(x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+- 故所求圆柱的直径为76cm 例4已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线解 建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0) 设M (x ,y )是轨迹上任意一点则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴)(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0 点M 的轨迹是以(-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆 学生巩固练习1 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A 圆B 椭圆C 双曲线的一支D 抛物线2 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A 14922=+y x B 14922=+x y C 14922=-y x D 14922=-x y 3 △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________4 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________ 5 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程6 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程7 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q(1)求直线A 1P 与A 2Q 交点M 的轨迹方程; (2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率8 已知椭圆2222b y a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l的对称点为Q ,F 2Q 交l 于点R(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值 参考答案1 解析 ∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆 答案 A2 解析 设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得 答案 C3 解析 由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=- 答案)4(1316162222ax a y a x >=-。