贵州省遵义市汇仁中学2016—2017学年度第二学期八年级数学半期考试卷(含答案)
2016-2017学年贵州省遵义市汇川区八年级下第二次月考数学试卷含答案解析

25.( 8 分)如图,延长 ?ABCD的边 BA 到 E,延长 DC到 F,使 BE=DF.则 AC与 EF互相平分吗?请说明理由.
26.( 10 分)如图,平行四边形 ABCD中, BD⊥AD,∠ A=45°,E、F 分别是 AB、 CD上的点,且 BE=DF,连接 EF交 BD 于 O. ( 1)求证: BO=DO; ( 2)若 EF⊥ AB,延长 EF交 AD 的延长线于 G,当 FG=1时,求 AE的长.
1),若以 O,A,B,C 为顶点的四边形是平行四边形,则 x=
.
15.( 4 分)如图,在 ?ABCD中, AB=2 cm,AD=4cm,AC⊥BC,则△ DBC比△
ABC的周长长
cm.
16.(4 分)在?ABCD中,已知 AB+BC=20,且 AD=8,则 BC=
,CD=
.
17.( 4 分)用 20cm 长的铁丝围成一个平行四边形,使长边比 短边长 2cm,则
它的长边长为
,短边长为
.
18.( 4 分)如图, ?ABCD的对角线 AC和 BD 相交于点 O,那么图中的全等三角
形共有
对.
三、耐心解一解(本大题满分 90 分)
19.( 20 分)计算: ( 1) 3 (2 ﹣4 +3 )
( 2)(
+
﹣ )?
( 3)(7 +2 )2
( 4)( + + )( ﹣ + )
27.( 12 分)如图,在平面直角坐标系中, A(0,20),B 在原点, C( 26,0), D(24,20),动点 P 从点 A 开始沿 AD 边向点 D 以 1cm/s 的速度运动,动点 Q 从点 C 开始沿 CB以 3cm/s 的速度向点 B 运动,P、Q 同时出发, 当其中一点到达 终点时,另一点也随之停止运动, 设运动时间为 ts,当 t 为何值时,四边形 P QCD 是平行四边形?并写出 P、 Q 的坐标.
贵州省遵义市汇川区2016-2017学年八年级下期中数学试卷(有答案)

2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.2.下列运算错误的是()A. +=B.•= C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2 B.2cm2 C.3cm2 D.4cm25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣36.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.58.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.810.若,则x的值等于()A.4 B.±2 C.2 D.±411.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.312.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=.15.若a<<b,且a、b是两个连续的整数,则a b=.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为三角形.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.若x,y为实数,且|x+2|+=0,求()2011.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷参考答案与试题解析一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. +=B.•= C.÷=D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D 、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2 B.2cm2 C.3cm2 D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为:=5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为:=.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2.【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为:=5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=6.【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AB=2CD=2×3=6.故答案为:6.15.若a<<b,且a、b是两个连续的整数,则a b=8.【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC (或AD∥BC)(横线只需填一个你认为合适的条件即可)【考点】L6:平行四边形的判定.【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是1.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣3|+=0,∴x=3,y=﹣3,∴()2018=(﹣1)2018=1.故答案为:1.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为直角三角形.【考点】KS:勾股定理的逆定理;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据二次根式和偶次方的非负性求出a、b的值,根据勾股定理的逆定理判断即可.【解答】解:∵ +(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【考点】79:二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015•(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.20.若x,y为实数,且|x+2|+=0,求()2011.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,所以,()2011=(﹣1)2011=﹣1.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.【考点】LN:中点四边形.【分析】连接BD,再利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【解答】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式÷=•=,当x=时,原式==.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】在RT△ABC中,利用直角三角形的性质,结合已知条件易求∠A=30°,进而再利用30°的角所对的直角边等于斜边的一半,易求BC,再利用勾股定理可求AC.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD=BC.AD∥BC,根据平行线的性质得到∠DAC=∠BCF,推出△ADE≌△BCF,根据全等三角形的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.【考点】L9:菱形的判定;LH:梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【考点】LO:四边形综合题.【分析】(1)如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【解答】解:(1)如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD===.故答案为.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=,CF=BE=,在Rt△OCE中,OC===.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH==,∴OF=OM+MH+FH=++=.∴OF的最大值为.。
贵州省遵义市汇仁中学2016—2017学年度第二学期八年级半期模拟考试卷(含答案)

绝密★启用前贵州省遵义市汇仁中学2016—2017学年度第二学期八年级半期模拟考试卷(含答案)试卷副标题考试范围:xxx ;考试时间:86分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、如图,字母B 所代表的正方形的面积是( )A .12B .194C .13D .1442、下列各式计算正确的是( ) A . B .C .D .3、下列各式是最简二次根式的是( )A .B .C .D .4、以下各组线段为边长能组成直角三角形的是( ) A .4、5、6 B .2、、4 C .11、12、13 D .5,12 ,135、如图所示,在数轴上点A 所表示的数为a ,则a 的值为( )A .B .C .D .6、下列计算正确的是( ) A .B .+=C .D .二、选择题(题型注释)7、若,则( )A .b >3B .b <3C .b≥3D .b≤38、直角三角形中,两直角边分别是12和5,则斜边上的中线长是( ). A .34 B .26 C .6.5 D .8.59、菱形和矩形一定都具有的性质是( )A .对角线相等B .对角线互相垂直C .对角线互相平分且相等D .对角线互相平分10、已知正方形的边长为4cm ,则其对角线长是() A .8cm B .16cm C .32cm D .cm11、能判定四边形ABCD 为平行四边形的是(). A .AB ∥CD ,AD=BC B .∠A=∠B ,∠C=∠DD.AB=AD,CB=CD第II 卷(非选择题)三、填空题(题型注释)12、如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC +BD =24cm ,△OAB 的周长是18cm ,则EF =______cm .13、已知直角三角形两边x 、y 的长满足|x 2-4|+=0,则第三边长为 .14、如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC.若AC=4,则四边形CODE 的周长是_______15、已知菱形两条对角线的长分别为10cm 和16cm ,则这个菱形的面积是______________。
遵义市汇川区八年级下期中数学试卷及答案

2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.2.下列运算错误的是()A. +=B.•=C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2B.2cm2C.3cm2D.4cm25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣36.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.58.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE 等于()A.24 B.12 C.6 D.810.若,则x的值等于()A.4 B.±2 C.2 D.±411.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.312.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= .15.若a<<b,且a、b是两个连续的整数,则a b= .16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC 的形状为三角形.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.若x,y为实数,且|x+2|+=0,求()2011.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD 是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷参考答案与试题解析一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. +=B.•=C.÷=D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2B.2cm2C.3cm2D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0, =﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为:=5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为: =.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE 等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2 .【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为: =5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= 6 .【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AB=2CD=2×3=6.故答案为:6.15.若a<<b,且a、b是两个连续的整数,则a b= 8 .【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC (或AD∥BC)(横线只需填一个你认为合适的条件即可)【考点】L6:平行四边形的判定.【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是 1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣3|+=0,∴x=3,y=﹣3,∴()2018=(﹣1)2018=1.故答案为:1.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC 的形状为直角三角形.【考点】KS:勾股定理的逆定理;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据二次根式和偶次方的非负性求出a、b的值,根据勾股定理的逆定理判断即可.【解答】解:∵ +(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【考点】79:二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015•(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.20.若x,y为实数,且|x+2|+=0,求()2011.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,所以,()2011=(﹣1)2011=﹣1.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.【考点】LN:中点四边形.【分析】连接BD,再利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【解答】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式÷=•=,当x=时,原式==.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】在RT△ABC中,利用直角三角形的性质,结合已知条件易求∠A=30°,进而再利用30°的角所对的直角边等于斜边的一半,易求BC,再利用勾股定理可求AC.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD=BC.AD∥BC,根据平行线的性质得到∠DAC=∠BCF,推出△ADE≌△BCF,根据全等三角形的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD 是菱形.【考点】L9:菱形的判定;LH:梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【考点】LO:四边形综合题.【分析】(1)如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【解答】解:(1)如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD===.故答案为.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=,CF=BE=,在Rt△OCE中,OC===.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH==,∴OF=OM+MH+FH=++=.∴OF的最大值为.。
贵州省遵义市汇川区八年级下期中数学试卷及答案-精选

2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.2.下列运算错误的是()A. +=B.•=C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2 B.2cm2C.3cm2D.4cm25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣36.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.58.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.810.若,则x的值等于()A.4 B.±2 C.2 D.±411.若的整数部分为x,小数部分为y,则的值是()A. B.C.1 D.312.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= .15.若a<<b,且a、b是两个连续的整数,则a b= .16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为三角形.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.若x,y为实数,且|x+2|+=0,求()2011.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD 是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷参考答案与试题解析一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. +=B.•=C.÷=D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2 B.2cm2C.3cm2D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0, =﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为: =5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为: =.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A. B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2 .【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为: =5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= 6 .【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AB=2CD=2×3=6.故答案为:6.15.若a<<b,且a、b是两个连续的整数,则a b= 8 .【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC(或AD∥BC)(横线只需填一个你认为合适的条件即可)【考点】L6:平行四边形的判定.【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是 1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣3|+=0,∴x=3,y=﹣3,∴()2018=(﹣1)2018=1.故答案为:1.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为直角三角形.【考点】KS:勾股定理的逆定理;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据二次根式和偶次方的非负性求出a、b的值,根据勾股定理的逆定理判断即可.【解答】解:∵ +(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【考点】79:二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015•(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.20.若x,y为实数,且|x+2|+=0,求()2011.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,所以,()2011=(﹣1)2011=﹣1.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.【考点】LN:中点四边形.【分析】连接BD,再利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【解答】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式÷=•=,当x=时,原式==.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】在RT△ABC中,利用直角三角形的性质,结合已知条件易求∠A=30°,进而再利用30°的角所对的直角边等于斜边的一半,易求BC,再利用勾股定理可求AC.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD=BC.AD∥BC,根据平行线的性质得到∠DAC=∠BCF,推出△ADE≌△BCF,根据全等三角形的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD 是菱形.【考点】L9:菱形的判定;LH:梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【考点】LO:四边形综合题.【分析】(1)如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【解答】解:(1)如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD===.故答案为.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=,CF=BE=,在Rt△OCE中,OC===.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH==,∴OF=OM+MH+FH=++=.∴OF的最大值为.。
贵州省遵义市汇川区2016-2017学年八年级下期中数学试卷及答案-推荐精品

2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.2.下列运算错误的是()A. +=B.•=C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2B.2cm2C.3cm2D.4cm25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣36.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.58.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.810.若,则x的值等于()A.4 B.±2 C.2 D.±411.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.312.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= .15.若a<<b,且a、b是两个连续的整数,则a b= .16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为三角形.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.若x,y为实数,且|x+2|+=0,求()2011.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D 的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE 为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷参考答案与试题解析一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. +=B.•=C.÷=D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2B.2cm2C.3cm2D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0, =﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为: =5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为:=.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2 .【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为: =5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= 6 .【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AB=2CD=2×3=6.故答案为:6.15.若a<<b,且a、b是两个连续的整数,则a b= 8 .【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC(或AD∥BC)(横线只需填一个你认为合适的条件即可)【考点】L6:平行四边形的判定.【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是 1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣3|+=0,∴x=3,y=﹣3,∴()2018=(﹣1)2018=1.故答案为:1.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为直角三角形.【考点】KS:勾股定理的逆定理;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据二次根式和偶次方的非负性求出a、b的值,根据勾股定理的逆定理判断即可.【解答】解:∵ +(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【考点】79:二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015•(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.20.若x,y为实数,且|x+2|+=0,求()2011.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,所以,()2011=(﹣1)2011=﹣1.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.【考点】LN:中点四边形.【分析】连接BD,再利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH= BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【解答】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式÷=•=,当x=时,原式==.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】在RT△ABC中,利用直角三角形的性质,结合已知条件易求∠A=30°,进而再利用30°的角所对的直角边等于斜边的一半,易求BC,再利用勾股定理可求AC.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD=BC.AD∥BC,根据平行线的性质得到∠DAC=∠BCF,推出△ADE≌△BCF,根据全等三角形的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.【考点】L9:菱形的判定;LH:梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【考点】LO:四边形综合题.【分析】(1)如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【解答】解:(1)如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD===.故答案为.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=,CF=BE=,在Rt△OCE中,OC===.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH==,∴OF=OM+MH+FH=++=.∴OF的最大值为.。
2016-2017学年遵义市汇川区八年级下期中数学试卷(有答案)AKwHAK

2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.2.下列运算错误的是()A. +=B.•= C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2 B.2cm2 C.3cm2 D.4cm25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣36.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.58.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.810.若,则x的值等于()A.4 B.±2 C.2 D.±411.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.312.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=.15.若a<<b,且a、b是两个连续的整数,则a b=.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC 的形状为三角形.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.若x,y为实数,且|x+2|+=0,求()2011.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷参考答案与试题解析一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. +=B.•= C.÷=D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D 、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2 B.2cm2 C.3cm2 D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为:=5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为:=.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2.【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为:=5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=6.【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AB=2CD=2×3=6.故答案为:6.15.若a<<b,且a、b是两个连续的整数,则a b=8.【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC(或AD∥BC)(横线只需填一个你认为合适的条件即可)【考点】L6:平行四边形的判定.【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是1.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣3|+=0,∴x=3,y=﹣3,∴()2018=(﹣1)2018=1.故答案为:1.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC 的形状为直角三角形.【考点】KS:勾股定理的逆定理;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据二次根式和偶次方的非负性求出a、b的值,根据勾股定理的逆定理判断即可.【解答】解:∵ +(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【考点】79:二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015•(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.20.若x,y为实数,且|x+2|+=0,求()2011.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,所以,()2011=(﹣1)2011=﹣1.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.【考点】LN:中点四边形.【分析】连接BD,再利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【解答】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式÷=•=,当x=时,原式==.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】在RT△ABC中,利用直角三角形的性质,结合已知条件易求∠A=30°,进而再利用30°的角所对的直角边等于斜边的一半,易求BC,再利用勾股定理可求AC.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD=BC.AD∥BC,根据平行线的性质得到∠DAC=∠BCF,推出△ADE≌△BCF,根据全等三角形的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.【考点】L9:菱形的判定;LH:梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【考点】LO:四边形综合题.【分析】(1)如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【解答】解:(1)如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD===.故答案为.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=,CF=BE=,在Rt△OCE中,OC===.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH==,∴OF=OM+MH+FH=++=.∴OF的最大值为.。
(超值)贵州省遵义市汇川区八年级下期中数学试卷及答案

2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x 的取值必须满足( )A .x ≥0B .C .D .2.下列运算错误的是( )A . +=B . •=C .÷=D .(﹣)2=2 3.下列四组线段中,可以构成直角三角形的是( )A .1.5,2,2.5B .4,5,6C .2,3,4D .1,,34.若等边△ABC 的边长为2cm ,那么△ABC 的面积为( )A . cm 2B .2cm 2C .3cm 2D .4cm 25.若x=﹣3,则等于( ) A .﹣1 B .1 C .3 D .﹣36.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A 处向B 处爬行,所走的最短路程是( )A .40cmB .20cmC .20cmD .10cm7.如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( )A .4B .3C .5D .4.58.若直角三角形两边分别是3和4,则第三边是( )A .5B .C .5或D .无法确定9.如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD=12,则HE 等于( )A .24B .12C .6D .810.若,则x 的值等于( )A .4B .±2C .2D .±411.若的整数部分为x ,小数部分为y ,则的值是( )A .B .C .1D .3 12.给出下列命题:①在直角三角形ABC 中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= .15.若a<<b,且a、b是两个连续的整数,则a b= .16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC 的形状为三角形.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.若x,y为实数,且|x+2|+=0,求()2011.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD 是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷参考答案与试题解析一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. +=B.•=C.÷=D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2B.2cm2C.3cm2D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0, =﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为:=5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为: =.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE 等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2 .【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为: =5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= 6 .【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AB=2CD=2×3=6.故答案为:6.15.若a<<b,且a、b是两个连续的整数,则a b= 8 .【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3, ∴a=2,b=3, ∴a b =8.故答案为:8.16.四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形还需满足的条件是 AD=BC (或AD ∥BC ) (横线只需填一个你认为合适的条件即可) 【考点】L6:平行四边形的判定. 【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可. 【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC 或AB ∥CD 或∠A=∠C 或∠B=∠D . 故答案为AD=BC (或AB ∥CD ).17.若x ,y 为实数,且满足|x ﹣3|+=0,则()2018的值是 1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用偶次方的性质以及绝对值的性质得出x ,y 的值,进而得出答案.【解答】解:∵|x ﹣3|+=0, ∴x=3,y=﹣3,∴()2018=(﹣1)2018=1.故答案为:1.18.已知a 、b 、c 是△ABC 的三边长且c=5,a 、b 满足关系式+(b ﹣3)2=0,则△ABC 的形状为 直角 三角形.【考点】KS :勾股定理的逆定理;1F :非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据二次根式和偶次方的非负性求出a 、b 的值,根据勾股定理的逆定理判断即可.【解答】解:∵ +(b ﹣3)2=0, ∴a ﹣4=0,b ﹣3=0, 解得:a=4,b=3, ∵c=5, ∴a 2+b 2=c 2, ∴∠C=90°,即△ABC 是直角三角形, 故答案为:直角.三、耐心解一解(本大题满分90分) 19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【考点】79:二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015•(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.20.若x,y为实数,且|x+2|+=0,求()2011.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,所以,()2011=(﹣1)2011=﹣1.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.【考点】LN:中点四边形.【分析】连接BD,再利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【解答】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式÷=•=,当x=时,原式==.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】在RT△ABC中,利用直角三角形的性质,结合已知条件易求∠A=30°,进而再利用30°的角所对的直角边等于斜边的一半,易求BC,再利用勾股定理可求AC.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD=BC.AD∥BC,根据平行线的性质得到∠DAC=∠BCF,推出△ADE≌△BCF,根据全等三角形的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD 是菱形.【考点】L9:菱形的判定;LH:梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【考点】LO:四边形综合题.【分析】(1)如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【解答】解:(1)如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD===.故答案为.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=,CF=BE=,在Rt△OCE中,OC===.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH==,∴OF=OM+MH+FH=++=.∴OF的最大值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●
●
A
B
(第6题图) 遵义市汇仁中学2016—2017学年度第二学期半期考试卷
八年级 数学
一. 细心选一选。
(每小题3分,共36分) 绝密★启用前 注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 一. 细心选一选。
(每小题3分,共36分)
1.要使式子32+x 有意义,字母x 的取值必须满足( ) A .0≥x B .23≥
x C .32≥x D .2
3
-≥x 2.下列运算错误的是( )
A = C 、2(2=
3.下列四组线段中,可以构成直角三角形的是( ).
A .1.5,2,2.5
B .4,5,6
C .2,3,4
D .1 3
4、若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ). A 3cm 2 B 32cm 2 C 33cm 2 D 4cm 2
5.若
,则()
2
11x +-
等于( )
A .-1
B .1
C .3
D .-3
6、点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个 中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程 是( ) A 40 cm B cm C 20 cm D
7.如图,在Rt △ABC C=90°,D 为AC DA=DB=5,又△DAB 的面积为10,那么DC 的长是( )
A .4
B .3
C .5
D .4.5
8.若一个直角三角形的两边长分别是3和4,则第三边长为( )
A.5 B .7 C .5或7 D .无法确定
9.如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD=12,则HE 等于( ) A .24 B .12 C .6 D .8
10. 10=,则x 的值等于( ) A. 4 B. 2± C. 2 D. 4±
11. x ,小数部分为y y -的值是( ) A. 3
12.给出下列命题:
①在直角三角形ABC 中,已知两边长为3和4,则第三边长为5; ②三角形的三边a 、b 、c 满足a 2+c 2=b 2,则∠C=90°;
③△ABC 中,若∠A :∠B :∠C=1:5:6,则△ABC 是直角三角形;
④△ABC 中,若 a :b :c=1:2:,则这个三角形是直角三角形.
其中,正确命题的个数为( )
A .1个
B .2个
C .3个
D .4个
二.用心填一填(每小题4分,共24分)
13.已知一直角三角形,两边长为3和4,则斜边上的中线长为 .
14.如图,在△ABC 中,∠ACB=90°,CD 是AB 边上的中线,若CD=3,则AB=______.
15.若a b ,且a 、b 是两个连续的整数,则a b
= .
16.已知四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形还需满足的条件是 (只需填一个你认为合适的条件即可).
17.若x ,y 为实数,且满足|x -3|0,则(
x y
)2018的值是____. 18.已知a 、b 、c 是△ABC 的三边长且c=5,a 、b 2(3)0b +-=,则△ABC 的形状为 三角形.
三、耐心解一解(本大题满分90分) 4.(15)计算: (1)9+5
﹣3
;
(2)2 (3)()
2016
(﹣)
2015
.
20.(8分)若x ,y 为实数,且|x +2|0,求2011
x y ⎛⎫
⎪
⎝⎭
.
八 年 级 ( ) 班 姓名 : ___________________________ 考号 : _______________________
*************************密*********************************封*******************************线*********************************
21.(8分)如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,
求证:四边形EFGH是平行四边形。
22.(8分)先化简,再求值:
1
1
2-
-
x
x
÷
x
x
x
+
2
2
,其中x=3
23.(8分)如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.
24.(8分)已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:
∠AED=CFB.
25.(10分)如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边
形AECD是菱形.
26.(11分)如图所示,四边形ABCD、DEFG都是正方形,连接AE、CG。
(1)求证:AE=CG;
(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想。
27.(14分)已知Rt△ABD中,边AB=OB=1,∠ABO=90°
问题探究:
(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.
(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.
问题解决:
(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等
边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果
没有,说明理由.
遵义市汇仁中学2016—2017学年度第二学期半期考试卷
八年级数学答题卡
一.细心选一选。
(每小题3分,共36分)
二.用心填一填(每小题4分,共24分)
三、耐心解一解(本大题满分90分)
八
年
级
(
)
班
姓
名
:
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
考
号
:
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
密
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
封
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
线
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
x 12
1
34参考答案
一.细心选一选。
(每小题3分,共36分)
1.D .2.A 3.A .4.A 5.B 6.C 7. B 8.C 9.B 10. C 11.C 12.B 二.用心填一填(每小题4分,共24分)
13.
2
5
或2 14.6. 15.8 16.AD=BC 17.1 18.直角 三、耐心解一解(本大题满分90分)
19.(1)、7;(2)、25
12
;(3)、65-- 20.-1
21. 连接AC,BD 得EH=FG,HG=EF,∴四边形EFGH 是平行四边形 22.化简得 : . ,
23.解:BC= AB .AB=8 ∴BC=4
由勾股定理得:AC=
24.略 25.25.略
26.26.(1)证明略 (2)垂直关系
27.(1)、5;(2)、226+;(3)、2
1
23++.
3。