函数与三角形综合类型题教案(带答案)

合集下载

三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。

根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。

根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。

根据正切的定义,$\tan A=\frac{a}{b}$。

根据余切的定义,$\cotA=\frac{b}{a}$。

根据正割的定义,$\sec A=\frac{c}{a}$。

根据余割的定义,$\csc A=\frac{c}{b}$。

2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。

2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。

4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。

5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。

6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。

2020年高考数学(文)二轮专项复习专题03 三角函数与解三角形含答案

2020年高考数学(文)二轮专项复习专题03 三角函数与解三角形含答案

专题03 三角函数与解三角形§3-1 三角函数的概念【知识要点】1.角扩充到任意角:通过旋转和弧度制使得三角函数成为以实数为自变量的函数.2.弧度rad 以及度与弧度的互化:οοο3.57)π180(rad 1,π180;≈===r l α. 3.三角函数的定义:在平面直角坐标系中,任意角α 的顶点在原点,始边在x 轴正半轴上,终边上任意一点P (x ,y ),|OP |=r (r ≠0),则;cos ;sin r x r y ==αα⋅=xy αtan5.三角函数线:正弦线,余弦线OM ,正切线6.同角三角函数基本关系式:⋅==+αααααcos sin tan ,1cos sin 22 7.诱导公式:任意角α 的三角函数与角ααα±±-2π,π,等的三角函数之间的关系,可以统一为“k ·2π±α ”形式,记忆规律为“将α 看作锐角,符号看象限,(函数名)奇变偶不变”.【复习要求】1.会用弧度表示角的大小,能进行弧度制与角度制的互化;会表示终边相同的角;会象限角的表示方法. 2.根据三角函数定义,熟练掌握三角函数在各个象限中的符号,牢记特殊角的三角函数值, 3.会根据三角函数定义,求任意角的三个三角函数值. 4.理解并熟练掌握同角三角函数关系式和诱导公式. 【例题分析】例1 (1)已知角α 的终边经过点A (-1,-2),求sin α ,cos α ,tan α 的值;(2)设角α 的终边上一点),3(y P -,且1312sin =α,求y 的值和tan α . 解:(1)5||==OA r ,所以.2tan ,55cos ,55252sin ==-==-=-==x y r x r y ααα(2),13123sin ,3||22=+=+==y y y OP r α 得⎪⎩⎪⎨⎧=+>13123022y y y ,解得.3236tan ,6-=-===x y y α 【评析】利用三角函数的定义求某一角三角函数值应熟练掌握,同时应关注其中变量的符号.例2 (1)判断下列各式的符号:①sin330°cos(-260°)tan225° ②sin(-3)cos4 (2)已知cos θ <0且tan θ <0,那么角θ 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 (3)已知α 是第二象限角,求角αα2,2的终边所处的位置.解:如图3-1-1,图3-1-2(1)①330°是第四象限角,sin330°<0;-260°是第二象限角,cos(-260°)<0;225°是第三象限角,tan225°>0;所以sin330°cos(-260°)tan225°>0.②-3是第三象限角,sin(-3)<0;5是第四象限角,cos5>0,所以sin(-3)cos5<0或:-3≈-3×57.3°=-171.9°,为第三象限角;5≈5×57.3°=286.5°,是第四象限角【评析】角的终边所处的象限可以通过在坐标系中逆时针、顺时针两个方向旋转进行判断,图3-1-1,图3-1-2两个坐标系应予以重视.(2)cos θ <0,所以角θ 终边在第二或第三象限或在x 轴负半轴上tan θ <0,所以角θ 终边在第二或第四象限中,所以角θ 终边在第二象限中,选B.【评析】角的终边在各个象限中时角的函数值的符号应熟练掌握,(3)分析:容易误认为2α是第一象限角,其错误原因为认为第二象限角的范围是),π,2π(α 是第二象限角,所以2k π+2π<α <2k π+π,(k ∈Z ),所以,2ππ2π4ππ+<<+k k )(Z ∈k 如下图3-1-3,可得2α是第一象限或第三象限角,又4k π+π<2α <4k π+2π,2α 是第三象限或第四象限角或终边落在y 轴负半轴的角.【评析】处理角的象限问题常用方法(1)利用旋转成角,结合图3-1-1,图3-1-2,从角度制和弧度制两个角度处理; (2)遇到弧度制问题也可以由)π180(rad 1=°≈57.3°化为角度处理; (3)在考虑角的终边位置时,应注意考虑终边在坐标轴上的情况. (4)对于象限角和轴上角的表示方法应很熟练. 如第一象限角:)(,2ππ2π2Z ∈+<<k k k α,注意防止2π0<<α的错误写法.例3 (1)已知tan α =3,且α 为第三象限角,求sin α ,cos α 的值; (2)已知31cos -=α,求sin α +tan α 的值;(3)已知tan α =-2,求值:①ααααcos sin cos sin 2-+;②sin 2α +sin α cos α .解:(1)因为α 为第三象限角,所以sin α <0,cos α <0⎪⎩⎪⎨⎧=+=1cos sin 3cos sin 22αααα,得到.1010cos 10103sin ⎪⎪⎩⎪⎪⎨⎧-=-=αα (2)因为031cos <-=α,且不等于-1,所以α 为第二或第三象限角, 当α 为第二象限角时,sin α >0,,22cos sin tan ,322cos 1sin 2-===-=ααααα 所以⋅-=+324tan sin αα 当α 为第三象限角时,sin α <0,,22cos sin tan ,322cos 1sin 2==-=--=ααααα 所以⋅=+324tan sin αα综上所述:当α 为第二象限角时,324tan sin -=+αα,当α 为第三象限角时,⋅=+324tan sin αα 【评析】已知一个角的某一个三角函数值,求其余的三角函数值的步骤:(1)先定所给角的范围:根据所给角的函数值的符号进行判断(2)利用同角三角函数的基本关系式,求其余的三角函数值(注意所求函数值的符号) (3)当角的范围不确定时,应对角的范围进行分类讨论(3)(法一):因为tan α =-2,所以.cos 2sin ,2cos sin αααα-=-= ①原式1cos 3cos 3cos cos 2cos cos 4=--=--+-=αααααα,②原式=(-2cos α )2+(-2cos α )cos α =2cos 2α , 因为⎩⎨⎧=+-=1cos sin cos 2sin 22αααα,得到51cos 2=α,所以⋅=+52cos sin sin 2ααα (法二):①原式,112141tan 1tan 21cos sin 1cos sin 2=--+-=-+=-+=αααααα②原式⋅=+-=++=++=5214241tan tan tan cos sin cos sin sin 22222αααααααα 【评析】已知一个角的正切值,求含正弦、余弦的齐次式的值:(1)可以利用αααcos sin tan =将切化弦,使得问题得以解决; (2)1的灵活运用,也可以利用sin 2α +cos 2α =1,αααcos sin tan =,将弦化为切.例4 求值:(1)tan2010°=______; (2))6π19sin(-=______; (3)⋅+---+-)2πcos()π3sin()2π3sin()πcos()π2sin(ααααα解:(1)tan2010°=tan(1800°+210°)=tan210°=tan(180°+30°)=3330tan =ο (2)216πsin )6ππsin()6ππ3sin(619πsin )6π19sin(==+-=+-=-=-或:216πsin )6ππsin()6ππ3sin()6π19sin(==--=--=-【评析】“将α 看做锐角,符号看象限,(函数名)奇变偶不变”,6π2π26ππ-⨯-=--,可以看出是2π的-2倍(偶数倍),借助图3-1-2看出6ππ--为第二象限角,正弦值为正.(3)原式)2πcos()πsin()]2π(πsin[)cos (sin ααααα---+--=⋅⋅⋅⋅-=-=--=αααααααααsin 1sin cos cos sin sin )2πsin(cos ·sin【分析】αα-⨯=-2π32π3,将α 看做锐角,借助图3-1-2看出α-2π3为第三象限角,正弦值为负,2π的3倍(奇数倍),改变函数名,变为余弦,所以可得ααcos )2π3sin(-=-,同理可得ααsin )2πcos(=+-,所以原式αααααααcsc sin 1sin sin cos )cos (sin -=-=---=⋅⋅⋅.【评析】诱导公式重在理解它的本质规律,对于“将α 看做锐角,符号看象限,(函数名)奇变偶不变”要灵活运用,否则容易陷入公式的包围,给诱导公式的应用带来麻烦.例5 已知角α 的终边经过点)5πsin ,5πcos (-,则α 的值为( ) A .5π- B .5π4 C )(,π5πZ ∈+-k k D .)(,π25π4Z ∈+k k解:因为05πsin ,05πcos >>,所以点)5πsin ,5πcos (-在第二象限中,由三角函数定义得,5πtan 5πcos 5πsin tan -=-==x y α,因为角α 的终边在第二象限, 所以)π25π4tan(5π4tan )5ππtan(tan k +==-=α,所以,)(,π25π4Z ∈+=k k α,选D .例6 化简下列各式:(1)若θ 为第四象限角,化简θθ2sin 1tan - (2)化简θθ2tan 1cos +(3)化简)4πcos(4sin 21--解:(1)原式=|cos |cos sin |cos |tan cos tan 2θθθθθθθ===, 因为θ 为第四象限角,所以cos θ >0,原式=θθθθsin cos cos sin ==⋅,(2)原式=⋅==+=+=|cos |cos cos 1cos cos sin cos cos cos sin 1cos 222222θθθθθθθθθθθ当θ 为第二、三象限角或终边在x 轴负半轴上时,cos θ <0,所以原式1cos cos -=-=θθ,当θ 为第一、四象限角或终边在x 轴正半轴上时,cos θ >0,所以原式1cos cos ==θθ.(3)原式|4cos 4sin |)4cos 4(sin 4cos 4sin 212+=+=+=.4弧度属于第三象限角,所以sin4<0,cos4<0, 所以原式=-(sin4+cos4)=-sin4-cos4.【评析】利用同角三角函数关系式化简的基本原则和方法:(1)函数名称有弦有切:切化弦;(2)分式化简:分式化整式;(3)根式化简:无理化有理(被开方式凑平方),运用||2x x =,注意对符号的分析讨论;(4)注意公式(sin α ±cos α )2=1±2sin α cos α =1±sin2α 的应用.例7 扇形的周长为定值L ,问它的圆心角θ (0<θ <π)取何值时,扇形的面积S 最大?并求出最大值. 解:设扇形的半径为)20(Lr r <<,则周长L =r ·θ +2r (0<θ <π) 所以44214421)2(2121ππ2,22222222++=++=+==⋅=+=θθθθθθθθθθL L L r r S L r . 因为844244=+⨯≥++θθθθ,当且仅当θθ4=,即θ =2∈(0,π)时等号成立.此时16812122L L S =⨯≤,所以,当θ =2时,S 的最大值为162L .练习3-1一、选择题1.已知32cos -=α,角α 终边上一点P (-2,t ),则t 的值为( ) A .5 B .5± C .55 D .55±2.“tan α =1”是“Z ∈+=k k ,4ππ2α”的( )A .充分而不必要条件B .必要不而充分条件C .充要条件D .既不充分也不必要条件3.已知点P (sin α -cos α ,tan α )在第一象限,则在[0,2π]上角α 的取值范围是( )A .)4π5,π()4π3,2π(Y B .)4π5,π()2π,4π(YC .)2π3,4π5()4π3,2π(YD .)π,4π3()2π,4π(Y4.化简=+οο170cos 10sin 21( ) A .sin10°+cos10° B .sin10°-cos10° C .cos10°-sin10°D .-sin10°-cos10°二、填空题5.已知角α ,β 满足关系2π0;<<<βα,则α -β 的取值范围是______. 6.扇形的周长为16,圆心角为2弧度,则扇形的面积为______.7.若2π3π,sin <<=ααm ,则tan(π-α )=______. 8.已知:2π4π,81cos sin <<=ααα,则cos α -sin α =______.三、解答题9.已知tan α =-2,且cos(π+α )<0,求(1)sin α +cos α 的值 (2)θθ2cos sin 22--的值10.已知21tan =α,求值: (1)ααααcos sin cos 2sin -+; (2)cos 2α -2sin α cos α .11.化简ααααααααtan 1tan cos sin ]π)1cos[(]π)1sin[()πcos()πsin(2+++++++-⋅k k k k§3-2 三角变换【知识要点】1.两角和与差的正弦、余弦、正切公式sin(α +β )=sin α cos β +cos α sin β ;sin(α -β )=sin α cos β -cos α sin β ; cos(α +β )=cos α cos β -sin α sin β ;cos(α -β )=cos α cos β +sin α sin β ;⋅+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(;tan tan 1tan tan )tan(2.正弦、余弦、正切的二倍角公式sin2α =2sin α cos α :cos2α =cos 2α -sin 2α =1-2sin 2α =2cos 2α -1;⋅-=ααα2tan 1tan 22tan 【复习要求】1.牢记两角和、差、倍的正弦、余弦、正切公式,并熟练应用; 2.掌握三角变换的通法和一般规律; 3.熟练掌握三角函数求值问题. 【例题分析】例1 (1)求值sin75°=______;(2)设54sin ),π,2π(=∈αα,则=+)4πcos(α______; (3)已知角2α的终边经过点(-1,-2),则)4πtan(+α的值为______;(4)求值=+-οο15tan 115tan 1______.解:(1)=︒︒+︒︒=︒+︒=︒30sin 45cos 30cos 45sin )3045sin(75sin 222322+⨯21⨯426+=. (2)因为53cos ,54sin ),π,2π(-==∈ααα所以, 1027)5453(22sin 22cos 22)4πcos(-=--=-=+ααα(3)由三角函数定义得,342tan 12tan2tan ,22tan2-=-==αααα, 所以71tan 1tan 1tan 4πtan 14πtantan )4πtan(-=-+=-+=+ααααα. (4)3330tan )1545tan(15tan 45tan 115tan 45tan 15tan 115tan 1=︒=︒-︒=︒︒+︒-︒=︒+︒-⋅==-=+-=+-3330tan )1545tan(15tan 45tan 115tan 45tan 15tan 115tan 1οοοοοοοοo【评析】两角的和、差、二倍等基本三角公式应该熟练掌握,灵活运用,这是处理三角问题尤其是三角变换的基础和核心.注意αααtan 1tan 1)4πtan(-+=+和αααtan 1tan 1)4πtan(+-=-运用. 例2 求值: (1)=-12πsin 12πcos3______; (2)cos43°cos77°+sin43°cos167°=______; (3)=++οοο37tan 23tan 337tan 23tan o______. 解:(1)原式)12πsin 3πcos 12πcos 3π(sin 2)12πsin 2112πcos 23(2-=-= 24πsin 2)12π3πsin(2==-=.【评析】辅助角公式:,cos ),sin(cos sin 2222ba a xb a x b x a +=++=+ϕϕ⋅+=22sin b a b ϕ应熟练掌握,另外本题还可变形为=-)12πsin 2112πcos 23(2 -12πcos 6π(cos 2.24πcos 2)12π6πcos(2)12πsin 6πsin ==+=(2)分析所给的角有如下关系:77°+43°=120°,167°=90°+77°,原式=cos43°cos77°+sin43°cos(90°+77°)=cos43°cos77°-sin43°sin77°=cos(43°+77°)=cos120°=⋅-21 (3)分析所给的角有如下关系:37°+23°=60°,函数名均为正切,而且出现两角正切的和tan a +tan β 与两角正切的积tan α tan β ,所有均指向公式⋅-+=+βαβαβαtan tan 1tan tan )tan(∵,337tan 23tan 137tan 23tan )3723tan(60tan =︒︒-︒+︒=+=οοο∴,37tan 23tan 3337tan 23tan οοοο-=+∴337tan 23tan 337tan 23tan =++οοοo .【评析】三角变换的一般规律:看角的关系、看函数名称、看运算结构.以上题目是给角求值问题,应首看角的关系:先从所给角的关系入手,观察所给角的和、差、倍是否为特殊角,然后看包含的函数名称,以及所给三角式的结构,结合三角公式,找到题目的突破口.公式βαβαβαtan tan 1tan tan )tan(-+=+的变形tan α+tan β =tan(α +β )(1-tan α tan β )应予以灵活运用.例3 41)tan(,52)tan(=-=+βαβα,则tan2α =______; (2)已知1312)4πsin(,53)sin(),π,4π3(,=--=+∈ββαβα,求)4πcos(+α的值.解:(1)分析所给的两个已知角α +β ,α -β 和所求的角2α 之间有关系(α +β )+(α -β )=2α ,=-++=)]()tan[(2tan ββa a a 1813415214152)tan()tan(1)tan()tan(=⨯-+=-+--++βαβαβαβα,(2)∵)π,4π3(,∈βα,∴)43,2π(4π),π2,23π(π∈-∈+ββα,又∵53)sin(-=+βα,∴54)cos(=+βα;∵1312)4πsin(=-β,∴135)4πcos(-=-β.)4πsin()sin()4πcos()cos()]4π()cos[()4πcos(-++-+=--+=+ββαββαββαα65561312)53()135(54-=⨯-+-⨯=. 【评析】此类题目重在考察所给已知角与所求角之间的运算关系,主要是指看两角之间的和、差、倍的关系,如αββαααββα2)(,4π)4π()(,+-=+=--+++=)(βα)(βα-等,找到它们的关系可以简化运算,同时在求三角函数值时应关注函数值的符号.例4 如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角α ,β ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为552,102.(Ⅰ)求tan(α +β )的值; (Ⅱ)求α +2β 的值.解:由三角函数定义可得552cos ,102cos ==βα, 又因为α ,β 为锐角,所以55sin ,1027sin ==βα,因此tan α =7,21tan =β (Ⅰ)3tan tan 1tan tan )tan(-=-+=+βαβαβα;(Ⅱ) 34tan 1tan 22tan 2=-=βββ,所以12tan tan 12tan tan )2tan(-=-+=+βαβαβα, ∵α ,β 为锐角,∴4π32,2π320=+∴<+<βαβα 【评析】将三角函数的定义、两角和的正切、二倍角的正切公式结合在一起进行考查,要求基础知识掌握牢固,灵活运用;根据三角函数值求角,注意所求角的取值范围.例5 化简(1)12cos2sin22sin 22cos 2-+αααα;(2).2sin 3)4πcos()4πcos(2x x x +-+解:(1)原式⋅+-=--=--=-=)4πsin(2sin cos cos sin sin cos cos sin 2cos 22αααααααααα (2)法一:原式x x x x x 2sin 3)sin 22cos 22)(sin 22cos 22(2++-= x x x 2sin 3sin cos 22+-=⋅+=+=+=)6π2sin(2)2sin 232cos 21(22sin 32cos x x x x x法二:,2π)4π()4π(=--+x x 原式x x x 2sin 3)4πcos()]4π(2πcos[2+--+=x x x x x 2sin 3)2π2sin(2sin 3)4πcos()4πsin(2+--=+---=⋅+=+=)6π2sin(22sin 32cos x x x【评析】在进行三角变换时,应从三个角度:角的关系、函数的名称、所给运算式的结构全面入手,注意二倍角的变式(降幂升角)和辅助角公式的应用,此类变换是处理三角问题的基础.例6 (1)已知α 为第二象限角,且415sin =α,求12cos 2sin )4πsin(+++ααα的值. (2)已知323cos sin 32cos 62-=-x x x ,求sin2x 的值. 解:(1)因为α 为第二象限角,且415sin =α,所以41cos -=α, 原式.2cos 42)cos (sin cos 2)cos (sin 221)1cos 2(cos sin 2)cos (sin 222-==++=+-++=ααααααααααα 【评析】此类题目为给值求值问题,从分析已知和所求的三角式关系入手,如角的关系,另一个特征是往往先对所求的三角式进行整理化简,可降低运算量.(2)因为32sin 32cos 32sin 322cos 16+-=-+⋅x x x x3233)6π2cos(323)2sin 212cos 23(32-=++=+-=x x x 所以0)6π2sin(,1)6π2cos(=+-=+x x 216πsin )6π2cos(6πcos )6π2sin(]6π)6π2sin[(2sin =+-+=-+=x x x x【评析】在进行三角变换时,应从三个角度:角的关系、函数的名称、所给运算式的结构全面入手,注意二倍角的变式(降幂升角)22cos 1sin ,22cos 1cos 22αααα-=+=和辅助角公式的应用,此类变换是处理三角问题的基础,因为处理三角函数图象性质问题时往往先进行三角变换.练习3-2一、选择题1.已知53sin ),π,2π(=∈αα,则)4πtan(+α等于( ) A .71 B .7 C .71-D .-72.cos24°cos54°-sin24°cos144°=( ) A .23-B .21 C .23 D .21-3.=-o30sin 1( ) A .sin15°-cos15° B .sin15°+cos15° C .-sin15°-cos15° D .cos15°-sin15°4.若22)4πsin(2cos -=-αα,则cos α +sin α 的值为( )A .27-B .21-C .21 D .27 二、填空题 5.若53)2πsin(=+θ,则cos2θ =______. 6.=-οο10cos 310sin 1______.7.若53)cos(,51)cos(=-=+βαβα,则tan α tan β =______. 8.已知31tan -=α,则=+-ααα2cos 1cos 2sin 2______. 三、解答题 9.证明⋅=++2tan cos 1cos .2cos 12sin ααααα10.已知α 为第四象限角,且54sin -=α,求ααcos )4π2sin(21--的值.11.已知α 为第三象限角,且33cos sin =-αα. (1)求sin α +cos α 的值;(2)求αααααcos 82cos 112cos2sin82sin 522-++的值.§3-3 三角函数【知识要点】12.三角函数图象是研究三角函数的有效工具,应熟练掌握三角函数的基本作图方法.会用“五点法”画正弦函数、余弦函数和函数y =A sin(ω x +ϕ)(A >0,ω >0)的简图.3.三角函数是描述周期函数的重要函数模型,通过三角函数体会函数的周期性.函数y =A sin(ω x +ϕ)(ω ≠0)的最小正周期:||π2ω=T ;y =A tan(ω x +ϕ)(ω ≠0)的最小正周期:||πω=T .同时应明确三角函数与周期函数是两个不同的概念,带三角函数符号的函数不一定是周期函数,周期函数不一定带三角函数符号.【复习要求】1.掌握三角函数y =sin x ,y =cos x ,y =tan x 的图象性质:定义域、值域(最值)、单调性、周期性、奇偶性、对称性等.2.会用五点法画出函数y =sin x ,y =cos x ,y =A sin(ω x +ϕ)(A >0,ω >0)的简图,掌握图象的变换方法,并能解决相关图象性质的问题.3.本节内容应与三角恒等变换相结合,通过变换,整理出三角函数的解析式,注意使用换元法,转化为最基本的三个三角函数y =sin x ,y =cos x ,y =tan x ,结合三角函数图象,综合考察三角函数性质 【例题分析】例1 求下列函数的定义域(1)xxy cos 2cos 1+=;(2)x y 2sin =.解:(1)cos x ≠0,定义域为},2ππ|{Z ∈+≠k k x x (2)sin2x ≥0,由正弦函数y =sin x 图象(或利用在各象限中和轴上角的正弦函数值的符号可得终边在第一二象限,x 轴,y 轴正半轴上) 可得2k π≤2x ≤2k π+π, 定义域为},2πππ|{Z ∈+≤≤k k x k x例2 求下列函数的最小正周期 (1))23πsin(x y -=;(2))4π2πtan(+=x y ;x y 2cos )3(2=; (4)y =2sin 2x +2sin x cos x ;(5)y =|sin x |.解:(1)π|2|π2=-=T .(2)22ππ==T .(3)214cos 2124cos 1+=+=x x y ,所以2π=T .(4)1)4π2sin(212cos 2sin 2sin 22cos 12+-=+-=+-⨯=x x x x x y ,所以T =π.(5)y =|sin x |的图象为下图,可得,T =π.【评析】(1)求三角函数的周期时,通常利用二倍角公式(降幂升角)和辅助角公式先将函数解析式进行化简,然后用||π2ω=T (正余弦)或||πω=T (正切)求最小正周期. (2)对于含绝对值的三角函数周期问题,可通过函数图象来解决周期问题.例3 (1)已知函数f (x )=(1+cos2x )sin 2x ,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 (2)若函数f (x )=2sin(2x +ϕ)为R 上的奇函数,则ϕ=______. (3)函数)2π2π(lncos <<-=x x y 的图象( )解:(1),,44cos 12sin 21)cos sin 2(21sin cos 2)(2222R ∈-====x xx x x x x x f 周期为2π,偶函数,选D (2)f (x )为奇函数,f (-x )=-f (x ),所以2sin(-2x +ϕ)=-2sin(2x +ϕ)对x ∈R 恒成立,即sin ϕcos2x -cos ϕsin2x =-sin2x cos ϕ-cos2x sin ϕ, 所以2sin ϕcos2x =0对x ∈R 恒成立,即sin ϕ=0,所以ϕ=k π,k ∈Z .【评析】三角函数的奇偶性问题可以通过奇偶性定义以及与诱导公式结合加以解决.如在本题(2)中除了使用奇偶性的定义之外,还可以从公式sin(x +π)=-sin x ,sin(x +2π)=sin x 得到当ϕ=2k π+π或ϕ=2k π+π,k ∈Z ,即ϕ=k π,k ∈Z 时,f (x )=2sin(2x +ϕ)可以化为f (x )=sin x 或f (x )=-sin x ,f (x )为奇函数.(3)分析:首先考虑奇偶性,f (-x )=lncos(-x )=lncos x =f (x ),为偶函数,排除掉B ,D 选项 考虑(0,2π)上的函数值,因为0<cos x <1,所以lncos x <0,应选A 【评析】处理函数图象,多从函数的定义域,值域,奇偶性,单调性等方面综合考虑.例4 求下列函数的单调增区间(1))3π21cos(-=x y ;(2) ]0,π[),6π2sin(2-∈+=x x y ; (3) x x y 2sin 32cos -=;(4))23πsin(2x y -=解:(1)y =cos x 的增区间为[2k π+π,2k π+2π],k ∈Z ,由π2π23π21ππ2+≤-≤+k x k 可得3π14π43π8π4+≤≤+k x k )3π21cos(-=x y 的增区间为Z ∈++k k k ],3π14π4,3π8π4[,(2)先求出函数)6π2sin(2+=x y 的增区间Z ∈+-k k k ],6ππ,3ππ[然后与区间[-π,0]取交集得到该函数的增区间为]6π5,π[--和]0,3π[-,(3))3π2cos(2)2sin 232cos 21(2+=-=x x x y ,转化为问题(1),增区间为 Z ∈++k k k ],6π5π,3ππ[(4)原函数变为)3π2sin(2--=x y ,需求函数)3π2sin(-=x y 的减区间, 2π3π23π22ππ2+≤-≤+k x k ,得12π11π12π5π+≤≤+k x k , )23πsin(2x y -=的增区间为.],12π11π,12π5π[Z ∈++k k k【评析】处理形如y =A sin(ω x +ϕ)+k ,(ω <0)的函数单调性时,可以利用诱导公式将x 的分数化正,然后再求相应的单调区间.求三角函数单调区间的一般方法:(1)利用三角变换将解析式化为只含有一个函数的解析式,利用换元法转化到基本三角函数的单调性问题. (2)对于给定区间上的单调性问题,可采用问题(2)中的方法,求出所有的单调增区间,然后与给定的区间取交集即可.例5 求下列函数的值域(1)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合(2))3π2,6π(,sin 2-∈=x x y (3) )3π,2π(),3π2cos(2-∈+=x x y (4)y =cos2x -2sin x解:(1)当Z ∈+=+k k x ,ππ26π21时,1)6π21cos(-=+x ,函数的最大值为3,此时x 的取值集合为},3π5π4|{Z ∈+=k k x x(2)结合正弦函数图象得:当)3π2,6π(-∈x 时,1sin 21≤<-x该函数的值域为(-1,2](3)分析:利用换元法,转化为题(2)的形式.)6π,3π(),3π2cos(2-∈+=x x y ,,3π23π23π),6π,3π(<+<-∴-∈x x Θ设3π2+=x t ,则原函数变为3π23π,cos 2<<-=t t y ,结合余弦函数图象得:1cos 21≤<-t ,所以函数的值域为(-1,2].(4)y =-2sin 2x -2sin x +1,设t =sin x ,则函数变为y =-2t 2-2t +1,t ∈[-1,1], 因为⋅++-=23)21(22t y 结合二次函数图象得,当t =1时,函数最小值为-3,当21-=t 时,函数最大值为23,所以函数的值域为].23,3[-【评析】处理三角函数值域(最值)的常用方法: (1)转化为只含有一个三角函数名的形式,如y =A sin(ω x +ϕ)+k ,y =A cos(ω x +ϕ)+k ,y =A tan(ω x +ϕ)+k 等,利用换元法,结合三角函数图象进行处理. (2)转化为二次型:如A sin 2x +B sin x +C ,A cos 2x +B cos x +C 形式,结合一元二次函数的图象性质求值域. 例6 函数y =sin(ω x +ϕ)的图象(部分)如图所示,则ω 和ϕ的取值是( )A .3π,1==ϕω B .3π,1-==ϕω C .6π,21==ϕω D .6π,21-==ϕω解:π)3π(3π24=--=T ,即ωπ2π4==T ,所以21=ω, 当3π-=x 时,0])3π(21sin[=+-⨯ω,所以Z ∈+=k k ,6ππω,选C例7 (1)将函数x y 21sin =的图象如何变换可得到函数)6π21sin(+=x y 的图象(2)已知函数y =sin x 的图象,将它怎样变换,可得到函数)3π2sin(2-=x y 的图象解:(1)x y 21sin =−−−−−−−−→−个单位图象向左平移3π)6π21sin()3π(21sin +=+=x x y (2)法一:y =sin x −−−−−−−−→−个单位图象向右平移3π)3πsin(-=x y −−−−−−−−−−−−−−−→−倍横坐标变为原来图象上点的纵坐标不变21,)3π2sin(-=x y−−−−−−−−−−−−−−−→−倍纵坐标变为原来图象上点的横坐标不变2,)3π2sin(2-=x y法二:y =sin x −−−−−−−−−−−−−−→−倍横坐标变为原来图象上点的纵坐标不变21,x y 2sin = −−−−−−−−→−个单位图象向右平移6π)6π(2sin -=x y−−−−−−−−−−−−−−−→−倍纵坐标变为原来图象上点的横坐标不变2,)3π2sin(2-=x y【评析】由y =sin x 的图象变换为y =A cos(ω x +ϕ)(ω >0)的图象时,特别要注意伸缩变换和横向平移的先后顺序不同,其横向平移过程中左右平移的距离不同.例8 (1)函数)3π21sin(2-=x y 的一条对称轴方程为( ) A .3π4-=x B .6π5-=x C .3π-=x D .3π2=x (2)函数)3π2cos(-=x y 的对称轴方程和对称中心的坐标解:(1)法一:)3π21sin(2-=x y 的对称轴为Z ∈+=-k k x ,2ππ3π21, 即Z ∈+=k k x ,3π5π2,当k =-1时,3π-=x ,选C法二:将四个选项依次代入)3π21sin(2-=x y 中,寻找使得函数取得最小值或最大值的选项当3π-=x 时,22πsin 2)3π6πsin(2-=-=--=y ,选C (2) )3π2cos(-=x y 的对称轴为Z ∈=-k k x ,π3π2,即Z ∈+=k k x ,6π2π对称中心:,,2ππ3π2Z ∈+=-k k x 此时Z ∈+=k k x ,12π52π所以对称中心的坐标为Z ∈+k k ),0,12π52π(【评析】正余弦函数的对称轴经过它的函数图象的最高点或最低点,对称中心是正余弦函数图象与x 轴的交点,处理选择题时可以灵活运用.例9 已知函数)0(),2πsin(sin 3,sin )(2>++=ωωωωx x x x f 的最小正周期为π. (1)求ω 的值. (2)求f (x )在区间]3π2,0[上的值域. (3)画出函数y =2f (x )-1在一个周期[0,π]上的简图.(4)若直线y =a 与(3)中图象有2个不同的交点,求实数a 的取值范围. 解:(1)x x xx f ωωωcos sin 322cos 1)(+-=21)6π2sin(212cos 21sin 23+-=+-=x x x ωωω 因为函数f (x )的最小正周期为π,且ω >0,所以π2π2=ω,解得ω =1 (2)由(1)得21)6π2sin()(+-=x x f ,因为3π20≤≤x ,所以6π76π26π≤-≤-x ,结合正弦函数图象,得1)6π2sin(21≤-≤-x因此2321)6π2sin(0≤+-≤x ,即f (x )的取值范围为]23,0[(3)由(1)得)6π2sin(21)(2-=-=x x f y(4)由图象可得,-2<a <2且a ≠-1.【评析】本节内容应与三角恒等变换相结合,利用降幂升角公式和辅助角公式等三角公式化简三角函数解析式,整理、变形为只含有一个函数名的解析式,如y =A sin(ω x +ϕ)(ω >0)或y =A cos(ω x +ϕ)(ω >0)的形式,利用换元法,结合y =sin x 、y =cos x 的图象,再研究它的各种性质,如求函数的周期,单调性,值域等问题,这是处理三角函数问题的基本方法.练习3-3一、选择题1.设函数),2π2sin()(-=x x f x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 2.把函数y =sin x (x ∈R )的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ) A .R ∈-=x x y ),3π2sin( B .R ∈+=x x y ),6π2sin(C .R ∈+=x x y ),3π2sin(D .R ∈+=x x y ),32π2sin(3.函数)3π2sin(+=x y 的图象( )A .关于点(3π,0)对称B .关于直线4π=x 对称C .关于点(4π,0)对称D .关于直线3π=x 对称4.函数y =tan x +sin x -|tan x -sin x |在区间)2π3,2π(内的图象大致是( )二、填空题5.函数)2πsin(sin 3)(x x x f ++=的最大值是______. 6.函数)]1(2πcos[)2πcos(-=x x y 的最小正周期为______.7.函数)2π0,0)(sin(<<>+=ϕωϕωx y 的图象的一部分如图所示,则该函数的解析式为y =______.8.函数y =cos2x +cos x 的值域为______. 三、解答题9.已知函数f (x )=2cos x (sin x -cos x )+1,x ∈R . (Ⅰ)求函数f (x )的对称轴的方程; (Ⅱ)求函数f (x )的单调减区间. 10.已知函数.34sin 324cos 4sin2)(2+-=xx x x f (Ⅰ)求函数f (x )的最小正周期及最值; (Ⅱ)令)3π()(+=x f x g ,判断函数g (x )的奇偶性,并说明理由.11.已知R ∈>++=a a x x x x f ,0(,cos sin 32cos 2)(2ωωωω,a 为常数),且满足条件f (x 1)=f (x 2)=0的|x 1-x 2|的最小值为2π. (Ⅰ)求ω 的值; (Ⅱ)若f (x )在]3π,6π[-上的最大值与最小值之和为3,求a 的值.§3-4 解三角形【知识要点】1.三角形内角和为A +B +C =πA CB -=+π,2π222=++C B A ,注意与诱导公式相结合的问题. 2.正弦定理和余弦定理正弦定理:r CcB b A a 2sin sin sin ===,(r 为△ABC 外接圆的半径). 余弦定理:abc b a C ac b c a B bc a c b A 2cos ;2cos ;2cos 222222222-+=-+=-+=&. a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ;c 2=a 2+b 2-2ab cos C .3.在解三角形中注意三角形面积公式的运用:21=∆ABC S ×底×高.21=∆ABC S ab sin .sin 21sin 21B ac A bc C == 4.解三角形中注意进行“边角转化”,往往结合三角变换处理问题.【复习要求】1.会正确运用正余弦定理进行边角的相互转化;2.会熟练运用正弦定理和余弦定理解决三角形中的求角,求边,求面积问题. 【例题分析】例1 (1)在△ABC 中,3=a ,b =1,B =30°,则角A 等于( )A .60°B .30°C .120°D .60°或120° (2)△ABC 中,内角A ,B ,C 所对的边分别为a 、b 、c ,满足等式(a +b )2=ab +c 2,则角C 的大小为______. (3)在△ABC 中,若sin A ∶sin B ∶sin C =5∶7∶8,则∠B 的大小是______. (4)在△ABC 中,若31tan =A ,C =150°,BC =1,则AB =______. 解:(1)∵,23sin ,30sin 1sin 3,sin sin =∴=∴=A A B b A a ο又∵a >b ,∴A >B =30°,∴A =60°或120°,(2)∵(a +b )2=ab +c 2,∴a 2+b 2-c 2=-ab ,∴,120,2122cos 222ο=∴-=-=-+=C ab ab ab c b a C (3)∵CcB b A a sin sin sin ==,sin A ∶sin B ∶sin C =5∶7∶8. ∴a ∶b ∶c =5∶7∶8,∴21852*******cos 222=⨯⨯-+=-+=ac b c a B ,∴B =60°. (4)分析:已知条件为两角和一条对边,求另一条对边,考虑使用正弦定理,借助于31tan =A 求sin A 210,150sin 10101,sin sin ,1010sin ,31tan =∴=∴==∴=AB AB B AC A BC A A οΘΘ. 【评析】对于正弦定理和余弦定理应熟练掌握,应清楚它们各自的使用条件,做到合理地选择定理解决问题.例2 (1)在△ABC 中,a cos A =b cos B ,则△ABC 一定是( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰三角形或直角三角形 (2)在△ABC 中,2sin B ·sin C =1+cos A ,则△ABC 的形状为( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形解:(1)法一:BbA a sin sin =Θ,a cos A =b cos B , ∴sin A cos A =sin B cos B ,∴sin2A =sin2B ,∵2A ,2B ∈(0,2π),∴2A =2B 或2A +2B =π,∴A =B 或2π=+B A ,选D . 法二:∵a cos A =b cos B ,∴acb c a b bc a c b a 2)(2)(222222-+=-+,整理得(a 2-b 2)(a 2+b 2-c 2)=0.所以:a =b 或a 2+b 2=c 2,选D .(2)∵2sin B ·sin C =1+cos A ,cos(B +C )=cos(π-A )=-cos A , ∴2sin B ·sin C =1-(cos B cos C -sin B sin C ), ∴cos B cos C +sin B ·sin C =1, ∴cos(B -C )=1,∵B ,C ∈(0,π),∴B -C ∈(-π,π), ∴B -C =0,∴B =C ,选C .【评析】判断三角形形状,可以从两个角度考虑(1)多通过正弦定理将边的关系转化为角的关系,进而判断三角形形状,(2)多通过余弦定理将角的关系转化为边的关系,进而判断三角形形状,通常情况下,以将边的关系转化为角的关系为主要方向,特别需要关注三角形内角和结合诱导公式带给我们的角的之间的转化.例3 已知△ABC 的周长为12+,且sin A +sin B =2sin C (1)求边AB 的长;(2)若△ABC 的面积为C sin 61,求角C 的度数. 解:(1)由题意及正弦定理,得⎪⎩⎪⎨⎧=++=++ABAC BC AC BC AB 212,解得AB =1. (2)由△ABC 的面积C C AC BC S sin 61sin 21=⋅=,得31=⋅AC BC ,因为2=+AC BC ,所以(BC +AC )2=BC 2+AC 2+2AC ·BC =2,可得3422=+AC BC ,由余弦定理,得212cos 222=-+=⋅BC AC AB BC AC C , 所以C =60°.例4 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别为a 、b 、c ,设a 、b 、c 满足条件b 2+c 2-bc =a 2和b c =321+,求∠A 和tan B 的值. 解(1)由已知和余弦定理得212cos 222=-+=bc a c b A ,所以∠A =60°. (2)分析:所给的条件是边的关系,所求的问题为角,可考虑将利用正弦定理将边的关系转化为角的关系.在△ABC 中,sin C =sin(A +B )=sin(60°+B ),因为BBB B B BC b c sin sin 60cos cos 60sin sin )60sin(sin sin οοο+⋅=+==.32121tan 123+=+=B所以⋅=21tan B 【评析】体现了将已知条件(边321+==b c )向所求问题(角tan B →sin a ,cos α )转化,充分利用了正弦定理和三角形内角关系实现转化过程.例5 在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,3π=C . (Ⅰ)若△ABC 的面积等于3,求a ,b ;(Ⅱ)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.解:(Ⅰ)由余弦定理abc b a C 2cos 222-+=及已知条件得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以3sin 21=C ab ,得ab =4.联立方程组⎩⎨⎧==-+,4,422ab ab b a 解得a =2,b =2.(Ⅱ)由题意得sin(B +A )+sin(B -A )=4sin A cos A ,(sin B cos A +cos B sin A )+(sin B cos A -cos B sin A )=4sin A cos A , 即sin B cos A =2sin A cos A , 当cos A =0时,332,334,6π,2π====b a B A ,当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎩⎨⎧==-+,2,422a b ab b a 解得334,332==b a . 所以△ABC 的面积332sin 21==C ab S .【评析】以上两例题主要考查利用正弦定理、余弦定理来确定三角形边、角关系等基础知识和基本运算能力.以及三角形面积公式B ac A bc C ab S ABC sin 21sin 21sin 21===∆的运用.同时应注意从题目中提炼未知与已知的关系,合理选择定理公式,综合运用正弦定理和余弦定理实现边角之间的转化.例6 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α ,∠BDC =β ,CD =s ,并在点C 测得塔顶A 的仰角为θ ,求塔高AB .解:在△BCD 中,∠CBD =π-α -β . 由正弦定理得.sin sin CBDCDBDC BC ∠=∠所以)sin(sin sin sin βαβ+=∠∠=⋅s CBD BDC CD BC .在Rt △ABC 中,⋅+=∠=⋅)sin(sin tan tan βαβθs ACB BC AB例7 已知在△ABC 中,sin A (sin B +cos B )-sin C =0,sin B +cos2C =0,求角A ,B ,C 的大小. 解:sin A sin B +sin A cos B -sin(A +B )=0,sin A sin B +sin A cos B -(sin A cos B +cos A sin B )=0, sin A sin B -cos A sin B =sin B (sin A -cos A )=0, 因为sin B ≠0,所以sin A -cos A =0,所以tan A =1,4π=A ,可得BC +=4π3, 所以02sin sin )22π3cos(sin )4π3(2cos sin =+=++=++B B B B B B ,sin B +2sin B cos B =0,因为sin B ≠0,所以12π,3π2,21cos ==-=C B B .【评析】考查了三角形中角的相互转化关系,同时兼顾了两角和、二倍角、诱导公式等综合应用.练习3-4一、选择题1.在△ABC 中,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =( ) A .1∶2∶3B .2:3:1C .1∶4∶9D .3:2:12.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,3,3π==a A ,b =1,则c =( ) A .1B .2C .13-D .33.△ABC 中,若a =2b cos C ,则△ABC 的形状一定为( ) A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形4.△ABC 的三内角A ,B ,C 的对边边长分别为a ,b ,c ,若b a 25=,A =2B ,则cos B =( ) A .35B .45 C .55 D .65二、填空题5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,3π,3==C c ,则A =______. 6.在△ABC 中,角ABC 的对边分别为a 、b 、c ,若ac B b c a 3tan )(222=-+,则角B 的值为______.7.设△ABC 的内角6π=A ,则2sinB cosC -sin(B -C )的值为______. 8.在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若b cos C =(2a -c )cos B ,则∠B 的大小为______. 三、解答题9.在△ABC 中,53tan ,41tan ==B A . (Ⅰ)求角C 的大小;(Ⅱ)若AB 的边长为17,求边BC 的边长.10.如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD ,DC ,且拐弯处的转角为120°.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米. 求该扇形的半径OA 的长(精确到1米).11.在三角形ABC 中,5522cos ,4π,2===B C a ,求三角形ABC 的面积S .专题03 三角函数与解三角形参考答案练习3-1一、选择题:1.B 2.B 3.B 4.C 二、填空题 5.)0,2π(-6.16 7.21mm - 8.23- 三、解答题9.解:(1)⋅-=+=-=>55cos sin ,55cos ,552sin ,0cos ααααα (2)原式=222)sin 1(sin sin 21cos 1sin 21θθθθθ-=+-=-+-=⋅+=-=-=5521sin 1|sin 1|θθ 10.解:(1)原式51tan 2tan -=-+=αα(2)原式.0tan 1tan 212=+-=αα11.解:当k 为偶数时,原式.0cos sin cos sin 1cos sin 1cos sin .cos sin )cos (sin cos sin 22=+-=++---=αααααααααααααα 当k 为奇数时,原式01cos sin )cos (sin =+-=αααα,综上所述,原式=0.练习3-2一、选择题1.A 2.C 3.D 4.C 二、填空题 5257-6.4 7.21 8.65- 三、解答题 9.解:左边=====2tan 2cos 22cos2sin22cos2sin 2cos 2cos cos 2cos sin 22222.ααααααααααα右边.10.解:原式)sin (cos 2cos 1cos 2cos sin 21cos )2cos 2(sin 12ααααααααα-=-+-=--=, 因为α 为第四象限角,且54sin -=α,所以53cos =α, 所以原式514=. 11.解:(1)由a a a a cos sin 21)cos (sin 2-=-=31可得32cos sin 2=αα, 所以a a a a cos sin 21)cos (sin 2+=+=35,因为α 为第三象限角,所以sin α <0,cos α <0,sin α +cos α <0,所以315cos sin -=+αα. (2)原式αααααααααcos cos 3sin 4cos )12cos 2(3sin 4cos 82cos 6sin 4522+=-+=-++=3tan 4+=α,因为51tan 1tan cos sin cos sin -=-+=-+αααααα,所以2531515tan -=+-=α, 所以原式.52932534-=+-⨯= 练习3-3一、选择题1.B 2.C 3.A 4.D 二、填空题5.2 6.2 7.)3π2sin(+=x y 8.]2,89[- 三、解答题9.解:x x x x x x f 2cos 2sin 1cos 2cos sin 2)(2-=+-==)4π2sin(2-x . (1)Z ∈+=-k k x ,2ππ4π2,对称轴方程为Z ∈+=k k x ,8π32π, (2)Z ∈+≤-≤+k k x k ,2π3π24π22ππ2,即Z ∈+≤≤+k k x k ,8π7π8π3π,f (x )的单调减区间为Z ∈++k k k ],8π7π,8π3π[.10.解:(I)∵⋅+=+=-+=)3π2sin(22cos 32sin )4sin 21(32sin )(2x x x x x x f∴f (x )的最小正周期.π421π2==T当1)3π2sin(-=+x 时,f (x )取得最小值-2;当1)3π2sin(=+x 时,f (x )取得最大值2.(Ⅱ)由(I)知⋅+=+=)3π()().3π2sin(2)(x f x g x x f 又⋅=+=++=∴2cos 2)2π2sin(2]3π)3π(21sin[2)(xx x x g).(2cos 2)2cos(2)(x g xx x g ==-=-Θ∴函数g (x )是偶函数.11.解:(1)12cos 2sin 32sin 322cos 12)(+++=+++⨯=a x x a x xx f ωωωω,1)6π2sin(2+++=a x ω由满足条件f (x 1)=f (x 2)=0的|x 1-x 2|的最小值为2π,可得的最小正周期为π,所以ω =1.。

(完整word版)锐角三角函数与解直角三角形复习专题教案、练习答案

(完整word版)锐角三角函数与解直角三角形复习专题教案、练习答案

锐角三角函数于解直角三角形小结1 本章概述锐角三角函数、解直角三角形,它们既是相似三角形及函数的继续,也是继续学习三角形的基础.本章知识首先从工作和生活中经常遇到的问题人手,研究直角三角形的边角关系、锐角三角函数等知识,进而学习解直角三角形,进一步解决一些简单的实际问题.只有掌握锐角三角函数和直角三角形的解法,才能继续学习任意角的三角函数和解斜三角形等知识,同时解直角三角形的知识有利于培养数形结合思想,应牢固掌握.小结2 本章学习重难点【本章重点】 通过实例认识直角三角形的边角关系,即锐角三角函数(sin A ,c os A ,tan A ),知道30°,45°,60°角的三角函数值,会运用三角函数知识解决与直角三角形有关的简单的实际问题. 【本章难点】 综合运用直角三角形的边边关系、边角关系来解决实际问题. 【学习本章应注意的问题】在本章的学习中,应正确掌握四种三角函数的定义,熟记特殊角的三角函数值,要善于运用方程思想求直角三角形的某些未知元素,会运用转化思想通过添加辅助线把不规则的图形转化为规则的图形来求解,会用数学建模思想和转化思想把一些实际问题转化为数学模型,从而提高分析问题和解决问题的能力. 小结3 中考透视这一章在中考中主要考查一些特殊角的三角函数值及几个三角函数间的关系,主要题型是选择题、填空题.另外解直角三角形在实际问题中的应用也是考查的一个重点,主要题型是填空题和解答题,约占3~7分.知识网络结构图专题总结及应用一、知识性专题专题1:锐角三角函数的定义【专题解读】 锐角三角函数定义的考查多以选择题、填空题为主.例1 如图28-123所示,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是 ( ) A .sin A 3 B .tan A =12 C .cos B 3D .tan B 3 分析 sin A =BC AB =12,tan A =BC AC 3,cos B =BCAB =12.故选D 。

中考数学总复习《二次函数与三角形》综合题(含答案)

中考数学总复习《二次函数与三角形》综合题(含答案)

二次函数与三角形一 、填空题(本大题共2小题)1.已知二次函数交轴于,两点,交轴于点,且是等腰三角形,请写出一个符合要求的二次函数的解析式 .2.二次函数的图象的顶点为,与轴正方向从左至右依次交于,两点,与轴正方向交于点,若和均为等腰直角三角形(为坐标原点),则 .二 、解答题(本大题共9小题)3.如图,抛物线与轴交与,两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交轴与点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点,使的面积最大?,若存在,求出点的坐标及的面积最大值.若没有,请说明理由.4.如图,已知二次函数的图象经过点、和原点.为二次函数图象上的一个动点,过点作轴的垂线,垂足为,并与直线交于点.2y ax bx c =++x A B y C ABC △2y x bx c =++D x A B y C ABD △OBC △O 2b c +=2y x bx c =-++x ()10A ,()30B -,y C Q QAC △Q P PBC △P PBC△()33A ,()40B ,O P P x ()0D m ,OA C(1)求出二次函数的解析式;(2)当点在直线的上方时,求线段的最大值;(3)当时,探索是否存在点,使得为等腰三角形,如果存在,求出的坐标;如果不存在,请说明理由.5.已知二次函数22(2)4y m x mx n =--+的图象的对称轴是直线2x =,且它的最高点在直线 112y x =+上. ⑴ 求此二次函数的解析式;⑵ 若此二次函数的图象开口方向不变,定点在直线112y x =+上移动到M 点时,图象与x 轴恰好交于A 、B 两点,且8ABM S ∆=,求这时的二次函数的解析式.6.已知二次函数212y x bx c =++的图象经过点(36)A -,并且与x 轴相交于点(10)B -,和点C ,顶点为P(1)求二次函数的解析式;(2)设D 为线段OC 上一点,满足DPC BAC ∠=∠,求点D 的坐标P OA PC m >0P PCO △P7.如图,已知二次函数图象的顶点为原点,直线的图象与该二次函数的图象交于点,直线与轴的交点为,与轴的交点为. (1)求点的坐标与这个二次函数的解析式;(2)为线段上的一个动点(点与、不重合),过点作轴的垂线与这个二次函数的图象交于点,与轴交于点.设该线段的长为,点的横坐标为,求与之间的函数解析式,并写出自变量的取值范围; (3)在(2)的条件下,在线段上是否存在点,使得以点、、为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.142y x =+A ()88,x C y B B P AB P A B P x D x E PD h P t h t t AB P P D B BOC △P8.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.9.已知二次函数图象的对称轴是直线,且过点.(1)求、的值;(2)求出该二次函数图象与轴的交点、的坐标;(3)如果某个一次函数图象经过坐标原点和该二次函数图象的顶点.问在这个一次函数图象上是否存在点,使得是直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.10.如图,抛物线2122y x bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且()10A -,. (1)求抛物线的解析式及顶点D 的坐标;) (2)判断ABC △的形状,证明你的结论;(3)点(0)M m ,是x 轴上的一个动点,当MC MD +的值最小时,求m 的值.2y x bx c =++2x =()03A ,b c x B C O M P PBC △P11.如图,在平面直角坐标系中,已知矩形的三个顶点、、.抛物线过、两点.(1) 直接写出点的坐标,并求出抛物线的解析式;(2) 动点从点出发.沿线段向终点运动,同时点从点出发,沿线段向终点运动.速度均为每秒1个单位长度,运动时间为秒.过点作交于点.① 过点作于点,交抛物线于点当为何值时,线段最长? ② 连接.在点、运动的过程中,判断有几个时刻使得是等腰三角形?请直接写出相应的值.ABCD ()40B ,()80C ,()88D ,2y ax bx =+A C A P A AB B Q C CD D t P PE AB ⊥AC E E EF PE ⊥F G t EG EQ P Q CEQ △t二次函数与三角形答案解析一 、填空题1.等(答案不唯一);∵二次函数交轴于,两点,交轴于点,且是等腰三角形∴当时,点坐标为只要不为即可.2.2;由已知,得、、、. 过作于点,则,即,得:. 又∵.又∵,即:,得:.故答案为:2.【解析】二次函数综合题.此题主要考查了二次函数与坐标轴交点的表示方法,以及等腰直角三角形的性质等知识,得出,是解决问题的关键.22y x =-2y ax bx c=++x A B y C ABC △AO BO =C 0C ()0c ,0A ⎫⎪⎪⎝⎭0B ⎫⎪⎪⎝⎭2424b b c D ⎛⎫--- ⎪⎝⎭,D DE AB ⊥E 2DE AB =2424b c-⨯=24b c -=02=240b c ->2OC OB =c =22b c +=2DE AB =二 、解答题3.(1)将,代中得,,∴∴抛物线解析式为:(2)存在理由如下:由题知、两点关于抛物线的对称轴对称. ∴直线与的交点即为点,此时周长最小∵ ∴C 的坐标为:∵直线解析式为:.∴点坐标即为的解,∴∴ (3)存在.理由如下:设点且 ∵,若有最大值,则就最大. ∴当时,.∴ 当时, ∴点坐标为【解析】二次函数与三角形综合,轴对称与线段和差最值问题,坐标与面积4.(1)设,把代入得:,函数的解析式为,()10A ,()30B -,2y x bx c =-++10930b c b c -++=⎧⎨--+=⎩23b c =-⎧⎨=⎩223y x x =--+A B 1x =-BC 1x =-Q QAC △223y x x =--+()03,BC 3y x =+Q 13x y x =-⎧⎨=+⎩12x y =-⎧⎨=⎩()12Q -,P ()223x x x --+,()30x -<<92BPC BOC BPCO BPCO S S S S =-=-△△四边形四边形BPCO S 四边形BPC S △=Rt BPE BPCO PEOC S S S +△四边形直角梯形()11=22BE PE OE PE OC ⋅++()()()()221132323322x x x x x x =+--++---++2339272228x ⎛⎫=-+++ ⎪⎝⎭32x =-927=+28BPCO S 四边形最大值927927=+2828BPC S -=△最大值32x =-215234x x --+=P 31524⎛⎫- ⎪⎝⎭,()4y ax x =-()33A ,1a =-24y x x =-+(2),,∵,开口向下,∴有最大值,当时,,当点在直线的上方时,线段的最大值是. (3)当时,仅有, 所以, 解得,∴; 当时,,, 由勾股定理得:,①当时,,解得:,∴; ②当时,,解得:,(舍去),∴;③当时,,解得:,∴,综上所述:存在,的坐标是或或或.5.(1)242y x x =-+-;(2)2(6)4y x =--+【解析】⑴ 由已知条件2222422(2)124(2)(4)1214(2)2mm m n m n m m ⎧=⎪-=-⎧⎪⇒⎨⎨=---⎩⎪=⋅+⎪⋅-⎩, ∴所求二次函数的解析式为242y x x =-+-. ⑵ 设定点1(1)2M a a +,,(0)A a t -,,(B a t +,0), 则所求二次函数形如2()12a y x a =--++, 又由已知8AMB S ∆=,∴182AB y ⋅=,03m <<2239324PC CD PD m m m ⎛⎫=-=-+=--+ ⎪⎝⎭-1<0302D ⎛⎫⎪⎝⎭,max 94PC =P OA PC 9403m <<OC PC=23m m -+=3m =(31P +3m ≥23PC CD PD m m =-=-+OC ()2222224OP OD DP m m m =+=+-OC PC=23m m -3m =(31P +-OC OP=)()22224m m m =+-15m =23m =()55P -,PC OP =()()2222234m m m m m -=+-4m =()40P ,P (31+(31-()55-,()40,∴2112(1)82226102t a t a a t ⎧⋅⋅+=⎪=⎧⎪⇒⎨⎨=⎩⎪-++=⎪⎩, ∴所求二次函数为2(6)4y x =--+.6.(1)21322y x x =--;(2)503⎛⎫⎪⎝⎭, 【解析】(1)函数图象经过点(36)(10)A B --,,,,∴2216(3)3210(1)2b cb c ⎧=⨯--+⎪⎪⎨⎪=⨯--+⎪⎩,解得312b c ⎧=-=-⎨⎩,。

(2021年整理)中考数学狙击重难点系列专题27----反比例函数与三角形综合(含答案)

(2021年整理)中考数学狙击重难点系列专题27----反比例函数与三角形综合(含答案)

案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)中考数学狙击重难点系列专题27----反比例函数与三角形综合(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)中考数学狙击重难点系列专题27----反比例函数与三角形综合(含答案)的全部内容。

角形综合(含答案)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)中考数学狙击重难点系列专题27--——反比例函数与三角形综合(含答案)这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)中考数学狙击重难点系列专题27—--—反比例函数与三角形综合(含答案)> 这篇文档的全部内容。

反比例函数与三角形综合1. 如图,在平面直角坐标系中,反比例函数y= (x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是( )A. 6B. 10C. 2D。

22。

如图,在反比例函数y= 的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y= 的图象上运动,若tan∠CAB=2,则k的值为()A. ﹣3 B. ﹣6 C。

专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类目录一、热点题型归纳【题型一】三角函数求解析式:“识图”................................................................................................. 1 【题型二】图像与性质1:单调性与值域................................................................................................ 3 【题型三】图像与性质2:恒等变形:结构不良型 ................................................................................ 4 【题型四】图像与性质3:恒成立(有解)求参数 ................................................................................ 5 【题型五】图像与性质4:零点与对称轴................................................................................................ 6 【题型六】解三角形1:面积与周长常规................................................................................................ 8 【题型七】解三角形2:计算角度与函数值 ............................................................................................ 9 【题型八】解三角形3:求面积范围(最值) ...................................................................................... 10 【题型九】解三角形4:周长最值 ......................................................................................................... 11 【题型十】解三角形5:巧用正弦定理求“非对称”型 ...................................................................... 11 【题型十一】解三角形6:最值范围综合.............................................................................................. 12 二、真题再现 ............................................................................................................................................ 12 三、模拟测试 .. (14)【题型一】三角函数求解析式:“识图”【典例分析】(2023·全国·高三专题练习)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值;(2)若π4PMN PNM ∠+∠=,求A 的值.1.(2023·全国·高三专题练习)已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将()f x 图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图象,求函数()g x ≥.2.(2022·四川·宜宾市教科所三模(理))已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x ;(2)若2f α⎛⎫= ⎪⎝⎭()0,πα∈,求cos2α的值.3.(2022·全国·高三专题练习)已知函数()()sin ,0,0,2f x A x x R A ωϕωϕπ⎛⎫=+∈>>< ⎪⎝⎭部分图象如图所示.(1)求()f x 的最小正周期及解析式; (2)将函数()y f x =的图象向右平移3π个单位长度得到函数()y g x =的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【题型二】图像与性质1:单调性与值域【典例分析】(2022·浙江·高三开学考试)已知函数()21cos cos 2f x x x x =⋅-. (1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值.【变式演练】1.(2022·湖北·高三开学考试)已知函数2()sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)若[0,]x π∈,求出()f x 的单调递减区间.2.(2022·黑龙江·双鸭山一中高三开学考试)已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.3.(2022·全国·高三专题练习)已知函数()()()2sin cos cos 04f x x x x ππωωωω⎛⎫=--+> ⎪⎝⎭的最小正周期为π.(1)求()f x 图象的对称轴方程;(2)将()f x 的图象向左平移6π个单位长度后,得到函数()g x 的图象,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【题型三】图像与性质2:恒等变形:结构不良型【典例分析】(2023·全国·高三专题练习)在①sin α=①2tan 40αα-=这两个条件中任选一个,补充到下面的问题中,并解答.已知角a 是第一象限角,且___________. (1)求tan α的值;(2)3)cos()cos(3)2πααπαπ+++-的值.注:如果选择多个条件分别解答,按第一个解答计分.【变式演练】1.(2022·北京·二模)已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件①、条件①这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π;条件①:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件①:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.2.(2023·全国·高三专题练习)已知函数()()sin cos 0,0f x a x x a ωωω=>>.从下列四个条件中选择两个作为已知,使函数()f x 存在且唯一确定.条件①:π14f ⎛⎫= ⎪⎝⎭;条件①:()f x 为偶函数;条件①:()f x 的最大值为1;条件①:()f x 图象的相邻两条对称轴之间的距离为π2. 注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.(1)求()f x 的解析式;(2)设()()22cos 1g x f x x ω=-+,求函数()g x 在()0,π上的单调递增区间.3.(2023·全国·高三专题练习)已知函数()()2sin cos f x a x x x x =∈R ,若__________.条件①:0a >,且()f x 在x ∈R 时的最大值为1条件①:6f π⎛⎫= ⎪⎝⎭请写出你选择的条件,并求函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.注:如果选择条件①和条件①分别解答,按第一个解答计分.【题型四】图像与性质3:恒成立(有解)求参数【典例分析】(2023·全国·高三专题练习)已知函数()π2sin()3f x x =+.(1)若不等式()3f x m -≤对任意ππ[,]63x ∈-恒成立,求整数m 的最大值;(2)若函数()π()2g x f x =-,将函数()g x 的图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移12π个单位,得到函数()y h x =的图象,若关于x 的方程()102h x k -=在π5π[,]1212x ∈-上有2个不同实数解,求实数k 的取值范围.【变式演练】1.(2023·全国·高三专题练习)已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =,()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.2.(2023·全国·高三专题练习)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)先将函数()f x 的图象向右平移3π个单位长度,再将所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到()g x 的图象.(i )若0m >,当[0,]x m ∈时,()g x 的值域为[2],求实数m 的取值范围;(ii )若不等式2()(21)()10g x t g x t -+--≤对任意的,32x ππ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.3.(2022·全国·高三专题练习)已知:函数()2sin cos f x x x x =. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间;(3)若函数()()g x f x k =-在π0,4⎡⎤⎢⎥⎣⎦上有两个不同的零点,写出实数k 的取值范围.(只写结论)【题型五】图像与性质4:零点与对称轴【典例分析】(2022·全国·高三专题练习)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【变式演练】1.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根()123123,,x x x x x x <<,求实数a 的取值范围和1232x x x ++的值.2.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,若方程()0g x m -=在70,3π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求m 的取值范围及()123tan 2x x x ++的值.3.(2023·全国·高三专题练习)已知数2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪ ⎪⎝⎭⎝⎭的相邻两对称轴间的距离为2π. (1)求()f x 的解析式;(2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域;(3)对于第(2)问中的函数()g x ,记方程4()3g x =在4,63x ππ⎡⎤∈⎢⎥⎣⎦上的根从小到大依次为12,,n x x x ,若m =1231222n n x x x x x -+++++,试求n 与m 的值.【题型六】解三角形1:面积与周长常规【典例分析】(2022·安徽·高三开学考试)在ABC 中,点,M N 分别在线段,BC BA 上,且,BM CM ACN BCN =∠=∠,3,22AB AM AC ===.(1)求BM 的长;(2)求BCN △的面积.【变式演练】1.(2022·北京·高三开学考试)在ABC 中,角A ,B ,C 的对边分别为,,,sin2sin =a b c C C . (1)求C ∠;(2)若1b =,且ABCABC 的周长.2.(2022·江苏·南京市金陵中学河西分校高三阶段练习)已知ABC 的三个内角,,A B C 所对的边分别为a ,b ,c ,)tan tan tan tan 1+=B C B C . (1)求角A 的大小;(2)若1a =,21)0c b -=,求ABC 的面积.3.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 0B b A -=. (1)求A ;(2)若c =a =ABC 的面积.【题型七】解三角形2:计算角度与函数值【典例分析】(2022·全国·高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.【变式演练】1.(2021·天津静海·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足()()2sin 2sin 2sin a b A b a B c C -+-=. (1)求角C 的大小;(2)若c =4a b +=,求ABC 的面积.(3)若cos =A ,求()sin 2A C -的值.2.(2022·北京市第二十二中学高三开学考试)已知ABC 的内角,,A B C 所对的对边分别为,,a b c ,周长为1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.3.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)222S a c b =+-. (1)求角B 的大小;(2)若2a c =,求sin C .【题型八】解三角形3:求面积范围(最值)【典例分析】(2022·云南·昆明一中高三开学考试)已知ABC 的内角,,A B C 所对边分别为,,a b c ,且222sin sin sin sin A B C B C -=. (1)求A ;(2)若a =ABC 面积的最大值.【变式演练】1.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若a =ABC 面积的最大值.2.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知ABC 的外接圆半径R =tan tan B C +=.(1)求B 和b 的值;(2)求ABC 面积的最大值.3.(2021·江苏·矿大附中高三阶段练习)ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin cos sin (2cos )A B B A =-.(1)若b c +,求A ;(2)若2a =,求ABC 的面积的最大值.【题型九】解三角形4:周长最值【典例分析】(2022·黑龙江·双鸭山一中高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B C A B +-=. (1)求角C 的大小;(2)若ABCABC 周长的取值范围.【变式演练】1.(2022·广东·深圳外国语学校高三阶段练习)已知ABC 中,内角,,A B C 所对边分别为,,a b c ,若()2cos cos 0a c B b C --=.(1)求角B 的大小;(2)若2b =,求a c +的最大值.2.(2022·湖北·襄阳五中高三开学考试)在锐角ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,从条件①:3sin cos tan 4A A A =,条件①12=,条件①:2cos cos cos a A b C c B -=这三个条件中选择一个作为已知条件. (1)求角A 的大小;(2)若2a =,求ABC 周长的取值范围.3.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,= (1)求角A ;(2)若4a =,求b c +的取值范围.【题型十】解三角形5:巧用正弦定理求“非对称”型【典例分析】(2022·四川成都·模拟预测(理))①ABC 中,角,,A B C 所对边分别是,,a b c ,tan tan 2tan tan A AB C bc,cos cos 1b C c B +=.(1)求角A 及边a ; (2)求2b c +的最大值.【变式演练】1.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos2B C B C A -=+. (1)求角A 的大小;(2)若a =2b c +的最大值.2..(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin B c a C b c a b -=+-,①23cos cos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =_______. (1)求角B ﹔(2)求2a c -的范围.【题型十一】解三角形6:最值范围综合【典例分析】(2022·浙江·高三开学考试)记ABC 内角,,A B C 的对边分别是,,a b c ,已知tan tan 2tan tan tan B CB A A=-.(1)求证:2222b c a +=;(2)求2abc 的取值范围.【变式演练】1.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,已cos sin B b C =+. (1)求C 的大小;(2)若ABC 为锐角三角形且c =22a b +的取值范围.2.(2022·湖南湘潭·高三开学考试)设ABC 的内角,,A B C 的对边分别为,,a b c ,A 为钝角,且tan bB a =.(1)探究A 与B 的关系并证明你的结论; (2)求cos cos cos A B C ++的取值范围.1.(2022·天津·高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值. 2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin A C =,求b . 3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(·浙江·高考真题(理))已知ABC 的内角,,A B C 所对的对边分别为,,a b c 1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.6.(2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.7.(山东·高考真题)已知函数()2sin 2y x ϕ=+,x ∈R ,π02ϕ<<,函数的部分图象如下图,求(1)函数的最小正周期T 及ϕ的值: (2)函数的单调递增区间.8.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.9.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.10.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC11.(2023·全国·高三专题练习)在ABC 中.3sin cos 64A A π⎛⎫-= ⎪⎝⎭.(1)求角A ;(2)若8AC =,点D 是线段BC 的中点,DE AC ⊥于点E ,且DE =CE 的长.1.(2022·浙江省杭州学军中学模拟预测)已知函数()()sin y f x A x B ωϕ==++(其中A ,ω,ϕ,B 均为常数,且0A >,0>ω,ϕπ<)的部分图像如图所示.(1)求()f x 的解析式;(2)若5()126g x f x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,,02x π⎛⎫∈- ⎪⎝⎭,求()g x 的值域.2.(2022·全国·高三专题练习)已知向量(sin a x =,(1,cos )b x =.(1)若a b ⊥,求sin 2x 的值;(2)令()f x a b =⋅,把函数()f x 的图像上每一点的横坐标都缩短为原来的一半(纵坐标不变),再把所得的图像沿x 轴向左平移6π个单位长度,得到函数()g x 的图像,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2023·全国·高三专题练习)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,再从条件①、条件①、条件①这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定. (1)求()f x 的解析式;(2)设函数()()6g x f x f x π⎛⎫=++ ⎪⎝⎭,求()g x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值.条件①:()f x 的最小正周期为π;条件①:()00f =;条件①:()f x 图象的一条对称轴为4x π=. 注:如果选择多组条件分别解答,按第一个解答计分.4.(2023·全国·高三专题练习)已知函数()()()3,sin 26f x x x a a a g x x π⎛⎫=--+∈=+ ⎪⎝⎭R .(1)若()f x 为奇函数,求实数a 的值;(2)若对任意[]10,1x ∈,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使()()12f x g x =成立,求实数a 的取值范围.5.(2023·全国·高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min 2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值; 6、(2022·安徽·高三开学考试)记ABC 的内角,,A B C 的对边分别为,,a b c ,且23,2b c B C ==.(1)求cos C ;(2)若5a =,求c .7.(2022·广西·模拟预测(文))设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=. (1)证明:()sin 2sin sin A B B A -=; (2)若3A B =,求B 的值.8.(2022·全国·高三专题练习)在①2cos cos c b B a A -=;①sin cos 2AA =;()sin a C C =,这三个条件中任选一个,补充在下面的横线上,并加以解答.在ABC 中,角,,A B C 的对边分别是,,a b c ,若__________.(填条件序号) (1)求角A 的大小;(2)若3a =,求ABC 面积的最大值.注:如果选择多个条件分别解答,按第一个解答计分.9.(2021·福建省华安县第一中学高三期中)在①π1cos cos 32B B ⎛⎫-=+ ⎪⎝⎭,①sin (sin sin )sin a A c C A b B +-=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中.问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =______________. (1)求角B ;(2)求a c +的最大值.注:如果选择多个条件分别解答,按第一个解答计分. 10.(2022·山东烟台·三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos cos 2cos b a A C c A =+. (1)求角A ;(2)若4a =,求2c b -的取值范围.11.(2023·全国·高三专题练习)在ABC 中,点D 在边BC 上,3AB =,2AC =. (1)若AD 是BAC ∠的角平分线,求:BD DC ;(2)若AD 是边BC 上的中线,且AD =,求BC .12.(2022·全国·模拟预测(文))在①3cos210cos 10A A +-=,①sin cos A A -=①tan 2A =三个条件中任选一个,补充在下面的问题中,并作答.如果多选,则按第一个解答给分. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且______ (1)求cos A ;(2)sin sin B C 的最大值.。

高考数学总复习教案:3.9三角函数的综合应用[ 高考]

高考数学总复习教案:3.9三角函数的综合应用[ 高考]

第三章 三角函数、三角恒等变换及解三角形第9课时 三角函数的综合应用(对应学生用书(文)、(理)57~59页)1. (必修5P 9例题4题改编)设△ABC 的三个内角A 、B 、C 所对的边分别是a 、b 、c ,且a cosA =c sinC,则A =________.答案:π4解析:由a cosA =c sinC ,a sinA =c sinC ,得a sinA =acosA ,即sinA =cosA ,所以A =π4.2. (必修4P 45习题1.3第8题改编)将函数y =sinx 的图象向左平移φ(0≤φ<2π)个单位后,得到函数y =sin ⎝⎛⎭⎫x -π6的图象,则φ=________.答案:116π解析:将函数y =sinx 向左平移φ(0≤φ<2π)个单位得到函数y =sin(x +φ).只有φ=116π时有y =sin ⎝⎛⎭⎫x +116π=sin ⎝⎛⎭⎫x -π6. 3. (必修4P 109习题3.3第6(2)题改编)tan π12-1tan π12=________.答案:-23解析:原式=sinπ12cos π12-cosπ12sin π12=-⎝⎛⎭⎫cos 2π12-sin 2π12sin π12cos π12=-cosπ612sin π6=-2 3. 4. (必修4P 115复习题第13题改编)已知函数f(x)=3sinxcosx -cos 2x +12(x ∈R ),则f(x)在区间⎣⎡⎦⎤0,π4上的值域是________.答案:⎣⎡⎦⎤-12,32解析:f(x)=32sin2x -12cos2x =sin ⎝⎛⎭⎫2x -π6.当x ∈⎣⎡⎦⎤0,π4时,2x -π6∈⎣⎡⎦⎤-π6,π3,故值域为⎣⎡⎦⎤-12,32.5. 在△ABC 中,AC =7,BC =2,B =60°,则边BC 上的高为________. 答案:332解析:由余弦定理,得7=c 2+4-2c ,即c 2-2c -3=0,解得c =3,所以边BC 上的高h =3sin60°=332.1. 同角三角函数的基本关系式:sin 2α+cos 2α=1,tan α=sin αcos α.2. 两角和与差的正弦余弦和正切公式:sin (α±β)=sin αcos β±cos αsin β,cos (α±β)=cos αcos βsinαsin β,tan (α±β)=tan α±tan β1tan αtan β.3. 二倍角公式:sin2α=2sin αcos α,cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,tan2α=2tan α1-tan 2α.4. 三角函数的图象和性质5. 正弦定理和余弦定理:(1) 正弦定理:a sinA =b sinB =csinC=2R(R 为三角形外接圆的半径).(2) 余弦定理:a 2=b 2+c 2-2bccosA ,cosA =b 2+c 2-a 22bc.题型1 三角恒等变换例1 已知sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π2.(1) 求cosA 的值;(2) 求函数f(x)=cos2x +52sinAsinx 的值域.解:(1) 因为π4<A<π2,且sin ⎝⎛⎭⎫A +π4=7210,所以π2<A +π4<3π4,cos ⎝⎛⎭⎫A +π4=-210.所以cosA =cos ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4=cos ⎝⎛⎭⎫A +π4cos π4+sin ⎝⎛⎭⎫A +π4sin π4=-210·22+7210·22=35. (2) 由(1)可得sinA =45.所以f(x)=cos2x +52sinAsinx=1-2sin 2x +2sinx =-2⎝⎛⎭⎫sinx -122+32,x ∈R .因为sinx ∈[-1,1],所以,当sinx =12时,f(x)取最大值32;当sinx =-1时,f(x)取最小值-3. 所以函数f(x)的值域为⎣⎡⎦⎤-3,32. 备选变式(教师专享)(2013·上海卷)若cosxcosy +sinxsiny =12,sin2x +sin2y =23,则sin(x +y)=________.答案:23解析:由题意得cos(x -y)=12,sin2x +sin2y =sin[(x +y)+(x -y)]+sin[(x +y)-(x -y)]=2sin(x +y)cos(x-y)=23sin(x +y)=23.题型2 三角函数的图象与性质 例2 已知函数f(x)=Asin ⎝⎛⎭⎫π3x +φ,x ∈R ,A>0,0<φ<π2,y =f(x)的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A).(1) 求f(x)的最小正周期及φ的值;(2) 若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.解:(1) 由题意得T =2ππ3=6.因为P(1,A)在y =Asin ⎝⎛⎭⎫π3x +φ的图象上,所以sin ⎝⎛⎭⎫π3+φ=1.因为0<φ<π2,所以φ=π6.(2) 设点Q 的坐标为(x 0,-A). 由题意可知π3x 0+π6=3π2,得x 0=4,所以Q(4,-A).连结PQ ,在△PRQ 中,∠PRQ =2π3,由余弦定理得cos ∠PRQ =RP 2+RQ 2-PQ 22RP ·RQ =A 2+9+A 2-(9+4A 2)2A·9+A 2=-12,解得A 2=3.又A>0,所以A = 3. 备选变式(教师专享)已知函数f(x)=sin (ωx +φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π. (1) 求函数f(x)的表达式;(2) 若sin α+f(α)=23,求2sin ⎝⎛⎭⎫2α-π4+11+tan α的值.解:(1) ∵ f(x)为偶函数,∴ sin(-ωx +φ)=sin (ωx +φ),即2sin ωxcos φ=0恒成立, ∴ cos φ=0,又∵ 0≤φ≤π,∴ φ=π2. 又其图象上相邻对称轴之间的距离为π,∴ T =2π,∴ ω=1,∴f(x)=cosx. (2) ∵ 原式=sin2α-cos2α+11+tan α=2sin αcos α,又∵ sin α+cos α=23,∴ 1+2sin αcos α=49, 即2sin αcos α=-59,故原式=-59.题型3 正弦定理、余弦定理的综合应用例3 (2013·浙江)在锐角△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2asinB =3b.(1) 求角A 的大小;(2) 若a =6,b +c =8,求△ABC 的面积.解:(1) 由2asinB =3b 及正弦定理a sinA =b sinB ,得sinA =32.因为A 是锐角,所以A =π3.(2) 由余弦定理a 2=b 2+c 2-2bccosA ,得b 2+c 2-bc =36.又b +c =8,所以bc =283. 由三角形面积公式S =12bcsinA ,得△ABC 的面积为733.备选变式(教师专享)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,C =π3,a =5,△ABC 的面积为10 3.(1) 求b ,c 的值; (2) 求cos ⎝⎛⎭⎫B -π3的值.解:(1) 由已知,C =π3,a =5,因为S △ABC =12absinC ,即103=12b ·5sin π3,解得b =8.由余弦定理可得:c 2=25+64-80cos π3=49, 所以c =7.(2) 由(1)有cosB =25+49-6470=17,由于B 是三角形的内角,易知sinB =1-cos 2B =437,所以cos ⎝⎛⎭⎫B -π3=cosBcos π3+sinBsin π3=17×12+437×32=1314.题型4 三角函数、平面向量、解三角形的综合应用例4 已知向量m =⎝⎛⎭⎫sinA ,12与n =(3,sinA +3cosA)共线,其中A 是△ABC 的内角. (1) 求角A 的大小;(2) 若BC =2,求△ABC 面积S 的最大值,并判断S 取得最大值时△ABC 的形状. 解:(1) 因为m ∥n ,所以sinA ·(sinA +3cosA)-32=0.所以1-cos2A 2+32sin2A -32=0,即32sin2A -12cos2A =1, 即sin ⎝⎛⎭⎫2A -π6=1.因为A ∈(0,π),所以2A -π6∈⎝⎛⎭⎫-π6,11π6. 故2A -π6=π2,A =π3.(2) 由余弦定理,得4=b 2+c 2-bc. 又S △ABC =12bcsinA =34bc ,而b 2+c 2≥2bcbc +4≥2bcbc ≤4(当且仅当b =c 时等号成立),所以S △ABC =12bcsinA =34bc ≤34×4= 3.当△ABC 的面积取最大值时,b =c. 又A =π3,故此时△ABC 为等边三角形.备选变式(教师专享)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b),n =(sin B ,sin A),p =(b -2,a -2).(1) 若m ∥n ,求证:△ABC 为等腰三角形;(2) 若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.(1) 证明:∵ m ∥n ,∴ asin A =bsin B ,即a·a 2R =b·b2R ,其中R 是△ABC 外接圆半径,∴ a =b.∴ △ABC为等腰三角形.(2) 解:由题意可知m·p =0,即a(b -2)+b(a -2)=0.∴ a +b =ab.由余弦定理可知,4=a 2+b 2-ab =(a +b)2-3ab ,即(ab)2-3ab -4=0,∴ab =4(舍去ab =-1),∴ S =12absin C =12×4×sin π3= 3.在已知值求角中,应合理选择三角函数形式进行求解,避免增根. 【示例】 (本题模拟高考评分标准,满分14分) 若sin α=55,sin β=1010,且α、β均为锐角,求α+β的值. 学生错解:解: ∵ α为锐角,∴ cos α=1-sin 2α=255.又β为锐角,∴ cos β=1-sin 2β=31010. ∵ sin (α+β)=sin αcos β+cos αsin β=22, 由于0°<α<90°,0°<β<90°, ∴ 0°<α+β<180°, 故α+β=45°或135°.审题引导: 在已知值求角中,角的范围常常被忽略或不能发现隐含的角的大小关系而出现增根不能排除.要避免上述情况的发生,应合理选择三角函数形式进行求解,根据计算结果,估算出角的较精确的取值范围,并不断缩小角的范围,在选择三角函数公式时,一般已知正切函数值,选正切函数,已知正余弦函数值时,若角在(0,π)时,一般选余弦函数,若是⎝⎛⎭⎫-π2,π2,则一般选正弦函数.规范解答: 解: ∵ α为锐角,∴ cos α=1-sin 2α=255.(2分) 又β为锐角,∴ cos β=1-sin 2β=31010.(4分) 且cos (α+β)=cos αcos β-sin αsin β=22,(10分) 由于0<α<π2,0<β<π2,所以0<α+β<π,因为y =cosx 在[]0,π上是单调递减函数,故α+β=π4.(14分)错因分析: 没有注意挖掘题目中的隐含条件,忽视了对角的范围的限制,造成出错. 事实上,仅由sin (α+β)=22,0°<α+β<180°而得到α+β=45°或135°是正确的,但题设中sin α=55<12,sin β=1010<12,使得0°<α<30°,0°<β<30°从而0°<α+β<60°,故上述结论是错误的.在已知值求角中,应合理选择三角函数形式进行求解,避免增根.本题中0<α+β<π,因为y =cosx 在[]0,π上是单调函数,所以本题先求cos (α+β)不易出错.1. (2013·常州期末)函数f(x)=cos πx 2cos π(x -1)2的最小正周期为________.答案:2解析:f(x)=cos πx 2cos π(x -1)2=cos πx 2·sin πx 2=12sin πx ,最小正周期为T =2ππ=2.2. (2013·北京期末)已知函数f(x)=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,若f(x)的值域是⎣⎡⎦⎤-12,1,则a 的取值范围是________.答案:⎣⎡⎦⎤π3,π 解析:若-π3≤x ≤a ,则-π6≤x +π6≤a +π6,因为当x +π6=-π6或x +π6=7π6时,sin ⎝⎛⎭⎫x +π6=12,所以要使f(x)的值域是⎣⎡⎦⎤-12,1,则有π2≤a +π6≤7π6,即π3≤a ≤π,即a 的取值范围是⎣⎡⎦⎤π3,π. 3. (2013·北京期末)已知△ABC 中,AB =3,BC =1,sinC =3cosC ,则△ABC 的面积为________. 答案:32解析:由sinC =3cosC ,得tanC =3>0,所以C =π3.根据正弦定理可得BC sinA =ABsinC ,即1sinA =332=2,所以sinA =12.因为AB>BC ,所以A<C ,所以A =π6,即B =π2,所以三角形为直角三角形,所以S △ABC =12×3×1=32.4. (2013·新课标Ⅰ卷)设当x =θ时,函数f(x)=sinx -2cosx 取得最大值,则cos θ=________. 答案:-255解析:∵ f(x)=sinx -2cosx =5⎝⎛⎭⎫55sinx -255cosx .令cos φ=55,sin φ=-255,则f(x)= 5(sinxcos φ+sin φcosx)=5sin(x +φ), 当x +φ=2k π+π2,k ∈Z ,即x =2k π+π2-φ,k ∈Z 时,f(x)取最大值,此时θ=2k π+π2-φ,k ∈Z ,∴ cos θ=cos ⎝⎛⎭⎫2k π+π2-φ=sin φ=-255.1. (2014·扬州期末)在锐角△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c.向量m =(1,cosB),n =(sinB ,-3),且m ⊥n .(1) 求角B 的大小;(2) 若△ABC 面积为103,b =7,求此三角形周长. 解:(1) m·n =sinB -3cosB ,∵ m ⊥n ,∴ m ·n =0, ∴ sinB -3cosB =0.∵ △ABC 为锐角三角形,∴ cosB ≠0, ∴ tanB = 3.∵ 0<B<π2,∴ B =π3.(2) ∵ S △ABC =12acsinB =34ac ,由题设34ac =103,得ac =40.由72=a 2+c 2-2accosB ,得49=a 2+c 2-ac ,∴ (a +c)2=(a 2+c 2-ac)+3ac =49+120=169.∴ a +c =13,∴ 三角形周长是20.2. 在△ABC 中, a 、b 、c 分别是角A 、B 、C 的对边,△ABC 的周长为2+2,且sinA +sinB =2sinC. (1) 求边c 的长;(2) 若△ABC 的面积为13sinC ,求角C 的度数.解:(1) 在△ABC 中, ∵ sinA +sinB =2sinC ,由正弦定理,得a +b =2c ,∴ a +b +c =2c +c =(2+1)c =2+2.∴ a +b =2,c = 2.(2) 在△ABC 中, S △ABC =12absinC =13sinC ,∴ 12ab =13 ,即ab =23. 又a +b =2,在△ABC 中,由余弦定理,得cosC =a 2+b 2-c 22ab =(a +b )2-2ab -22ab =12,又在△ABC中∠C ∈(0,π),∴ ∠C =60°.3. (2013·湖北卷)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c.已知cos2A -3cos(B +C)=1. (1) 求角A 的大小;(2) 若△ABC 的面积S =53,b =5,求sinBsinC 的值.解:(1) 由已知条件得:cos2A +3cosA =1,∴ 2cos 2A +3cosA -2=0,解得cosA =12,∴ ∠A =60°.(2) S =12bcsinA =53c =4,由余弦定理,得a 2=21,(2R)2=a 2sin 2A =28,∴ sinBsinC =bc 4R 2=57.4. (2013·北京卷)在△ABC 中,a =3,b =26,∠B =2∠A. (1) 求cosA 的值; (2) 求c 的值.解:(1) 因为a =3,b =26,∠B =2∠A.所以在△ABC 中,由正弦定理得3sinA =26sin2A .所以2sinAcosAsinA =263.故cosA =63. (2) 由(1)知cosA =63,所以sinA =1-cos 2A =33. 又因为∠B =2∠A ,所以cosB =2cos 2A -1=13.所以sinB =1-cos 2B =223.在△ABC 中,sinC =sin(A +B)=sinAcosB +cosAsinB =539.所以c =sin sin a CA=5.1. 三角变换的基本策略是化异为同,即将函数名称、角、次数等化异为同.2. 对于函数y =Asin (ωx +φ)+B ,常用“五点法”画图象,运用整体思想研究性质.3. 求三角函数的单调区间、周期,及判断函数的奇偶性,要注意化归思想的运用,通过恒等变换转化为基本三角函数类型,注意变形前后的等价性.4. 解三角函数的综合题时应注意:(1) 与已知基本函数对应求解,即将ωx+φ视为一个整体X;(2) 将已知三角函数化为同一个角的一种三角函数,如y=Asin(ωx+φ)+B或y=asin2x+bsinx+c;(3) 换元方法在解题中的运用.请使用课时训练(B)第9课时(见活页).[备课札记]。

以二次函数与直角三角形问题为背景的解答题(Word+答案)

以二次函数与直角三角形问题为背景的解答题(Word+答案)

以二次函数与直角三角形问题为背景的解答题【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。

由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。

直角三角形的有关知识和二次函数都是初中代数中的重点内容,这两块内容的综合是初中数学最突出的综合内容,因此这类问题就成为中考命题中比较受关注的热点问题.【解题思路】近几年的中考中,二次函数图形中存在性问题始终是热点和难点。

考题内容涉及到分类讨论、数形结合、化归等数学思想,对学生思维能力、模型思想等数学素养要求很高,所以学生的失分现象比较普遍和突出。

解这类问题有什么规律可循?所应用的知识点:1.抛物线与直线交点坐标;2.抛物线与直线的解析式;3.勾股定理;4.三角形的相似的性质和判定;5.两直线垂直的条件;运用的数学思想:1.函数与方程;2.数形结合;3.分类讨论;4.等价转化;解决二次函数中直角三角形存在性问题采用方法:1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点;2. 以两定点为直角顶点时,两直线互相垂直,则k 1*k 2=-1,以已知线段为斜边时,利用K 型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解.【典型例题】【例1】(2019·邢台市第八中学中考模拟)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标. 【例2】(2020·山东初三期末)已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【例3】(2019·山东中考模拟)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB ,tan∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x 2+bx+c 经过A 、B 两点. (1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE .①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.【方法归纳】解决二次函数中直角三角形存在性问题采用方法:1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点;2. 以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1,以已知线段为斜边时,利用K 型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解.【针对练习】1.(2019·四川中考真题)如图,在平面直角坐标系中,抛物线2y ax bx c =++(a≠0)与y 轴交与点C (0,3),与x 轴交于A 、B 两点,点B 坐标为(4,0),抛物线的对称轴方程为x=1. (1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN 的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使△MBN 为直角三角形?若存在,求出t 值;若不存在,请说明理由.2.(2019·四川中考真题)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.3.(2018·吉林中考真题)如图,在平面直角坐标系中,抛物线y=ax 2+2ax ﹣3a (a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E . (1)当a=﹣1时,求抛物线顶点D 的坐标,OE 等于多少; (2)OE 的长是否与a 值有关,说明你的理由; (3)设∠DEO=β,45°≤β≤60°,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设P (m ,n ),直接写出n 关于m 的函数解析式及自变量m 的取值范围.4.(2019·湖南中考真题)如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点. (1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.5.(2019·湖南中考真题)如图,在直角坐标系中有Rt AOB ∆,O 为坐标原点,1,tan 3OB ABO =∠=,将此三角形绕原点O 顺时针旋转90︒,得到/P v s =,二次函数2y x bx c =-++的图象刚好经过,,A B C 三点.(1)求二次函数的解析式及顶点P 的坐标;(2)过定点Q 的直线:3l y kx k =-+与二次函数图象相交于,M N 两点. ①若2PMN S ∆=,求k 的值;②证明:无论k 为何值,PMN ∆恒为直角三角形;③当直线l 绕着定点Q 旋转时,PMN ∆外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.6.(2019·山东中考真题)如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式; (2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.7.(2018·辽宁中考真题)如图,在平面角坐标系中,抛物线C 1:y=ax 2+bx ﹣1经过点A (﹣2,1)和点B (﹣1,﹣1),抛物线C 2:y=2x 2+x+1,动直线x=t 与抛物线C 1交于点N ,与抛物线C 2交于点M . (1)求抛物线C 1的表达式;(2)直接用含t 的代数式表示线段MN 的长;(3)当△AMN 是以MN 为直角边的等腰直角三角形时,求t 的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q 的坐标.8.(2018·广西中考真题)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.9.(2018·四川中考真题)如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.10.(2018·黑龙江中考真题)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y 轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF 的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.11.(2018·湖南中考真题)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的13?若存在,求tan∠MAN的值;若不存在,请说明理由.12.(2016·甘肃中考真题)如图,在平面直角坐标系xOy中,直线y=kx+b与x轴交于点A,与y轴交于点B.已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F 从A点出发,沿着AB方向以√2个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.13.(2017·广西中考真题)如图,抛物线与轴交于两点,与轴的正半轴交于点,其顶点为.(1)写出两点的坐标(用含的式子表示);(2)设,求的值;(3)当是直角三角形时,求对应抛物线的解析式.14.(2020·广州大学附属中学初三月考)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B两点(A 在B 的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.15.(2020·安徽初三期末)如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.16.(2020·四川绵阳实中、绵阳七中初三月考)如图,顶点为(3,3)P 的二次函数图象与x 轴交于点(6,0)A ,点B 在该图象上,OB 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、ON . (1)求该二次函数的关系式.(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题: ①连接OP ,当12OP MN =时,请判断NOB ∆的形状,并求出此时点B 的坐标. ②求证:BNM ONM ∠=∠.17.(2020·广东初三期末)如图,已知直线AB 经过点(0,4),与抛物线y=14x 2交于A ,B 两点,其中点A 的横坐标是2-.(1)求这条直线的函数关系式及点B 的坐标.(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在请说明理由. (3)过线段AB 上一点P ,作PM ∥x 轴,交抛物线于点M ,点M 在第一象限,点N (0,1),当点M 的横坐标为何值时,MN+3MP 的长度最大?最大值是多少?以二次函数与直角三角形问题为背景的解答题【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

将抛物线 y=ax2+bx+c 向右平移 p 个单位,得到的抛物线是 y=a(x-p)2+b(x-p)+c;向左平移 p 个单位,得到的抛 物线是 y=a(x+p)2+b(x+p)+c(即左正右负) ;向上平移 q 个单位,得到 y=ax2+bx+c+q;向下平移 q 个单位,得 到 y=ax2+bx+c-q(即上正下负) 6. 二次函数 y=ax +bx+c 中 a, b, c 的符号的确定.(开口方向有 a 确定,开阔程度有 a 的绝对值确定,越小越开阔;C 为与 Y 轴的交点横坐标,a、b 的符号决定对称轴位置)
S=
②当∠CPQ=90°时,∵△CPQ∽△CBA,∴ ∴
CP CQ , CB CA
10 2t t 25 10 25 5 符合题意。—12 分综合上述,在 P、Q 的移动过程中,当 t s 或 s 时,△PQC ,∴ t 8 10 7 13 7
能为直角三角形。——13 分
B 两点(点 A 在点 B 的左边) 例 7、如图,已知抛物线 C1 : y a x 2 5 的顶点为 P ,与 x 轴相交于 A, ,点 A 的横
y A B
O
D
C
x
解: (1)OA=1,OC=2 则 A 点坐标为(0,1) ,C 点坐标
2
例3图
为(2,0)设直线 AC 的解
析式为 y=kx+b
0 b 1 2k b 0
5 3
1 k 解得 2 b 1
5 8
1 直线 AC 的解析式为 y x 1 2 5 5 ( 5 2)) 或 P3 (0, ) 4 4( 5 2)
A
D N
A
D N
A
D N
A
D N H
B
M 原图
C
B
E
M
C
B
M
F
C
B
M
C
解: (1)由题意知,当 M 、 N 运动到 t 秒时,如图① ,过 D 作 DE ∥ AB 交 BC 于 E 点,则四边形 ABED 是平行四边形. MC NC 10 2t t 50 ∵ AB ∥DE , AB ∥ MN .∴DE ∥ MN .∴ .∴ . .解得 t EC CD 10 3 5 17 (2)分三种情况讨论: DF 4 3 ① 当 MN NC 时,如图② 作 DF BC 交 BC 于 F ,则有 MC 2 FC 即.∵sin C ,∴cos C , CD 5 5 3t 25 ∴10 2t 2 ,解得 t . 5 8 3 60 ② 当 MN MC 时,如图③ ,过 M 作 MH CD 于 H.则 CN 2CH ,∴t 2 10 2t .∴t . 5 17 10 25 60 10 ③ 当 MC CN 时,如图④ .则 10 2t t . t . 综上所述,当 t 、 或 时, △ MNC 为等腰三角形. 3 8 3 17 OABC OA OC OA 1 , OC 2 , xOy 例 3、 如图, 在平面直角坐标系 中, 矩形 的边 在 y 轴的正半轴上, 在 x 轴的正半轴上,
; (2) 顶点式:
; (3) 交点式:
.
b 2 4ac-b2 ,其图像关于直线 x ) + 2a 4a
对称,顶点坐标为
a O 口
x
对 称 轴 顶点坐标 最 增 减 性 值 当 x= 时,y 有最 值 当 x= 时,y 有最 值
在对称轴左侧 在对称轴右侧
y 随 x 的增大而 y 随 x 的增大而
2
二、典例分析
一、与等腰三角形相关 例 1、如图,平面直角坐标系中,四边形 OABC 为矩形,点 A、B 的坐标分别为(6,0) , (6,8) 。动点 M、N 分别从 O、B 同时出发,以每秒 1 个单位的速度运动。其中,点 M 沿 OA 向终点 A 运动,点 N 沿 BC 向终点 C 运动。过点 N 作 NP⊥ BC,交 AC 于 P,连结 MP。已知动点运动了 x 秒。 (1)P 点的坐标为( , ) ; (用含 x 的代数式表示) (2)试求 ⊿ MPA 面积的最大值,并求此时 x 的值。 (3)请你探索:当 x 为何值时,⊿ MPA 是一个等腰三角形?
函数与三角形综合类型题教案
教师姓名 苏 辅导科目 初四数学 授课时间 教材版本 人教版 教辅材料 教师选印 教学目标 1、 学会对函数综合题如何分析的一般规律。掌握二次函数与三角形综合题的解题思路及分析方法。 授课纲要及重、难点提示 通过对典型二次函数综合题的剖析,使其掌握一般的解题分析方法及技巧,提高综合分析解决问题的能力。 重难点是灵活掌握二次函数大型综合题的解题思路及分析方法的掌握。 教学过程 一、复习 1. 二次函数的解析式: (1) 一般式: 2 y=ax 2 +bx+c 通 过 配 方 可 得 y=a(x+ ( , ). 3. 二次函数的图像和性质
1
y C N B
P O M A x
例 2、如图,在梯形 ABCD 中, AD ∥ BC , AD 3 , DC 5 , BC 10 ,梯形的高为 4 .动点 M 从 B 点出发沿线段 BC 以每秒 2 个单位长度的速度向终点 C 运动;动点 N 同时从 C 点出发沿线段 CD 以每秒 1 个单位长度的速度向终点 D 运 动.设运动的时间为 t (秒) . (1)当 MN ∥ AB 时,求 t 的值; (2)试探究: t 为何值时, △ MNC 为等腰三角形.
2 2
5 4
2
5 4
5 4
1 或2 2
例 4.已知抛物线 y=ax 2 +bx-4 的图象与 x 相交与 A、B(点 A 在 B 的左边) ,与 y 轴相交与 C,抛物线过点 A(-1,0) 且 OB=OC.P 是线段 BC 上的一个动点,过 P 作直线 PE⊥x 轴于 E,交抛物线于 F. (1)求抛物线的解析式; (2)若△BPE 与△BPF 的两面积之比为 2∶3 时,求 E 点的坐标; (3)设 OE=t,△CPE 的面积为 S,试求出 S 与 t 的函数关系式;当 t 为何值时,S 有最大值,并求出最大值; (4)在(3)中,当 S 取得最大值时,在抛物线上求点 Q,使得△QEC 是以 EC 为底边的等腰三角形,求 Q 的坐标. y
2
坐标是 1 . (1)求 P 点坐标及 a 的值; (2)如图 1,抛物线 C2 与抛物线 C1 关于 x 轴对称,将抛物线 C2 向左平移,平移后的抛物线记为 C3 , C3 的顶点为 M ,
M 关于点 A 成中心对称时,求 C3 的解析式 y a x h k ; 当点 P ,
C
y
N
B
A Q1
O
E
B
x
Q
P Q2 C F
O M
P
A
x
例5图
例6图
例4图
二、与直角三角形相关
例 5、.如图所示, 四边形 OABC 为直角梯形,A(4,0) ,B(3,4) ,C(0,4) . 点 M 从 O 出发以每秒 2 个单位长 A B 度的速度向 运动;点 N 从 同时出发,以每秒 1 个单位长度的速度向 C 运动.其中一个动点到达终点时,另一个动 点也随之停止运动.过点 N 作 NP 垂直 x 轴于点 P ,连结 AC 交 NP 于 Q,连结 MQ. (1)谁能先到达终点 (填 M 或 N) ;
∵△ECQ∽△CBA,∴ ∴S 与 t 之间的函数关系式为:
3 2 1 1 3 3 5 2 15 5 PC·QE= (10-2t) · t = t +3t—5 分(2)∵ S (t ) ,∴ t s 时,△PQC 的面积 2 2 5 5 2 4 2 5 15 2 最大,最大面积是 cm —7 分(3)在 P、Q 的移动过程中,△PQC 能为直角三角形。分两种情况:—8 分 4 CO CP ①当∠PQC=90°时,∵△CPQ∽△CAB,∴ , CB CA 10 2t t 40 ,∴ t 5 符合题意。—10 分 ∴ 13 10 8
3
解: (1)∵矩形 ABCD 中,AB=6cm,BC=8cm,∴AC=10cm, 又∵运动的时间为 t 秒(0<x<5) ,∴AP=2t cm,CQ=t cm, CP=(10-2t)cm。————————2 分 过 Q 点作 OE⊥AC 于 E 点.
QE CQ , AB CA QE t 3 ∴ ,∴ QE t 6 10 5
5 . 4 (1)求直线 AC 的解析式. (2)在 y 轴上是否存在点 P ,直线 PD 与矩形对角线 AC 交于点 M ,使得 △DMC 为等腰三角形?若存在,直接写出 ....
点 D 在边 OC 上且 OD 所有符合条件的点 P 的坐标;若不存在,请说明理由. (3)抛物线 y x 2 经过怎样平移,才能使得平移后的抛物线过点 D 和点 E(点 E 在 y 轴正半轴上) , 且 △ODE 沿 DE 折叠后点 O 落在边 AB 上 O 处?
x
4
y
C1
N E F Q A H
O
G R
B x
P
C4
解: (1)由抛物线 C1: y a( x 2) 2 5 得顶点 P 的坐标为(2,5)∵ 点 A(-1,0)在抛物线 C1 上∴a
5 . 9
(2)连接 PM,作 PH⊥ x 轴于 H,作 MG⊥ x 轴于 G..∵ 点 P、M 关于点 A 成中心对称,∴ PM 过点 A,且 PA=MA.. ∴ △PAH≌ △MAG..∴ MG=PH=5,AG=AH=3.∴ 顶点 M 的坐标为( 4 ,5)∵ 抛物线 C2 与 C1 关于 x 轴对称,抛物 线 C3 由 C2 平移得到∴ 抛物线 C3 的表达式 y
y 随 x 的增大而 y 随 x 的增大而 ,k = .(要求掌握过程) 明确二次函数的平移规律:
相关文档
最新文档