2015年全国高考文科数学试题及答案-陕西卷
2015年陕西省高考数学试卷(文科)

20.(12 分)如图,椭圆 E: + =1(a>b>0)经过点 A(0,﹣1),且离心率为 . (Ⅰ)求椭圆 E 的方程; (Ⅱ)经过点(1,1),且斜率为 k 的直线与椭圆 E 交于不同的两点 P,Q(均异于点 A),证明:直 线 AP 与 AQ 斜率之和为 2.
21.(12 分)设 fn(x)=x+x2+…+xn﹣1,x≥0,n∈N,n≥2. (Ⅰ)求 fn′(2); (Ⅱ)证明:fn(x)在(0, )内有且仅有一个零点(记为 an),且 0<an﹣ < ( )n.
8.(5 分)对任意向量 、 ,下列关系式中不恒成立的是( )
A.| |≤| || | B.| |≤|| |﹣| ||
C.(
)2=|
|2 D.(
)•(
)= 2﹣ 2
9.(5 分)设 f(x)=x﹣sinx,则 f(x)( )
A.既是奇函数又是减函数 B.既是奇函数又是增函数
C.是有零点的减函数 D.是没有零点的奇函数
13.(5 分)中位数为 1010 的一组数构成等差数列,其末项为 2015,则该数列的首项为
.
14.(5 分)如图,某港口一天 6 时到 18 时的水渠变化曲线近似满足函数 y=3sin( x+φ)+k.据此函
数可知,这段时间水深(单位:m)的最大值为
.
15.(5 分)函数 y=xex 在其极值点处的切线方程为
3
18.(12 分)如图,在直角梯形 ABCD 中,AD∥BC,∠BAD= ,AB=BC= AD=a,E 是 AD 的中点,O 是 AC 与 BE 的交点.将△ABE 沿 BE 折起到如图 2 中△A1BE 的位置,得到四棱锥 A1﹣BCDE.
2015陕西高考数学试题及答案word版

2015陕西高考数学试题及答案word版2015年陕西省高考数学试题(文科)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若集合A={x|x^2+x-2=0},B={x|x^2-3x+2=0},则A∩B=A. {1}B. {2}C. {1,2}D. {-1,2}2. 若复数z满足z^2+z+1=0,则z的实部为A. -1B. 0C. 1D. 23. 若函数f(x)=x^3-3x+1在x=1处取得极值,则f'(x)=A. 3x^2-3B. 3x^2-2C. 3x^2+3D. 3x^2+24. 若直线l:y=kx+b与圆C:x^2+y^2=1相交于点A和点B,且|AB|=√2,则k的取值范围是A. (-∞,-1]∪[1,+∞)B. (-1,1)C. [-1,1]D. (-∞,-1)∪(1,+∞)5. 若等差数列{an}的前n项和为Sn,且S3=3,S6=9,则S9=A. 15B. 12C. 9D. 66. 若a,b,c是等比数列{bn}的连续三项,则A. ac=b^2B. a^2=bcC. ab=c^2D. a^2=c^27. 若函数f(x)=x^2-4x+m在区间[2,+∞)上单调递增,则实数m的取值范围是A. m≥-4B. m≤4C. m≥4D. m≤-48. 若双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的一条渐近线方程为y=√2x,则A. a=bB. a=√2bC. b=√2aD. b=2a9. 若从4名男生和3名女生中选出3人参加比赛,其中至少有1名女生,则不同的选法种数为A. 35B. 42C. 45D. 4810. 若从52张扑克牌中随机抽取一张,抽到红桃的概率为1/4,则A. 有13张红桃B. 有26张红桃C. 有39张红桃D. 有52张红桃11. 若函数f(x)=x^3-3x+1在区间[1,2]上存在零点,则A. f(1)f(2)<0B. f(1)f(2)>0C. f(1)f(2)=0D. f(1)=f(2)12. 若抛物线C:y^2=2px(p>0)的焦点为F,点P在抛物线上,且|PF|=2p,则点P的坐标为A. (p,2p)B. (p,-p)C. (2p,2p)D. (2p,-p)二、填空题:本题共4小题,每小题5分,共20分。
2015年高考文科数学陕西卷

绝密★启用前
7.根据右边框图,当输入 x 为 6 时,输出的 y A .1 C.5 B.2 D.10
(
)
2015 年普通高等学本试卷分为两部分,第一部分为选择题,第二部分为非选择题. 2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应 的试卷类型信息. 3.所有解答必须填写在答题卡上指定区域内,考试结束后,将本试卷和答题卡一并 交回.
.
21.(本小题满分 12 分) 设 f n ( x) x x 2 x n 1 , x≥0 , n Ν , n≥2 . (Ⅰ)求 f n(2) ; (Ⅱ)证明: f n ( x ) 在 (0, ) 内有且仅有一个零点(记为 an ),且 0 an
(
)
(
)
第一部分(共 60 分)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求(本大题共 12 小题, 每小题 5 分,共 60 分). 1.设集合 M {x | x 2 x} , N { x | lg x≤0} ,则 M N A. [0,1] B. (0,1] C. [0,1) D. (,1] ( )
日期 天气 日期 天气
1 晴 16 晴
2 雨 17 阴
3 阴 18 雨
4 阴 19 阴
5 阴 20 阴
6 雨 21 晴
7 阴 22 阴
8 晴 23 晴
9 晴 24 晴
10 晴 25 晴
11 阴 26 阴
12 晴 27 晴
13 晴 28 晴
14 晴 29 晴
15 晴 30 雨
π 6
(Ⅰ)在 4 月份任取一天,估计西安市在该天不下雨的概率; (Ⅱ)西安市某学校拟从 4 月份的一个晴天开始举行连续 2 天的运动会,估计运动会 期间不下雨的概率. 20.(本小题满分 12 分) x2 y 2 2 如图,椭圆 E : 2 2 1(a b 0) 经过点 A(0, 1) ,且离心率为 . a b 2 (Ⅰ)求椭圆 E 的方程; (Ⅱ) 经过点 (1,1) ,且斜率为 k 的直线与椭圆 E 交于不同 的两点 P , Q(均异于点 A ) ,证明:直线 AP 与 AQ 的斜 率之和为 2.
2015年陕西省高考数学试卷(文科)解析

2015年陕西省高考数学试卷(文科)一。
选择题:在每小题给出的四个选项中,只有一项符合题目要求(每小题5分,共60分)1.(5分)(2015•陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]2.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.1673.(5分)(2015•陕西)已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0) B.(1,0)C.(0,﹣1) D.(0,1)4.(5分)(2015•陕西)设f(x)=,则f(f(﹣2))=()A.﹣1 B.C.D.5.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+46.(5分)(2015•陕西)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)(2015•陕西)根据如图框图,当输入x为6时,输出的y=()A.1B.2C.5D.10 8.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣29.(5分)(2015•陕西)设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数10.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q11.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元12.(5分)(2015•陕西)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣二。
2015年陕西省高考数学试卷(文科)

2015年陕西省高考数学试卷(文科)一.选择题:在每小题给出的四个选项中,只有一项符合题目要求(每小题5分,共60分)1.(5分)(2015•陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]2.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.1673.(5分)(2015•陕西)已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)4.(5分)(2015•陕西)设f(x)=,则f(f(﹣2))=()A.﹣1 B.C.D.5.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+46.(5分)(2015•陕西)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.(5分)(2015•陕西)根据如图框图,当输入x为6时,输出的y=()A.1 B.2 C.5 D.108.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣29.(5分)(2015•陕西)设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数 B.既是奇函数又是增函数C.是有零点的减函数 D.是没有零点的奇函数10.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q11.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元12.(5分)(2015•陕西)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣二.填空题:把答案填写在答题的横线上(本大题共4小题,每小题5分,共20分)13.(5分)(2015•陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为.14.(5分)(2015•陕西)如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为.15.(5分)(2015•陕西)函数y=xe x在其极值点处的切线方程为.16.(5分)(2015•陕西)观察下列等式:1﹣=1﹣+﹣=+1﹣+﹣+﹣=++…据此规律,第n个等式可为.三.解答题:解答题应写出文字说明、证明过程或演算步骤(共5小题,共70分)17.(12分)(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.18.(12分)(2015•陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为36,求a的值.19.(12分)(2015•陕西)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期16 17 18 19 20 21 22 23 24 25 26 27 28 29 30天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨20.(12分)(2015•陕西)如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ斜率之和为2.21.(12分)(2015•陕西)设f n(x)=x+x2+…+x n﹣1,x≥0,n∈N,n≥2.(Ⅰ)求f n′(2);(Ⅱ)证明:f n(x)在(0,)内有且仅有一个零点(记为a n),且0<a n﹣<()n.三.请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分[选修4-1:几何证明选讲]22.(10分)(2015•陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.[选修4-4:坐标系与参数方程]23.(2015•陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.[选修4-5:不等式选讲]24.(2015•陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.2015年陕西省高考数学试卷(文科)参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项符合题目要求(每小题5分,共60分)1.(5分)(2015•陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]【考点】并集及其运算.【专题】集合.【分析】求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案.【解答】解:由M={x|x2=x}={0,1},N={x|lgx≤0}=(0,1],得M∪N={0,1}∪(0,1]=[0,1].故选:A.【点评】本题考查了并集及其运算,考查了对数不等式的解法,是基础题.2.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.167【考点】收集数据的方法.【专题】计算题;概率与统计.【分析】利用百分比,可得该校女教师的人数.【解答】解:初中部女教师的人数为110×70%=77;高中部女教师的人数为150×40%=60,∴该校女教师的人数为77+60=137,故选:C.【点评】本题考查该校女教师的人数,考查收集数据的方法,考查学生的计算能力,比较基础.3.(5分)(2015•陕西)已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用抛物线y2=2px(p>0)的准线经过点(﹣1,1),求得=1,即可求出抛物线焦点坐标.【解答】解:∵抛物线y2=2px(p>0)的准线经过点(﹣1,1),∴=1,∴该抛物线焦点坐标为(1,0).故选:B.【点评】本题考查抛物线焦点坐标,考查抛物线的性质,比较基础.4.(5分)(2015•陕西)设f(x)=,则f(f(﹣2))=()A.﹣1 B.C.D.【考点】函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用分段函数的性质求解.【解答】解:∵,∴f(﹣2)=2﹣2=,f(f(﹣2))=f()=1﹣=.故选:C.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意分段函数的性质的合理运用.5.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+4【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】根据几何体的三视图,得出该几何体是圆柱体的一部分,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是圆柱体的一半,∴该几何体的表面积为S几何体=π•12+π×1×2+2×2=3π+4.故选:D.【点评】本题考查了利用空间几何体的三视图求表面积的应用问题,是基础题目.6.(5分)(2015•陕西)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】由cos2α=cos2α﹣sin2α,即可判断出.【解答】解:由cos2α=cos2α﹣sin2α,∴“sinα=cosα”是“cos2α=0”的充分不必要条件.故选:A.【点评】本题考查了倍角公式、简易逻辑的判定方法,考查了推理能力,属于基础题.7.(5分)(2015•陕西)根据如图框图,当输入x为6时,输出的y=()A.1 B.2 C.5 D.10【考点】循环结构.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的x的值,当x=﹣3时不满足条件x≥0,计算并输出y的值为10.【解答】解:模拟执行程序框图,可得x=6x=3满足条件x≥0,x=0满足条件x≥0,x=﹣3不满足条件x≥0,y=10输出y的值为10.故选:D.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的x的值是解题的关键,属于基础题.8.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】由向量数量积的运算和性质逐个选项验证可得.【解答】解:选项A恒成立,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B不恒成立,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C恒成立,由向量数量积的运算可得()2=||2;选项D恒成立,由向量数量积的运算可得()•()=2﹣2.故选:B【点评】本题考查平面向量的数量积,属基础题.9.(5分)(2015•陕西)设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数 B.既是奇函数又是增函数C.是有零点的减函数 D.是没有零点的奇函数【考点】函数的单调性与导数的关系;正弦函数的奇偶性;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】利用函数的奇偶性的定义判断f(x)为奇函数,再利用导数研究函数的单调性,从而得出结论.【解答】解:由于f(x)=x﹣sinx的定义域为R,且满足f(﹣x)=﹣x+sinx=﹣f(x),可得f(x)为奇函数.再根据f′(x)=1﹣cosx≥0,可得f(x)为增函数,故选:B.【点评】本题主要考查函数的奇偶性的判断方法,利用导数研究函数的单调性,属于基础题.10.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q【考点】不等关系与不等式.【专题】不等式的解法及应用.【分析】由题意可得p=(lna+lnb),q=ln()≥ln()=p,r=(lna+lnb),可得大小关系.【解答】解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B【点评】本题考查不等式与不等关系,涉及基本不等式和对数的运算,属基础题.11.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元【考点】简单线性规划的应用.【专题】不等式的解法及应用.【分析】设每天生产甲乙两种产品分别为x,y吨,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.【解答】解:设每天生产甲乙两种产品分别为x,y吨,利润为z元,则,目标函数为z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z max=3x+4y=6+12=18.即每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元,故选:D.。
2015年高考文数真题试卷(陕西卷)

第1页,总13页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………2015年高考文数真题试卷(陕西卷)考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共8题)1. (2015·陕西)设集合M={x|x 2=x},N={x|lgx≤0},则M N ( )A . [0,1]B . (0,1]C . [0,1)D . (-,1]2. (2015·陕西)设f(x)=,f(f(-2))=则( )A . -1B .C .D .3. (2015·陕西)根据右边框图,当输入x为6时,输出的y=( )答案第2页,总13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 1B . 2C . 5D . 104. (2015·陕西)“sin =cos ”是“cos2=0”的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件5. (2015·陕西)设f(x)=lnx, 0<a<b ,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是( )A . q=r<pB . q=r>pC . p=r<qD . p=r>q6. (2015·陕西)已知抛物线y 2=2px(p>0)的准线经过点(-1,1),则抛物线焦点坐标为( ) A . (-1,0) B . (1,0) C . (0,-1) D . (0,1)7. (2015·陕西)设f(x)=x -sinx ,则f(x)( )A . 既是奇函数又是减函数B . 既是奇函数又是增函数C . 是有零点的减函数D . 是没有零点的奇函数8. (2015·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )。
2015年陕西省高考数学试卷文科解析

2015年陕西省高考数学试卷(文科)一.选择题:在每小题给出的四个选项中,只有一项符合题目要求(每小题5分,共60分)1.(5分)(2015•陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]2.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.1673.(5分)(2015•陕西)已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)4.(5分)(2015•陕西)设f(x)=,则f(f(﹣2))=()A.﹣1 B.C.D.5.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+46.(5分)(2015•陕西)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)(2015•陕西)根据如图框图,当输入x为6时,输出的y=()A. 1 B. 2 C. 5 D.10 8.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣29.(5分)(2015•陕西)设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数10.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q11.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元12.(5分)(2015•陕西)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣二.填空题:把答案填写在答题的横线上(本大题共4小题,每小题5分,共20分)13.(5分)(2015•陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为.14.(5分)(2015•陕西)如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为.15.(5分)(2015•陕西)函数y=xe x在其极值点处的切线方程为.16.(5分)(2015•陕西)观察下列等式:1﹣=1﹣+﹣=+1﹣+﹣+﹣=++…据此规律,第n个等式可为.三.解答题:解答题应写出文字说明、证明过程或演算步骤(共5小题,共70分)17.(12分)(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.18.(12分)(2015•陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为36,求a的值.19.(12分)(2015•陕西)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期16 17 18 19 20 21 22 23 24 25 26 27 28 29 30天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨20.(12分)(2015•陕西)如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ斜率之和为2.21.(12分)(2015•陕西)设f n(x)=x+x2+…+x n﹣1,x≥0,n∈N,n≥2.(Ⅰ)求f n′(2);(Ⅱ)证明:f n(x)在(0,)内有且仅有一个零点(记为a n),且0<a n﹣<()n.三.请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分[选修4-1:几何证明选讲]22.(10分)(2015•陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.[选修4-4:坐标系与参数方程]23.(2015•陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.[选修4-5:不等式选讲]24.(2015•陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.2015年陕西省高考数学试卷(文科)参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项符合题目要求(每小题5分,共60分)1.(5分)(2015•陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]考点:并集及其运算.专题:集合.分析:求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案.解答:解:由M={x|x2=x}={0,1},N={x|lgx≤0}=(0,1],得M∪N={0,1}∪(0,1]=[0,1].故选:A.点评:本题考查了并集及其运算,考查了对数不等式的解法,是基础题.2.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.167考点:收集数据的方法.专题:计算题;概率与统计.分析:利用百分比,可得该校女教师的人数.解答:解:初中部女教师的人数为110×70%=77;高中部女教师的人数为40×150%=60,∴该校女教师的人数为77+60=137,故选:C.点评:本题考查该校女教师的人数,考查收集数据的方法,考查学生的计算能力,比较基础.3.(5分)(2015•陕西)已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用抛物线y2=2px(p>0)的准线经过点(﹣1,1),求得=1,即可求出抛物线焦点坐标.解答:解:∵抛物线y2=2px(p>0)的准线经过点(﹣1,1),∴=1,∴该抛物线焦点坐标为(1,0).故选:B.点评:本题考查抛物线焦点坐标,考查抛物线的性质,比较基础.4.(5分)(2015•陕西)设f(x)=,则f(f(﹣2))=()A.﹣1 B.C.D.考点:分段函数的应用;函数的值.专题:函数的性质及应用.分析:直接利用分段函数,由里及外逐步求解即可.解答:解:f(x)=,则f(f(﹣2))=f(2﹣2)=f()=1﹣=1﹣=.故选:C.点评:本题考查分段函数的应用,函数值的求法,考查计算能力.5.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+4考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是圆柱体的一部分,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是圆柱体的一半,∴该几何体的表面积为V几何体=π•12+π×1×2+2×2=3π+4.故选:D.点评:本题考查了利用空间几何体的三视图求表面积的应用问题,是基础题目.6.(5分)(2015•陕西)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:由cos2α=cos2α﹣sin2α,即可判断出.解答:解:由cos2α=cos2α﹣sin2α,∴“sinα=cosα”是“cos2α=0”的充分不必要条件.故选:A.点评:本题考查了倍角公式、简易逻辑的判定方法,考查了推理能力,属于基础题.7.(5分)(2015•陕西)根据如图框图,当输入x为6时,输出的y=()A. 1 B. 2 C. 5 D.10考点:循环结构.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x的值,当x=﹣3时不满足条件x≥0,计算并输出y的值为10.解答:解:模拟执行程序框图,可得x=6x=3满足条件x≥0,x=0满足条件x≥0,x=﹣3不满足条件x≥0,y=10输出y的值为10.故选:D.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的x的值是解题的关键,属于基础题.8.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2考点:平面向量数量积的运算.专平面向量及应用.题:分析:由向量数量积的运算和性质逐个选项验证可得.解答:解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()•()=2﹣2.故选:B点评:本题考查平面向量的数量积,属基础题.9.(5分)(2015•陕西)设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数考点:函数的单调性与导数的关系;正弦函数的奇偶性;正弦函数的单调性.专题:三角函数的图像与性质.分析:利用函数的奇偶性的定义判断f(x)为奇函数,再利用导数研究函数的单调性,从而得出结论.解答:解:由于f(x)=x﹣sinx的定义域为R,且满足f(﹣x)=﹣x+sinx=﹣f(x),可得f(x)为奇函数.再根据f′(x)=1﹣cosx≥0,可得f(x)为增函数,故选:B.点评:本题主要考查函数的奇偶性的判断方法,利用导数研究函数的单调性,属于基础题.10.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q考点:不等关系与不等式.专题:不等式的解法及应用.分析:由题意可得p=(lna+lnb),q=ln()≥ln()=p,r=(lna+lnb),可得大小关系.解答:解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B点评:本题考查不等式与不等关系,涉及基本不等式和对数的运算,属基础题.11.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元考点:简单线性规划的应用.专题:不等式的解法及应用.分析:设每天生产甲乙两种产品分别为x,y顿,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.解答:解:设每天生产甲乙两种产品分别为x,y顿,利润为z元,则,目标函数为z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z max=3x+4y=6+12=18.即每天生产甲乙两种产品分别为2,3顿,能够产生最大的利润,最大的利润是18万元,故选:D.点评:本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.12.(5分)(2015•陕西)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣考点:复数的代数表示法及其几何意义;几何概型.专题:概率与统计;数系的扩充和复数.分析:判断复数对应点图形,利用几何概型求解即可.解答:解:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,它的几何意义是以(1,0)为圆心,1为半径的圆以及内部部分.y≥x的图形是图形中阴影部分,如图:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率:=.故选:C.点评:本题考查复数的几何意义,几何概型的求法,考查计算能力以及数形结合的能力.二.填空题:把答案填写在答题的横线上(本大题共4小题,每小题5分,共20分)13.(5分)(2015•陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为5.考点:等差数列.专题:等差数列与等比数列.分析:由题意可得首项的方程,解方程可得.解答:解:设该等差数列的首项为a,由题意和等差数列的性质可得2015+a=1010×2 解得a=5故答案为:5点评:本题考查等差数列的基本性质,涉及中位数,属基础题.14.(5分)(2015•陕西)如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为8.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由图象观察可得:y min=﹣3+k=2,从而可求k的值,从而可求y max=3+k=3+5=8.解答:解:∵由题意可得:y min=﹣3+k=2,∴可解得:k=5,∴y max=3+k=3+5=8,故答案为:8.点评:本题主要考查了正弦函数的图象和性质,属于基本知识的考查.15.(5分)(2015•陕西)函数y=xe x在其极值点处的切线方程为y=﹣.考点:函数在某点取得极值的条件;利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:求出极值点,再结合导数的几何意义即可求出切线的方程.解答:解:依题解:依题意得y′=e x+xe x,令y′=0,可得x=﹣1,∴y=﹣.因此函数y=xe x在其极值点处的切线方程为y=﹣.故答案为:y=﹣.点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.16.(5分)(2015•陕西)观察下列等式:1﹣=1﹣+﹣=+1﹣+﹣+﹣=++…据此规律,第n个等式可为+…+=+…+.考点:归纳推理;数列的概念及简单表示法.专题:推理和证明.分析:由已知可得:第n个等式含有2n项,其中奇数项为,偶数项为﹣.其等式右边为后n项的绝对值之和.即可得出.解答:解:由已知可得:第n个等式含有2n项,其中奇数项为,偶数项为﹣.其等式右边为后n项的绝对值之和.∴第n个等式为:+…+=+…+.点评:本题考查了观察分析猜想归纳求数列的通项公式方法,考查了推理能力与计算能力,属于基础题.三.解答题:解答题应写出文字说明、证明过程或演算步骤(共5小题,共70分)17.(12分)(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.考点:余弦定理的应用;平面向量共线(平行)的坐标表示.专题:解三角形.分析:(Ⅰ)利用向量的平行,列出方程,通过正弦定理求解A;(Ⅱ)利用A,以及a=,b=2,通过余弦定理求出c,然后求解△ABC的面积.解答:解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.点评:本题考查余弦定理以及宰相肚里的应用,三角形的面积的求法,考查计算能力.18.(12分)(2015•陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为36,求a的值.考点:平面与平面垂直的性质;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(1)运用E是AD的中点,判断得出BE⊥AC,BE⊥面A1OC,考虑CD∥DE,即可判断CD⊥面A1OC.(2)运用好折叠之前,之后的图形得出A1O是四棱锥A1﹣BCDE的高,平行四边形BCDE的面积S=BC•AB=a2,运用体积公式求解即可得出a的值.解答:解:(I)在图1中,因为AB=BC==a,E是AD的中点,∠BAD=,所以BE⊥AC,即在图2中,BE⊥A1O,BE⊥OC,从而BE⊥面A1OC,由CD∥DE,所以CD⊥面A1OC,即A1O是四棱锥A1﹣BCDE的高,根据图1得出A1O=AB=a,∴平行四边形BCDE的面积S=BC•AB=a2,V==a=a3,由a=a3=36,得出a=6.点评:本题考查了平面立体转化的问题,运用好折叠之前,之后的图形,对于空间直线平面的位置关系的定理要很熟练.19.(12分)(2015•陕西)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨考点:概率的应用.专题:应用题;概率与统计.分析:(Ⅰ)在4月份任取一天,不下雨的天数是26,即可估计西安市在该天不下雨的概率;(Ⅱ)求得4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,可得晴天的次日不下雨的概率,即可得出结论.解答:解:(Ⅰ)在4月份任取一天,不下雨的天数是26,以频率估计概率,估计西安市在该天不下雨的概率为;(Ⅱ)称相邻的两个日期为“互邻日期对”,由题意,4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的概率为,从而估计运动会期间不下雨的概率为.点评:本题考查概率的应用,考查学生的计算能力,确定基本事件的个数是关键.20.(12分)(2015•陕西)如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ斜率之和为2.考点:直线与圆锥曲线的综合问题.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)运用离心率公式和a,b,c的关系,解方程可得a,进而得到椭圆方程;(Ⅱ)由题意设直线PQ的方程为y=k(x﹣1)+1(k≠0),代入椭圆方程+y2=1,运用韦达定理和直线的斜率公式,化简计算即可得到结论.解答:解:(Ⅰ)由题设知,=,b=1,结合a2=b2+c2,解得a=,所以+y2=1;(Ⅱ)证明:由题意设直线PQ的方程为y=k(x﹣1)+1(k≠0),代入椭圆方程+y2=1,可得(1+2k2)x2﹣4k(k﹣1)x+2k(k﹣2)=0,由已知得(1,1)在椭圆内,则△>0,设P(x1,y1),Q(x2,y2),x1x2≠0,则x1+x2=,x1x2=,则有直线AP,AQ的斜率之和为k AP+k AQ=+=+=2k+(2﹣k)(+)=2k+(2﹣k)•=2k+(2﹣k)•=2k﹣2(k﹣1)=2.即有直线AP与AQ斜率之和为2.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理,考查直线的斜率公式,属于中档题.21.(12分)(2015•陕西)设f n(x)=x+x2+…+x n﹣1,x≥0,n∈N,n≥2.(Ⅰ)求f n′(2);(Ⅱ)证明:f n(x)在(0,)内有且仅有一个零点(记为a n),且0<a n﹣<()n.考点:导数的加法与减法法则;数列与不等式的综合.专题:导数的概念及应用.分析:(Ⅰ)将已知函数求导,取x=2,得到f n′(2);(Ⅱ)只要证明f n(x)在(0,)内有单调递增,得到仅有一个零点,然后f n(a n)变形得到所求.解答:解:(Ⅰ)由已知,f′n(x)=1+2x+3x2+…+nx n﹣1,所以,①则2f′n(2)=2+2×22+3×23+…+n2n,②,①﹣②得﹣f′n(2)=1+2+22+23+…+2n﹣1﹣n•2n==(1﹣n)2n﹣1,所以.(Ⅱ)因为f(0)=﹣1<0,f n()=﹣1=1﹣2×≥1﹣2×>0,所以f n(x)在(0,)内至少存在一个零点,又f′n(x)=1+2x+3x2+…+nx n﹣1>0,所以f n(x)在(0,)内单调递增,所以f n(x)在(0,)内有且仅有一个零点a n,由于f n(x)=,所以0=f n(a n)=,所以,故,所以0<.点评:本题考查了函数求导、错位相减法求数列的和、函数的零点判断等知识,计算比较复杂,注意细心.三.请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分[选修4-1:几何证明选讲]22.(10分)(2015•陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.考点:直线与圆的位置关系.专题:直线与圆.分析:(Ⅰ)根据直径的性质即可证明:∠CBD=∠DBA;(Ⅱ)结合割线定理进行求解即可求⊙O的直径.解答:证明:(Ⅰ)∵DE是⊙O的直径,则∠BED+∠EDB=90°,∵BC⊥DE,∴∠CBD+∠EDB=90°,即∠CBD=∠BED,∵AB切⊙O于点B,∴∠DBA=∠BED,即∠CBD=∠DBA;(Ⅱ)由(Ⅰ)知BD平分∠CBA,则=3,∵BC=,∴AB=3,AC=,则AD=3,由切割线定理得AB2=AD•AE,即AE=,故DE=AE﹣AD=3,即可⊙O的直径为3.点评:本题主要考查直线和圆的位置关系的应用和证明,根据相应的定理是解决本题的关键.[选修4-4:坐标系与参数方程]23.(2015•陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:(I)由⊙C的极坐标方程为ρ=2sinθ.化为ρ2=2,把代入即可得出;.(II)设P,又C.利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).点评:本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.(2015•陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4} (Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.考点:不等关系与不等式.专题:不等式的解法及应用.分析:(Ⅰ)由不等式的解集可得ab的方程组,解方程组可得;(Ⅱ)原式=+=+,由柯西不等式可得最大值.解答:解:(Ⅰ)关于x的不等式|x+a|<b可化为﹣b﹣a<x<b﹣a,又∵原不等式的解集为{x|2<x<4},∴,解方程组可得;(Ⅱ)由(Ⅰ)可得+=+=+≤=2=4,当且仅当=即t=1时取等号,∴所求最大值为4点评:本题考查不等关系与不等式,涉及柯西不等式求最值,属基础题.参与本试卷答题和审题的老师有:sxs123;刘长柏;qiss;742048;孙佑中;w3239003;lincy;caoqz;maths;sdpyqzh;双曲线;changq(排名不分先后)菁优网2015年6月13日。
2015陕西高考试题及答案

2015陕西高考试题及答案2015年陕西高考试题如下:一、选择题部分1. 已知抛物线y=ax²+bx+c(a≠0)的顶点在y轴上.下列结论错误的是( )A. a=bB. b=0C. c=0D. a=c2. 已知函数f(x)=2x-3的反函数为g(x).下列命题正确的是( )A. f(1)=2B. f(g(x))=xC. 若a>b>0,则f(a)<g(b)D. g(2)=43. 实数x,y满足x+y=2,x²+y²的最小值是( )A. 1B. 2C. 1/2D. 2/34. 设a是常数,且函数f(x)=ax²+2ax+2满足条件:对任意实数x,y 都有f(x+y)=f(x)+f(y).则( )A. f(-1)=f(1)B. f(1)=f(-1)C. f(3)=6aD. f(3)=9a5. n为整数.若n²+n-40>0,n=3k+2(k为整数).则( )A. k>5B. k>4C. k>3D. k>06. 抛物线y=ax²+bx+c(a>0)过点(1,2),则( ).A. a+b+c=3B. a+c=2C. 2a+b+c=3D. 3a+b+c=37. 设函数f(x)=a|x+b|+|x+1|的最小值为4,则( )A. a=-2;b=-1B. a=2;b=1C. a=2;b=-1D. a=-2;b=18. 已知曲线y=4x³±f(x)的焦点在y轴上,则( )A. f(x)=-4x³B. f(x)=4x³C. f(x)=2x³D. f(x)=-2x³9. 已知函数f(x)=x²-2ax+a²,则f(x)有两个零点的条件是( )A. a>0B. a<0C. a=1D. a=210. 已知关于x的方程f(x)=0有两个不同的根,则( )A. 曲线y=f(x)与x轴有两个交点B. 曲线y=f(x)过点(0,0)C. 曲线y=f(x)在x轴上有最大值D. 曲线y=f(x)在x轴上有最小值11. 对任意正整数n,k,均有10k+n<2015.若某两数A、B都符合此规律,求A与B的差的最大值二、解答题部分1. 已知M(x)=-4(x^3)+3(x^2)+12x+5,则x=1时,M(x)在x取不同值时的最大值时多少?解:当x=1时,M(1)=-4+3+12+5=16。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年普通高等学校招生全国统一考试(陕西卷)
文科数学
一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(本大题共10小题,每小题5分,共50分).
1. 设集合2
{|}M x x x ==,{|lg 0}N x x =≤,则M N =U ( )
A .[0,1]
B .(0,1]
C .[0,1)
D .(,1]-∞ 2. 某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的
人数为( )
A .93
B .123
C .137
D .167
(高中部)(初中部)男男女女60%70%
3. 已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )
A .(1,0)-
B .(1,0)
C .(0,1)-
D .(0,1)
4. 设1,0()2,0
x x x f x x ⎧-≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1-
B .
14 C .12 D .32 5. 一个几何体的三视图如图所示,则该几何体的表面积为
( )
A .3π
B .4π
C .24π+
D .34π+
6. “sin cos αα=”是“cos20α=”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要
7. 根据右边框图,当输入x 为6时,输出的y =( )
A .1
B .2
C .5
D .10
8. 对任意向量,a b r r ,下列关系式中不恒成立的是( )
A .||||||a b a b •≤r r r r
B .||||||||a b a b -≤-r r r r
C .22()||a b a b +=+r r r r
D .22()()a b a b a b +-=-r r r r r r
9. 设()sin f x x x =-,则()f x =( )
A .既是奇函数又是减函数
B .既是奇函数又是增函数
C .是有零点的减函数
D .是没有零点的奇函数
10. 设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2
r f a f b =+,则下列关系式中正确的是( )
A .q r p =<
B .q r p =>
C .p r q =<
D .p r q =>
11. 某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的
可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( ) 甲乙原料限额A(吨)
3212B(吨)128
A .12万元
B .16万元
C .17万元
D .18万元 12. 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( )
A .3142π+
B . 112π+
C .1142π-
D . 112π
- 二.填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).
13、中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________
14、如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6
πx +Φ)+k ,据此函数
可知,这段时间水深(单位:m)的最大值为____________.
15、函数x
y xe =在其极值点处的切线方程为____________.
16、观察下列等式: 1-
1122
= 1-1111123434
+-=+ 1-1111111123456456+-+-=++ …………
据此规律,第n 个等式可为______________________.
三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)
17.ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量(,3)m a b =u r 与(cos ,sin )n A B =r 平行.
(Ⅰ)求A ; (Ⅱ)若7,2a b ==求ABC ∆的面积.
18.如图1,在直角梯形ABCD 中,//,,2AD BC BAD AB BC π
∠==12
AD a ==,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE -.
(Ⅰ)证明:CD ⊥平面1
AOC ; (Ⅱ)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为362,求a 的值.
19.随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下: 日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
天气 晴 雨 阴 阴 阴 雨 阴 晴 晴 晴 阴 晴 晴 晴 晴
日期 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
天气 晴 阴 雨 阴 阴 晴 阴 晴 晴 晴 阴 晴 晴 晴 雨
(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;
(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的
概率.
20.如图,椭圆2222:1(0)x y E a b a b
+=>>经过点(0,1)A -,且离心率为22. (Ⅰ)求椭圆E 的方程;
(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点,P Q (均异于点A ),证明:直
线AP 与AQ 的斜率之和为2.
21. 设2()1,, 2.n n f x x x x n N n =+++-∈≥L
(Ⅰ)求(2)n f ';
(Ⅱ)证明:()n f x 在20,3⎛⎫
⎪⎝⎭
内有且仅有一个零点(记为n a ),且1120233n n a ⎛⎫<-< ⎪⎝⎭. 考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目的题是以后的方框涂黑.
22. 选修4-1:几何证明选讲
如图,AB 切O e 于点B ,直线AO 交O e 于,D E 两点,,BC DE ⊥垂足为C . (Ⅰ)证明:CBD DBA ∠=∠ (Ⅱ)若3,2AD DC BC ==,求O e 的直径.
23. 选修4-4:坐标系与参数方程
在直角坐标版权法xOy 吕,直线l 的参数方程为132(32
x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴
的正半轴为极轴建立极坐标系,C e 的极坐标方程为23sin ρθ=.
(Ⅰ)写出C e 的直角坐标方程;
(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标.
24. 选修4-5:不等式选讲
已知关于x 的不等式x a b +<的解集为{|24}x x <<
(Ⅰ)求实数,a b 的值;
(Ⅱ)求12at bt ++的最大值.。