集合函数综合测试题【含答案】
高中数学必修一第一章《集合与函数概念》单元测试题(含答案)

⾼中数学必修⼀第⼀章《集合与函数概念》单元测试题(含答案)《集合与函数概念》单元测试题(第⼀章)(120分钟150分)⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.集合A={0,1,2},B={x|-1A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N?M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满⾜f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定5.已知⼀次函数y=kx+b为减函数,且kb<0,则在直⾓坐标系内它的⼤致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为⾃变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=?,则实数m的取值范围是( )A.m<4B.m>4C.0D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中⼀个为正偶数,另⼀个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x14.已知a是实数,若集合{x|ax=1}是任何集合的⼦集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本⼤题共6⼩题,共70分.解答时应写出必要的⽂字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2(1)分别求A∩B,(eB)∪A.R(2)已知C={x|a18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)(2015·烟台⾼⼀检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并⽤定义证明..【拓展延伸】定义法证明函数单调性时常⽤变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进⾏因式分解.(2)通分:当原函数是分式函数时,作差后往往进⾏通分,然后对分⼦进⾏因式分解.(3)配⽅:当原函数是⼆次函数时,作差后可考虑配⽅,便于判断符号.21.(12分)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,⼜f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满⾜:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.《集合与函数概念》单元测试题参考答案(第⼀章)(120分钟150分)。
集合综合测试题(基础、好用、值得收藏)

集合综合测试题一、选择题1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为() A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}2.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是图中的()2.设集合A={x|-3≤2x-1≤3},集合B为函数y=lg(x-1)的定义域,则A∩B=() A.(1,2) B.[1,2] C.[1,2) D.(1,2]图1-2-14.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},则图1-2-1中阴影部分所表示的集合为()A.{0,1} B.{1}C.{1,2} D.{0,1,2}5.(2013·韶关模拟)已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁I M=∅,则M∪N等于()A.M B.N C.I D.∅二、填空题6.(2013·梅州模拟)设全集U={-1,0,1,2,3,4},∁U M={-1,1},N={0,1,2,3},则集合M∩N=________.7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.8.(2013·中山模拟)已知集合A={x|x≤a},B={x|1≤x≤2},且A∪∁R B=R,则实数a 的取值范围是________.三、解答题9.(2013·广州模拟)已知函数f(x)=x2-x-2的定义域集合是A,函数g(x)=lg[(x-a)(x -a-1)]的定义域集合是B.(1)求集合A、B;(2)若A∩B=A,求实数a的取值范围.10.已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值;(2)若A⊆∁R B,求实数m的取值范围.11.(2013·佛山调研)集合A={(x,y)|y=-x2+mx-1},B={(x,y)|y=3-x,0≤x≤3},若A∩B是只有一个元素的集合,求实数m的取值范围.解析及答案一、选择题1.【解析】∵∁U A={0,4},B={2,4},∴(∁U A)∪B={0,2,4}.【答案】 C2.【解析】∵M={-1,0,1},N={-1,0},∴N M U.【答案】 B3.【解析】由题意知:B={x|x-1>0}={x|x>1},又∵A={x|-1≤x≤2},∴A∩B={x|1<x≤2}.【答案】 D4.【解析】图中阴影部分所表示的集合为A∩∁U B,又∁U B={x|x<2},A={1,2,3,4,5},∴A ∩∁U B ={1}.【答案】 B5.【解析】 由N ∩∁I M =∅知N ⊆M ,又M ≠N ,∴M ∪N =M .【答案】 A二、填空题6.【解析】 ∵∁U M ={-1,1},∴M ={0,2,3,4},∴M ∩N ={0,2,3}.【答案】 {0,2,3}7.【解析】 ∵∁U A ={1,2},∴A ={0,3},又A ={x ∈U |x 2+mx =0}={0,-m },∴-m =3,∴m =-3.【答案】 -38.【解析】 ∁R B ={x |x <1,或x >2},要使A ∪∁R B =R ,则a ≥2.【答案】 [2,+∞)三、解答题9.【解】 (1)由x 2-x -2≥0⇔x ≤-1或x ≥2,所以A ={x |x ≤-1或x ≥2}.由(x -a )(x -a -1)>0得x <a 或x >a +1,所以B ={x |x <a 或x >a +1}.(2)由A ∩B =A 知A ⊆B ,得⎩⎨⎧a >-1,a +1<2, 所以-1<a <1,所以实数a 的取值范围是(-1,1).10.【解】 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎨⎧m -2=0,m +2≥3. ∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B ,∴m -2>3或m +2<-1,即m >5或m <-3.因此实数m 的取值范围是m >5或m <-3.11.【解】 集合A 表示抛物线上的点,抛物线y =-x 2+mx -1开口向下且过点(0,-1).集合B 表示线段上的点,要使A ∩B 只有一个元素,则线段与抛物线的位置关系有以下两种,如图:由图(1)知,在函数f (x )=-x 2+mx -1中,只要f (3)≥0即可,即m ≥103.由图(2)知,抛物线与直线在x ∈[0,3]上相切,则⎩⎨⎧y =-x 2+mx -1,y =3-x ⇒x 2-(m +1)x +4=0, 由Δ=(m +1)2-16=0,∴m =3或m =-5,当m =3时,切点(2,1)适合;当m =-5时,切点(-2,5)舍去.∴m =3或m ≥103.。
集合与函数测试题(附答案)

已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则集合M 与集合N 的关系是( C )A .M =NB .M NC .N MD .M ∩N =∅2.已知全集U =R ,集合A ={x |x 2-2x -3>0},B ={x |2<x <4},则(∁U A )∩B =( C ) A .{x |-1≤x ≤4} B .{x |2<x ≤3} C .{x |2≤x <3}D .{x |-1<x <4}已知全集U =R ,集合A ={x |lg x ≤0},B ={x |2x ≤1},则∁U (A ∪B )=( B ) A .(-∞,1) B .(1,+∞) C .(-∞,1]D .[1,+∞)函数f (x )=log 2x -1x 的一个零点落在下列哪个区间( B )A .(0,1)B .(1,2)C .(2,3)D .(3,4)已知a 是函数f (x )=2x -log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( B )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .f (x 0)的符号不确定函数f (x )=⎩⎪⎨⎪⎧-x +3a , x <0a x , x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( B )A .(0,1)B .[13,1)C .(0,13]D .(0,23]若函数f (x )=|x |(x -b )在[0,2]上是减函数,则实数b 的取值范围是( D ) A .(-∞,4] B .(-∞,2] C .[2,+∞)D .[4,+∞)函数f (x )=log 2(3x +1)的值域为( A ) A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)函数y =16-4x 的值域是( C ) A .[0,+∞) B .[0,4] C .[0,4) D .(0,4)若关于x 的方程log 12x =m1-m 在区间(0,1)上有解,则实数m 的取值范围是( A )A .(0,1)B .(1,2)C .(-∞,1)∪(2,+∞)D .(-∞,0)∪(1,+∞)设a =log 132,b =log 1213,c =⎝⎛⎭⎫120.3,则( B ) A .a <b <c B .a <c <b C .b <c <aD .b <a <c已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,若设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2011x 1+log 2011x 2+…+log 2011x 2010的值为( B )A .-log 20112010-2B .-1C .log 20112010-1D .1设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x -1,则有( B )A .f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23B .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32D .f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫13定义某种运算S =a ⊗b ,运算原理如框图所示,则式子2⊗ln e +2⊗⎝⎛⎭⎫13-1的值为( A )A .13B .11C .8D .4设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式f (x )+f (-x )x >0的解集为( B )A .(-2,0)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)已知函数f (x )=log a (x +b )的大致图象如图,其中a 、b 为常数,则函数g (x )=a x +b 的大致图象是( B )若指数函数f (x )=a x (a >0,a ≠1)图象上的任意一点P (x 0,y 0)处的导数都大于零,则函数y =xa x|x |的图象的大致形状是( C )若函数f (x )=ka x -a -x (a >0且a ≠1)在(-∞,+∞)上是单调递增的奇函数,则g (x )=log a (x+k )的图象是( C )已知函数f (x )=x 2-4x +3,集合M ={(x ,y )|f (x )+f (y )≤0},集合N ={(x ,y )|f (x )-f (y )≥0},则集合M ∩N 的面积是( C )A.π4 B.π2 C .π D .2π13.已知函数f (x )对任意实数x 都有f (x +3)=-f (x ),又f (4)=-2,则f (2011)=____2____. 已知f (x )=log a x ,(a >0且a ≠1)满足f (9)=2,则f (3a )=_____3___.函数y =a x -1(a >0,且a ≠1)的图象恒过定点A ,若点A 在一次函数y =mx +n 的图象上,其中m ,n >0,则1m +1n的最小值为____4____.定义:F (x ,y )=y x (x >0,y >0),已知数列{a n }满足:a n =F (n ,2)F (2,n )(n ∈N *),若对任意正整数n ,都有a n ≥a k (k ∈N *,k 为常数)成立,则a k 的值为____89____.用二分法求方程x 3-2x -5=0在区间[2,3]上的近似解,取区间中点x 0=2.5,那么下一个有解区间为____[2,2.5]____.设函数f (x )=|x |x +bx +c ,给出下列4个命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③y =f (x )的图象关于点(0,c )对称; ④函数f (x )至多有2个零点.上述命题中的所有正确命题的序号是____①②③____.已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围. A ={x |-1≤x ≤3} B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧ m -2=0m +2≥3,⎩⎪⎨⎪⎧m =2m ≥1,∴m =2. (2)∁R B ={x |x <m -2或x >m +2} A ⊆∁R B ,∴m -2>3或m +2<-1. ∴m >5或m <-3.已知全集U =R ,非空集合A ={x |x -2x -(3a +1)<0},B ={x |x -a 2-2x -a <0}.(1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围.(1)当a =12时,A ={x |x -2x -52<0}={x |2<x <52},B ={x |x -94x -12<0}={x |12<x <94}.∴(∁U B )∩A ={x |x ≤12或x ≥94}∩{x |2<x <52}={x |94≤x <52}.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,得B ={x |a <x <a 2+2}, 当3a +1>2,即a >13时,A ={x |2<x <3a +1},⎩⎪⎨⎪⎧a ≤2a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =∅,符合题意; 当3a +1<2,即a <13时,A ={x |3a +1<x <2}.⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,解得a ≥-12,∴-12≤a <13;综上,a ∈[-12,3-52].已知函数f (x )=e x -k -x ,(x ∈R )(1)当k =0时,若函数g (x )=1f (x )+m的定义域是R ,求实数m 的取值范围;(2)试判断当k >1时,函数f (x )在(k,2k )内是否存在零点. (1)当k =0时,f (x )=e x -x ,f ′(x )=e x -1,令f ′(x )=0得,x =0,当x <0时f ′(x )<0,当x >0时,f ′(x )>0, ∴f (x )在(-∞,0)上单调减,在[0,+∞)上单调增. ∴f (x )min =f (0)=1,∵对∀x ∈R ,f (x )≥1,∴f (x )-1≥0恒成立, ∴欲使g (x )定义域为R ,应有m >-1.(2)当k >1时,f (x )=e x -k -x ,f ′(x )=e x -k -1>0在(k,2k )上恒成立.∴f (x )在(k,2k )上单调增. 又f (k )=e k -k -k =1-k <0,f (2k )=e 2k -k -2k =e k -2k ,令h (k )=e k -2k ,∵h ′(k )=e k -2>0,∴h (k )在k >1时单调增, ∴h (k )>e -2>0,即f (2k )>0,∴由零点存在定理知,函数f (x )在(k,2k )内存在零点. 已知f (x )=ln x +x 2-bx .(1)若函数f (x )在其定义域内是增函数,求b 的取值范围;(2)当b =-1时,设g (x )=f (x )-2x 2,求证函数g (x )只有一个零点. (1)∵f (x )在(0,+∞)上递增,∴f ′(x )=1x +2x -b ≥0,对x ∈(0,+∞)恒成立,即b ≤1x +2x 对x ∈(0,+∞)恒成立,∴只需b ≤⎝⎛⎭⎫1x +2x min , ∵x >0,∴1x +2x ≥22,当且仅当x =22时取“=”,∴b ≤22,∴b 的取值范围为(-∞,22].(2)当b =-1时,g (x )=f (x )-2x 2=ln x -x 2+x ,其定义域是(0,+∞), ∴g ′(x )=1x-2x +1=-2x 2-x -1x =-(x -1)(2x +1)x ,令g ′(x )=0,即-(2x +1)(x -1)x =0,∵x >0,∴x =1,当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0,∴函数g (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减, ∴当x ≠1时,g (x )<g (1),即g (x )<0,当x =1时,g (x )=0. ∴函数g (x )只有一个零点.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)已知集合P ={-1,1,2,3,4,5},Q ={-2,-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)在区域⎩⎪⎨⎪⎧x +y -8≤0x >0y >0内随机任取一点(a ,b ).求函数y =f (x )在区间[1,+∞)上是增函数的概率.(1)∵a ∈P ,∴a ≠0.∴函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数, 当且仅当a >0且2ba ≤1,即2b ≤a .若a =1,则b =-2,-1; 若a =2,则b =-2,-1,1; 若a =3,则b =-2,-1,1; 若a =4,则b =-2,-1,1,2; 若a =5,则b =-2,-1,1,2.所求事件包含基本事件的个数是2+3+3+4+4=16. ∴所求事件的概率为1636=49.(2)由条件知a >0,∴同(1)可知当且仅当2b ≤a 且a >0时, 函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数, 依条件可知试验的全部结果所构成的区域⎩⎨⎧⎭⎬⎫(a ,b )|⎩⎪⎨⎪⎧a +b -8≤0a >0b >0,为△OAB ,所求事件构成区域为如图阴影部分.由⎩⎪⎨⎪⎧a +b -8=0a -2b =0.得交点D ⎝⎛⎭⎫163,83, ∴所求事件的概率为P =12×8×8312×8×8=13.“5·12”汶川大地震是华人心中永远的痛!在灾后重建中拟在矩形区域ABCD 内建一矩形(与原方位一样)的汶川人民纪念广场(如图),另外△AEF 内部有一废墟作为文物保护区不能占用,经测量AB =100m ,BC =80m ,AE =30m ,AF =20m ,如何设计才能使广场面积最大?建立如图所示的直角坐标系,则E (30,0),F (0,20),∴线段EF的方程是x 30+y20=1(0≤x ≤30)在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,PR ⊥CD 于点R ,设矩形PQCR 的面积为S ,则S =|PQ |·|PR |=(100-m )(80-n )又∵m 30+n20=1(0≤m ≤30),∴n =20⎝⎛⎭⎫1-m 30, ∴S =(100-m )⎝⎛⎭⎫80-20+2m3 =-23(m -5)2+180503(0≤m ≤30)∴当m =5m 时,S 有最大值,此时|EP ||PF |=30-55=51.故当矩形广场的两边在BC 、CD 上,一个顶点在线段EF 上,且这个顶点分EF 成时,广场的面积最大.。
集合与函数测试题

集合与函数测试题一、填空题.(每小题有且只有一个正确答案,10×3=30)1、下列各项中不能组成集合的是( )(A )所有正三角形 (B )《数学》教材中所有的习题(C )所有数学难题 (D )所有无理数2、若集合M=}{6|≤x x a=5,则下面结论中正确的是( )(A) }{M a ⊂ (B)M a ⊂ (C)}{M a ∈ (D M a ∉3、设集合S={0,1,2,3,4},集合A={1,2,3},集合B={2,3,4},则(A )B C A C S S ⊆(B )B C A C S S ⊆ (C )B C A C S S ⊆ (D )A C S =B C S4、已知集合A 中有10个元素,集合B 中有8个元素,集合A∩B 中共有4个元素,则集合A ∪B 中共有( )个元素(A ) 14 (B ) 16 (C ) 18 (D )不确定5、下列四组中f(x),g(x)表示相等函数的是( )A .f(x)=x ,g(x)=(x)2B .f(x)=x ,g(x)=3x 3C .f(x)=1,g(x)=x xD .f(x)=x ,g(x)=|x|6、下列函数中,定义域不是R 的是( )A .y =kx +bB .y =k x +1C .y =x 2-cD .y =1x 2+x +1 7、函数y =1x +1的定义域是( ) A .[-1,+∞) B .[-1,0)C .(-1,+∞)D .(-1,0)8、若)()(R x x f y ∈=是奇函数,则下列点一定在函数)(x f y =图象上的是( )A .))(,(a f a - B. ))(,(a f a -- C. ))(,(a f a --- D. ))(,(a f a -9、函数y=f(x)的图象如下图所示,其增区间是( )A .[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4]10、函数f (x )=(a 2-1)x 在R 上是减函数,则a 的取值范围是( )(A )1>a (B )2<a (C )a<2 (D )1<2<a二、填空题(每小题4分,共20分)11、函数y=3232x -的单调递减区间是12、 集合M={y ∣y= x 2 +1,x ∈ R },N={y ∣ y=5- x 2,x ∈ R },则M ∪N=__ .13、已知)132()(2≤≤-++=x a c bx ax x f 是偶函数,则=a ,=b14、若a 23<a2,则a 的取值范围是 。
高一数学必修一集合与函数的概念单元测试题附答案解析

高一数学必修一集合与函数的概念单元测试附答案解析时间:120分钟满分:150分一、选择题本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=A.{0} B.{2} C.{0,2} D.{-2,0}3.fx是定义在R上的奇函数,f-3=2,则下列各点在函数fx图象上的是A.3,-2 B.3,2 C.-3,-2 D.2,-34.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是A.1 B.3 C.5 D.95.若函数fx满足f3x+2=9x+8,则fx的解析式是A.fx=9x+8 B.fx=3x+2 C.fx=-3x-4 D.fx=3x+2或fx=-3x-4 6.设fx=错误!则f5的值为A.16 B.18 C.21 D.247.设T={x,y|ax+y-3=0},S={x,y|x-y-b=0},若S∩T={2,1},则a,b的值为A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-18.已知函数fx的定义域为-1,0,则函数f2x+1的定义域为A.-1,1 C.-1,09.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f0>f1的映射有A.3个B.4个C.5个D.6个10.定义在R上的偶函数fx满足:对任意的x1,x2∈-∞,0x1≠x2,有x2-x1fx2-fx1>0,则当n∈N时,有A.f-n<fn-1<fn+1 B.fn-1<f-n<fn+1C.fn+1<f-n<fn-1 D.fn+1<fn-1<f-n11.函数fx是定义在R上的奇函数,下列说法:①f0=0;②若fx在0,+∞上有最小值为-1,则fx在-∞,0上有最大值为1;③若fx在1,+∞上为增函数,则fx在-∞,-1上为减函数;④若x>0时,fx=x2-2x,则x<0时,fx=-x2-2x.其中正确说法的个数是A.1个 B.2个 C.3个 D.4个12.fx满足对任意的实数a,b都有fa+b=fa·fb且f1=2,则错误!+错误!+错误!+…+错误!=A.1006 B.2014 C.2012 D.1007二、填空题本大题共4小题,每小题5分,共20分.把答案填在题中横线上13.函数y=错误!的定义域为________.14.fx=错误!若fx=10,则x=________.15.若函数fx=x+abx+2a常数a,b∈R是偶函数,且它的值域为-∞,4,则该函数的解析式fx=________.16.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.三、解答题本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.本小题满分10分已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.1求A∪B,U A∩B;2若A∩C≠,求a的取值范围.18.本小题满分12分设函数fx=错误!.1求fx的定义域;2判断fx的奇偶性;3求证:f错误!+fx=0.19.本小题满分12分已知y=fx是定义在R上的偶函数,当x≥0时,fx=x2-2x.1求当x<0时,fx的解析式;2作出函数fx的图象,并指出其单调区间.20.本小题满分12分已知函数fx=错误!,1判断函数在区间1,+∞上的单调性,并用定义证明你的结论.2求该函数在区间1,4上的最大值与最小值.21.本小题满分12分已知函数fx的定义域为0,+∞,且fx为增函数,fx·y=fx+fy.1求证:f错误!=fx-fy;2若f3=1,且fa>fa-1+2,求a的取值范围.22.本小题满分12分某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下表所示的关系:1在所给的坐标图纸中,根据表中提供的数据,描出实数对x,y的对应点,并确定y与x 的一个函数关系式.2设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润1.解析M={x|xx+2=0.,x∈R}={0,-2},N={x|xx-2=0,x∈R}={0,2},所以M∪N={-2,0,2}.答案D2. 解析依题意,得B={0,2},∴A∩B={0,2}.答案C3. 解析∵fx是奇函数,∴f-3=-f3.又f-3=2,∴f3=-2,∴点3,-2在函数fx的图象上.答案A4. 解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y =1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案C5. 解析∵f3x+2=9x+8=33x+2+2,∴fx=3x+2.答案B6. 解析f5=f5+5=f10=f15=15+3=18.答案B7. 解析依题意可得方程组错误!错误!答案C8. 解析由-1<2x+1<0,解得-1<x<-错误!,故函数f2x+1的定义域为错误!.答案B9. 解析当f0=1时,f1的值为0或-1都能满足f0>f1;当f0=0时,只有f1=-1满足f0>f1;当f0=-1时,没有f1的值满足f0>f1,故有3个.答案A10.解析由题设知,fx在-∞,0上是增函数,又fx为偶函数,∴fx在0,+∞上为减函数.∴fn+1<fn<fn-1.又f-n=fn,∴fn+1<f-n<fn-1.答案C11. 解析①f0=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.答案C12. 解析因为对任意的实数a,b都有fa+b=fa·fb且f1=2,由f2=f1·f1,得错误!=f1=2,由f4=f3·f1,得错误!=f1=2,……由f2014=f2013·f1,得错误!=f1=2,∴错误!+错误!+错误!+…+错误!=1007×2=2014.答案B13. 解析由错误!得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14. 解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5不合题意,舍去.∴x=-3.答案-315. 解析fx=x+abx+2a=bx2+2a+abx+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又fx的值域为-∞,4,∴a≠0,b=-2,∴2a2=4.∴fx=-2x2+4.答案-2x2+416. 解析设一次函数y=ax+ba≠0,把错误!和错误!代入求得错误!∴y=-10x+9000,于是当y=400时,x=860.答案86017. 解1A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.A={x|x<2,或x>8}.U∴U A∩B={x|1<x<2}.2∵A∩C≠,∴a<8.18. 解1由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数fx的定义域为{x∈R|x≠±1}.2由1知定义域关于原点对称,f-x=错误!=错误!=fx.∴fx为偶函数.3证明:∵f错误!=错误!=错误!,fx=错误!,∴f错误!+fx=错误!+错误!=错误!-错误!=0.19. 解1当x<0时,-x>0,∴f-x=-x2-2-x=x2+2x.又fx是定义在R上的偶函数,∴f-x=fx.∴当x<0时,fx=x2+2x.2由1知,fx=错误!作出fx的图象如图所示:由图得函数fx的递减区间是-∞,-1,0,1.fx的递增区间是-1,0,1,+∞.20. 解1函数fx在1,+∞上是增函数.证明如下:任取x1,x2∈1,+∞,且x1<x2,fx-fx2=错误!-错误!=错误!,1∵x1-x2<0,x1+1x2+1>0,所以fx1-fx2<0,即fx1<fx2,所以函数fx在1,+∞上是增函数.2由1知函数fx在1,4上是增函数,最大值f4=错误!,最小值f1=错误!.21. 解1证明:∵fx=f错误!=f错误!+fy,y≠0∴f错误!=fx-fy.2∵f3=1,∴f9=f3·3=f3+f3=2.∴fa>fa-1+2=fa-1+f9=f9a-1.又fx在定义域0,+∞上为增函数,∴错误!∴1<a<错误!.22. 解1由题表作出30,60,40,30,45,15,50,0的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则错误!错误!∴y=-3x+1500≤x≤50,且x∈N,经检验30,60,40,30也在此直线上.∴所求函数解析式为y=-3x+1500≤x≤50,且x∈N.2依题意P=yx-30=-3x+150x-30=-3x-402+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
集合与函数测试题

集合与函数测试题一、选择题(每题2分,共20分)1. 集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。
A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 4}2. 函数f(x) = 2x + 3,求f(-1)。
A. -1B. 1C. -5D. 53. 集合C = {x | x是偶数},判断x = 7是否属于C。
A. 属于B. 不属于4. 函数g(x) = x^2 - 4x + 4的最小值是多少?A. -4B. 0C. 4D. 无法确定5. 集合D = {x | x是自然数},求D的补集(相对于实数集R)。
A. {x | x不是自然数}B. {x | x是负数}C. {x | x是无理数}D. 空集二、填空题(每题2分,共20分)6. 集合A = {1, 2, 3},B = {3, 4, 5},求A∩B。
A∩B = {______}。
7. 函数h(x) = x^3 - 3x^2 + 2,求h'(x)。
h'(x) = ______。
8. 如果集合E = {x | x^2 - 5x + 6 = 0},求E中的元素。
E = {______}。
9. 函数k(x) = sin(x) + cos(x),求k'(x)。
k'(x) = ______。
10. 集合F = {x | x^2 < 4},求F的区间表示。
F = ______。
三、简答题(每题10分,共30分)11. 解释什么是函数的单调性,并举例说明。
12. 给定集合G = {x | x是小于10的正整数},求G的所有子集。
13. 证明函数f(x) = x^2在实数集R上是单调递增的。
四、计算题(每题15分,共30分)14. 已知函数f(x) = 3x - 2,求f(x)的反函数,并证明f(f^(-1)(x)) = x。
15. 给定集合H = {x | x是大于0且小于1的实数},求H的所有子集,并计算它们的并集。
集合函数导数综合测试卷

集合函数导数综合测试卷集合函数可以理解为一种将一些集合中的元素映射到一个新集合中的函数。
在高等数学中,研究集合函数的导数是非常重要的。
下面我为你准备了一个综合测试卷,涵盖了集合函数导数的相关知识点。
题一:求下列集合函数的导数。
1. $f(x) = \{ x^2 , x \in [0, 2] \}$2. $g(x) = \{ x^2 - x + 1 , x \in [0, 3] \}$3. $h(x) = \{ \frac{1}{x} , x \in (0, 1] \}$题二:求下列函数的临界点。
1. $f(x) = \{ x^3 - 3x^2 , x \in \mathbb{R} \}$2. $g(x) = \{ x^3 - 3x^2 + 3x - 1 , x \in \mathbb{R} \}$题三:求下列函数的最值。
1. $f(x) = \{ x^2 + 2x - 1 , x \in [-2, 2] \}$2. $g(x) = \{ -x^2 + 4x - 3 , x \in [1, 3] \}$题四:求下列函数的单调区间。
1. $f(x) = \{ x^2 - 2x + 1 , x \in \mathbb{R} \}$2. $g(x) = \{ x^3 - 6x^2 + 9x , x \in \mathbb{R} \}$题五:求下列函数的凸凹区间。
1. $f(x) = \{ x^3 - 3x^2 + 3x - 1 , x \in \mathbb{R} \}$2. $g(x) = \{ \frac{1}{x^2} , x \in (-\infty, 0) \}$题六:证明下列函数具有极值点。
1. $f(x) = \{ x^3 - 3x^2 , x \in \mathbb{R} \}$2. $g(x) = \{ \sin(x) + \cos(x) , x \in \mathbb{R} \}$题七:对下列函数进行分类讨论,并画出图像。
集合测试题及答案

集合测试题及答案一、选择题1. 以下哪个选项不是集合的基本概念?A. 元素B. 子集C. 并集D. 函数2. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的交集是什么?A. {1}B. {2, 3}C. {1, 2, 3}D. {2, 3, 4}3. 如果集合A={1, 2, 3},那么A的幂集有多少个元素?A. 3B. 4C. 7D. 84. 集合A={1, 2, 3},集合B={3, 4, 5},A与B的差集是什么?A. {1, 2}B. {1, 2, 3}C. {3, 4, 5}D. {4, 5}5. 对于任意集合A,以下哪个命题是正确的?A. A是A的子集。
B. A是A的真子集。
C. A是A的交集。
D. A是A的并集。
二、填空题6. 集合的三要素包括:________、________、________。
7. 如果集合A={x | x > 0},那么A的补集在实数集R中表示为________。
8. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的并集是________。
三、简答题9. 请解释什么是集合的笛卡尔积,并给出两个集合A={1, 2}和B={a, b}的笛卡尔积。
10. 请描述如何确定一个元素是否属于一个集合。
四、计算题11. 给定集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},请计算A∪B∩C。
12. 如果集合D={x | x^2 - 5x + 6 = 0},请找出D的所有元素。
答案:一、选择题1. D2. B3. D4. A5. A二、填空题6. 确定性、无序性、互异性7. R - A = {x | x ≤ 0 或 x > 0 且x ≠ 1, 2, 3}8. {1, 2, 3, 4}三、简答题9. 集合的笛卡尔积是指两个集合中元素的有序对的集合。
对于A和B,笛卡尔积是A×B = {(1, a), (1, b), (2, a), (2, b)}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
进贤二中高一数学集合与函数试题
一、选择题:
1、函数1()12f x x x =++-的定义域为( ) A 、[1,2)(2,)-⋃+∞ B 、(1,)-+∞ C 、[1,2)- D 、[1,)-+∞
2、设全集U 是实数集R ,{|||2},{|13}M x x N x x =≥=<<,则图中 阴影部分所表示的集合是 ( C )
A .{|21}x x -<<
B .{|22}x x -<<
C .{|12}x x <<
D .{|2}x x < 3、下列各组函数中,表示同一函数的是( )
A 、2
()1,()1x f x x g x x
=-=- B 、2()||,()()f x x g x x == C 、33(),()f x x g x x == D 、2()2,()4f x x g x x ==
4、下列各式中,正确的个数是( )
①{0}φ=;②{0}φ⊆;③{0}φ∈;④0={0};⑤0{0}∈;
⑥{1}{1,2,3}∈;⑦{1,2}{1,2,3}⊆;⑧{,}{,}a b b a ⊆
A 、1个
B 、2个
C 、3个
D 、4个 6、已知函数)(x f y =,[]b a x ,∈,那么集合()[]{}{}2),(,),(,=∈=x y x b a x x f y y x 中元素的个数为( )
A. 1
B. 0
C. 1或0
D. 1或2
7、下列四个函数中,在区间(0,)+∞上单调递增的函数是( )
A 、()3f x x =-+
B 、2()(1)f x x =+
C 、()|1|f x x =--
D 、1()f x x
= 8、设函数221,11(),()(2)2,1x x f x f f x x x ⎧-≤=⎨+->⎩
则的值为( ) A 、1516 B 、2716- C 、
89
D 、18 9、已知映射f :A →B, A =B =R ,对应法则f :x →y = –x 2+2x ,对于实数k ∈B 在A 中没有 原象,则k 的取值范围是 ( )
A .k >1
B .k ≥1
C .k <1
D .k ≤2
10、设2()
f x x bx c ,且(1)(3)f f ,则 ( ) A .(1)(1)f c f B .(1)
(1)f c f
M U
N
C .(1)
(1)f f c D .(1)(1)f f c
二、填空题: 11、已知集合{(,)|46},{(,)|4},A x y x y B x y x y =+==-=⋂则A B=___________________
12、已知2
(1)2,(1)f x x x f x +=+-=则
13、已知函数()|2|f x x x =-,则函数()y f x =的单调增区间为 。
14、已知集合2222{|190},{|560},{|280}A x x ax a B x x x C x x x =-+-==-+==+-= 满足,A B A C φφ⋂≠⋂=,则实数a 的值为
15、若一系列函数的解析式相同,值域相同,但其定义域不同,则称这一系列函数为“同
族函数”,则解析式为y = x 2,值域为{1,2}的“同族函数”共有 个。
三、解答题: 16、设全集R U =,集合{}0322<--=x x x A ,{}40≤<=x x B ,{}1+<<=a x a x C 。
(Ⅰ)求B ,B A ,)()(B C A C U U ;
(Ⅱ)若)(B A C ⊆求实数a 的取值范围。
17、已知集合M 是满足下列性质的函数)(x f 的全体:在定义域D 内存在0x ,使得)1()()1(00f x f x f +=+成立。
(Ⅰ)函数x
x f 1)(=是否属于集合M ?说明理由: (Ⅱ)若函数b kx x f +=)(属于集合M ,试求实数k 和b 满足的约束条件;
18、(本题12分)已知二次函数2483y x x =-+-。
(1)指出图像的开口方向、对称轴方程、顶点坐标;
(2)画出它的图像,并说明其图像由2y x =-的图像经过
怎样平移得来;
(3)求函数()y f x =在(]0,3x ∈时的值域。
x
y O
19、已知函数x a x f 2)(-=。
(1)讨论)(x f 的奇偶性;(2)判断)(x f 在)0,(-∞上的单调性并用定义证明。
20. 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需要增加投入100元,已知总收益满足函数:21400,0400()280000,400x
x x R x x ,其中x 是仪器的月产量.
(1)将利润y 元表示为月产量x 台的函数;
(2)当月产量为何值时,公司所获得利润最大?最大利润是多少?(总收益=总成本+利润).
21、已知二次函数)0()(2
≠++=a c bx ax x f 的图象过点)1,0(,且与x 轴有唯一的交点)0,1(-。
(1)求)(x f 的表达式;
(2)在(1)的条件下,设函数()()F x f x mx =-,若()[2,2]F x -在区间上是单调函数,求实数m 的取值范围;
(3)设函数()(),[2,2]g x f x kx x =-∈-,记此函数的最小值为()h k ,求()h k 的解析式。
答案:
一、选择题:BACDC
ABCCB 二、11.{(2,2)}- 12.[5,5];[2,3]-- 13.22x x - 114.{|0}2a a a <-=或 15.(1,)+∞ 三、16. 解:(1))3,1(-=A
)4,1(-=B A
),4(]1,()()(+∞--∞=⋂ B C A C U U
(2)可求)3,0(=B A )(B A C ⊆
⎩
⎨⎧≤≤⇒≤+≥∴20310a a a 故实数a 的取值范围为:20≤≤a 。
17. 解:(Ⅰ)D=),0()0,(+∞-∞ ,若M x
x f ∈=1)(,则存在非零实数0x , 使得111100+=+x
x ,即01020=++x x 此方程无实数解,所以函数M x
x f ∉=1)( (Ⅱ)R D =,由M b kx x f ∈+=)(,存在实数0x ,使得
b k b kx b x k +++=++00)1(,解得0=b
所以,实数k 和b 的取值范围是R k ∈,0=b
18略
19. 解:(Ⅰ)函数)(x f 的定义域为{}
0≠x x 关于原点对称。
(Ⅰ)方法1:x a x f 2)(-=,x
a x f 2)(+=- 若)()(x f x f -=,则04=x
,无解,)(x f ∴不是偶函数 若)()(x f x f -=-,则0=a ,显然0=a 时,)(x f 为奇函数
综上,当0=a 时,)(x f 为奇函数;当0≠a 时,)(x f 不具备奇偶性
方法2:函数)(x f 的定义域为{}0≠x x 关于原点对称。
当0=a 时,x x f 2)(-=,x
x f 2)(=-,)()(x f x f -=-∴, )(x f ∴为奇函数:
当0≠a 时,2)1(-=a f ,2)1(+=-a f ,显然)1()1(f f ±≠-
)(x f ∴不具备奇偶性。
(Ⅱ)函数)(x f 在)0,(-∞上单调递增;
证明:任取)0,(,21-∞∈x x 且21x x <,则
2
112211212)(222)2()2()()(x x x x x x x a x a x f x f -=-=---=- )0,(,21-∞∈x x 且21x x <,0,01221>->∴x x x x ,
从而0)(22112>-x x x x ,故)()(12x f x f >, )(x f ∴在)0,(-∞上单调递增。
20、解:(1)由题设,总成本为20000100x +,
则2130020000,0400260000100,
400x x x y x x ⎧-+-≤≤⎪=⎨⎪->⎩
(2)当0400x ≤≤时,21(300)250002
y x =--+, 当300x =时,max 25000y =;
当400x >时,60000100y x =-是减函数,
则600001004002000025000y <-⨯=<.
所以,当300x =时,有最大利润25000元.
21. 解:(Ⅰ)依题意得1=c ,12-=-a
b ,042=-a
c b 解得1=a ,2=b ,1=c ,从而12)(2++=x x x f ;
(Ⅱ)1)2()(2+-+=x k x x F ,对称轴为2
2-=k x ,图象开口向上 当22
2-≤-k 即2-≤k 时,)(x F 在]2,2[-上单调递增, 此时函数)(x F 的最小值12)2()(+=-=k F k g
当2222≤-<-k 即62≤<-k 时,)(x F 在]22,2[--k 上递减,在]2,2
2[-k 上递增 此时函数)(x F 的最小值4
4)22()(2k k k F k g --=-=; 当22
2>-k 即6>k 时,)(x F 在]2,2[-上单调递减, 此时函数)(x F 的最小值k F k g 29)2()(-==;
综上,函数)(x F 的最小值⎪⎪⎩⎪⎪⎨⎧>-≤<----≤+=6
,29.62,442,126)(2k k k k k k k g。