BUK473-60A中文资料
洛阳院美标阀门型号说明

洛阳院美标阀门型号说明1.4阀门及小型设备代号解释1.4.1闸阀(GATE VALVE)、截止阀(GLOBE VALVE)止回阀(CHECK VALVE)、针型阀(NEEDLE GLOBE VALVE) - / 特殊代码(3位)见表1.4.1-8阀芯材质,见表1.4.1-7阀体材质,见表1.4.1-6连接型式,见表1.4.1-5接管壁厚,见表1.2.1-2*传动机构,见表1.4.1-4结构型式,见表1.4.1-3压力等级,见表1.4.1-2阀门类别,见表1.4.1-1注*:只有“连接型式”中为BW时才有此项表1.4.1-1,阀门类别注:每个阀门采用什么标准由“结构型式”确定。
表1.4.1-2, 压力等级注: 每个阀门选用何种材料的垫片和螺栓、螺母由“阀体材料”确定。
对CL900.1500.2500三个等级的阀门,一般采用压力密封阀盖,此时“阀盖垫片”和“阀盖螺栓”项缺省。
等级1a、2a、3a、4a、5a适用于JB标准阀门。
表1.4.1-3,结构型式表1.4.1-4,传动机构表1.4.1-5,连接型式表1.4.1-6,阀体材质/BODY MATERIAL表1.4.1-6,阀体材质(续)/BODY MATERIAL (CONTINUE)表1.4.1-6,阀体材质(续)/BODY MATERIAL (CONTIUE)注: 如果阀门的结构型式为“2”、“8”和“9”,即阀盖为压力密封阀盖,则该表中的“阀盖垫片材料”和“阀盖螺栓材料”栏缺省。
如果阀门的结构型式为“5”,则该表中的“阀杆填料”栏缺省。
表1.4.1-7,阀芯材质表1.4.1-8,特殊代码1.4.2球阀(BALL VALVE) - / -------特殊代码(3位)见表1.4.1-8阀芯材质,见表1.4.2-2阀体材质,见表1.4.1-6连接型式,见表1.4.1-5接管壁厚,见表1.2.1-2*传动机构,见表1.4.1-4结构型式,见表1.4.2-1压力等级,见表1.4.1-2阀门类别:球阀/BALL VALVE,代号-Q注*:只有“连接型式”中为BW时才有此项表1.4.2-1,结构型式表1.4.2-2,阀芯材质表1.4.2-2,阀芯材质(续)1.4.3 旋塞阀(PLUG VALVE) - 阀芯材质,见表1.4.3-2阀体材质,见表1.4.1-6连接型式,见表1.4.1-5接管壁厚,见表1.2.1-2*传动机构,见表1.4.1-4结构型式,见表1.4.3-1压力等级,见表1.4.1-2阀门类别:旋塞阀/PLUG VALVE,代号-P注*:只有“连接型式”中为BW时才有此项表1.4.3-1,结构型式表1.4.3-2,阀芯材质1.4.4 蝶阀(BUTTERFLY VALVE) - 阀芯材质,见表1.4.4-2阀体材质,见表1.4.1-6连接型式,见表1.4.1-5接管壁厚,见表1.2.1-2*传动机构,见表1.4.1-4结构型式,见表1.4.4-1压力等级,见表1.4.1-2阀门类别:蝶阀/BUTTERFLY VALVE,代号-D 注*:只有“连接型式”中为BW时才有此项表1.4.4-1,结构型式表1.4.4-2,阀芯材质1.4.5 疏水阀(STEAM TRAP VALVE)- 阀芯材质,见表1.4.5-2阀体材质,见表1.4.1-6连接型式,见表1.4.1-5结构型式,见表1.4.5-1压力等级,见表1.4.1-2阀门类别:疏水阀/STEAM TRAP VALVE ,代号-S表1.4.5-1,结构型式表1.4.5-2,阀芯材质1.4.6 过滤器(STRAINER) - 阀体材质,见表1.2.1-3连接型式,见表1.4.1-5接管壁厚,见表1.2.1-2*结构型式,见表1.4.6-1压力等级,见表1.3.1-2阀门类别:过滤器(STRAINER),代号-T注*:只有“连接型式”中为BW时才有此项阀芯材质一般为304。
LM4730中文资料

LM4730Stereo 14W Audio Power Amplifier with Mute and Standby ModesGeneral DescriptionThe LM4730is a stereo audio amplifier capable of delivering typically 14W per channel of continuous average output power into a 4Ωor 8Ωload with less than 10%THD+N from 20Hz -20kHz.Each amplifier has an independent smooth transition fade-in/out mute and a power conserving standby mode which can be controlled by external logic.The LM4730has short circuit protection and a thermal shut down feature that is activated when the die temperature exceeds 150˚C.The LM4730also has a under voltage lock out feature for click and pop free power off and on.The LM4730has a wide operating supply range from +/-10V -+/-25V allowing for lower cost unregulated power supplies to be used.Key Specificationsn Output power into 4Ωor 8Ω,10%THD+N 14W (typ)n THD+N at 1kHz with 2X 1W into 8Ω0.02%(typ)n Mute Attenuation 85dB (typ)n PSRR with f RIPPLE =120Hz,V RIPPLE =1V RMS 50dB (typ)n Slew Rate 18V/µs (typ)nStandby Current (+/-17V) 3.5mA (typ)Featuresn Minimal amount of external components necessary n Quiet fade-in/out mute mode n Low current Standby-modeApplicationsn Audio amplifier for high-end stereo TVs n Audio amplifier for component stereo n Audio amplifier for compact stereon Audio amplifier for PC satellite speaker systems n Audioamplifierforself powered speakersConnection DiagramsPlastic Package (Note 12)TO-220Top Marking (Note 12)20059452Top ViewNon-Isolated Package Order Number LM4730TA See NS Package Number TA15A20059474Top ViewU -Wafer Fab Code Z -Assembly Plant CodeXY -Date Code TT -Die Traceability LM4730TA -LM4730TAJuly 2003LM4730Stereo 14W Audio Power Amplifier with Mute and Standby Modes©2003National Semiconductor Corporation Typical Application20059453FIGURE 1.Typical Audio Amplifier Application CircuitL M 4730 2Absolute Maximum Ratings(Notes1, 2)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Supply Voltage|V+|+|V-|50V Common Mode Input Voltage V+or V-Differential Input Voltage50V Output Current Internally Limited Power Dissipation(Note3)40W ESD Susceptability(Note4) 2.0kV ESD Susceptability(Note5)250V Junction Temperature(T JMAX)(Note9)150˚CSoldering InformationT Package(10sec.)260˚C Storage Temperature−40˚C to+150˚C Thermal ResistanceθJA(TA)43˚C/W θJC(TA) 1.5˚C/W Operating Ratings(Notes1,2) Temperature RangeT MIN≤T A≤T MAX−20˚C≤T A≤+85˚C Supply Voltage|V+|+|V-|20V≤V TOTAL≤50VElectrical Characteristics(Notes1,2)The following specifications apply for V+=+17V,V-=−17V and R L=8Ωunless otherwise specified.Limits apply for T A= 25˚C.Symbol Parameter Conditions LM4730Units(Limits)Typical Limit(Note6)(Notes7,8)|V+|+|V-|Power Supply Voltage(Note10)GND−V-≥9V2050V(min) V(max)A M Mute Attenuation85dBP O Output Power(RMS)THD+N=10%(max),f=1kHz|V+|=|V-|=14V,R L=4Ω|V+|=|V-|=17V,R L=8Ω14141212W(min)W(min) THD+N=1%(max),f=1kHz|V+|=|V-|=14V,R L=4Ω|V+|=|V-|=17V,R L=8Ω111199W(min)W(min)THD+N Total Harmonic Distortion+NoiseP O=1W,f=1kHzA V=26dB|V+|=|V-|=14V,R L=4Ω|V+|=|V-|=17V,R L=8Ω0.030.020.50.3%(max)%(max)X talk Channel Separation P O=10Wf=1kHzf=10kHz6560dBdBSR Slew Rate(Note11)V IN=2.0V p-p,t rise=2ns18V/µsI DD Total Quiescent Power SupplyCurrent V CM=0V,V O=0V,I O=0AStandby off(Play Mode)Standby on(Standby Mode)903.51006mA(max)mA(max)V OS Input Offset Voltage V CM=0V,I O=0mA 2.015mV(max)I B Input Bias Current V CM=0V,I O=0mA0.2µAPSRR Power Supply Rejection Ratio V RIPPLE=1V RMS,f RIPPLE=120Hz sinewaveInputs terminated to GND50dBA VOL Open Loop Voltage Gain R L=2kΩ,∆V O=20V110dBe IN Input Noise IHF—A-Weighting Filter 2.08µV(max)R IN=600Ω(Input Referred)StandbyV IL Standby Low Input Voltage Not in Standby Mode(Play)0.8V(max)V IH Standby High Input Voltage In Standby Mode 2.0 2.5V(min)MuteLM47303Electrical Characteristics (Notes 1,2)(Continued)The following specifications apply for V +=+17V,V -=−17V and R L =8Ωunless otherwise specified.Limits apply for T A =25˚C.SymbolParameterConditionsLM4730Units (Limits)Typical Limit (Note 6)(Notes 7,8)V IL Mute Low Input Voltage Not in Mute Mode (Play)0.8V (max)V IHMute High Input VoltageIn Mute Mode2.02.5V (min)Note 1:All voltages are measured with respect to the ground pin,unless otherwise specified.Note 2:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is functional,but do not guarantee specific performance limits.Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits.This assumes that the device is within the Operating Ratings.Specifications are not guaranteed for parameters where no limit is given.However,the typical value is a good indication of a device’s performance.Note 3:The maximum power dissipation must be de-rated at elevated temperatures and is dictated by T JMAX ,θJC ,and the ambient temperature T A .The maximum allowable power dissipation is P DMAX =(T JMAX -T A )/θJC or the number given in the Absolute Maximum Ratings,whichever is lower.For the LM4730,T JMAX =150˚C and the typical θJC is 1.5˚C/W for the TA15A package .Refer to the Thermal Considerations section for more information.Note 4:Human body model,100pF discharged through a 1.5k Ωresistor.Note 5:Machine Model:a 220pF -240pF discharged through all pins.Note 6:Typical specifications are sepcified at 25˚C and represent the parametric norm.Note 7:Tested limits are guaranteed to National’s AOQL (Average Outgoing Quality Level).Note 8:Datasheet min/max specification limits are guaranteed by design,test,or statistical analysis.Note 9:The operating junction temperature maximum is 150˚C.However,the instantaneous Safe Operating Area temperature is 250˚C.Note 10:V -must have at least -9V at its pin with reference to GND in order for the under-voltage protection circuitry to be disabled.In addition,the voltage differential between V +and V -must be greater than 14V.Note 11:The feedback compensation network limits the bandwidth of the closed-loop response causing the skew rate to be reduced by the high frequency roll-off.Without feedback compensation the slew rate is typically larger.Note 12:The LM4730TA package TA15A is a non-isolated package setting the tab of the device and the heat sink to V -potential when the LM4730TA is directly mounted to the heat sink using only thermal compound.If a mica washer is used in addition to thermal compound,θCS (case to sink)is increased,but the heat sink will be electrically isolated from V -.L M 4730 4Bridged Amplifier Application CircuitSingle Supply Application CircuitNote:*Optional components dependent upon specific design requirements.20059405FIGURE 2.Bridged Amplifier Application Circuit20059406FIGURE 3.Single Supply Amplifier Application CircuitLM47305Auxiliary Amplifier Application Circuit20059407FIGURE 4.Special Audio Amplifier Application CircuitL M 4730 6External Components Description(See Figures1-4)Components Functional Description1R B Prevents currents from entering the amplifier’s non-inverting input which may be passed through to the load upon power down of the system due to the low input impedance of the circuitry when the undervoltagecircuitry is off.This phenomenon occurs when the supply voltages are below1.5V.2R i Inverting input resistance to provide AC gain in conjunction with R f.3R f Feedback resistance to provide AC gain in conjunction with R i.4C i(Note13)Feedback capacitor which ensures unity gain at DC.Also creates a highpass filter with R i at f C=1/(2πR i C i).5C S Provides power supply filtering and bypassing.Refer to the Supply Bypassing application section for proper placement and selection of bypass capacitors.6R V(Note13)Acts as a volume control by setting the input voltage level.7R IN(Note13)Sets the amplifier’s input terminals DC bias point when C IN is present in the circuit.Also works with C IN to create a highpass filter at f C=1/(2πR IN C IN).Refer to Figure4.8C IN(Note13)Input capacitor which blocks the input signal’s DC offsets from being passed onto the amplifier’s inputs.9R SN(Note13)Works with C SN to stabilize the output stage by creating a pole that reduces high frequency instabilities.10C SN(Note13)Works with R SN to stabilize the output stage by creating a pole that reduces high frequency instabilities.The pole is set at f C=1/(2πR SN C SN).Refer to Figure4.11L(Note13)Provides high impedance at high frequencies so that R may decouple a highly capacitive load and reduce the Q of the series resonant circuit.Also provides a low impedance at low frequencies to short out R andpass audio signals to the load.Refer to Figure4.12R(Note13)13R A Provides DC voltage biasing for the transistor Q1in single supply operation.14C A Provides bias filtering for single supply operation.15R INP(Note13)Limits the voltage difference between the amplifier’s inputs for single supply operation.Refer to the Clicks and Pops application section for a more detailed explanation of the function of R INP.16R BI Provides input bias current for single supply operation.Refer to the Clicks and Pops application section fora more detailed explanation of the function of R BI.17R E Establishes a fixed DC current for the transistor Q1in single supply operation.This resistor stabilizes the half-supply point along with C A.Note13:Optional components dependent upon specific design requirements.Typical Performance CharacteristicsSupply Current vs Supply VoltagePSRR vs Frequency±17V,VRIPPLE=1V RMS,R L=8Ω,80kHz BW2005946720059464LM4730 7Typical Performance Characteristics(Continued)THD+N vs Frequency±14V,P O =1W/Channel,R L =4Ω,80kHz BWTHD+N vs Frequency±17V,P O =1W/Channel,R L =8Ω,80kHz BW2005946820059469THD+N vs Output Power ±14V,R L =4Ω,80kHz BW THD+N vs Output Power ±17V,R L =8Ω,80kHz BW2005947020059471Output Power vs Supply Voltagef =1kHz,R L =4Ω,80kHz BW Output Power vs Supply Voltagef =1kHz,R L =8Ω,80kHz BW2005946220059463L M 4730 8Typical Performance Characteristics(Continued)Power Dissipation vsOutput Power1%THD(max),R L=4Ω,80kHz BWPower Dissipation vsOutput Power1%THD(max),R L=8Ω,80kHz BW2005946020059461Crosstalk vs Frequency ±14V,PO=10W,R L=4Ω,80kHz BWCrosstalk vs Frequency±17V,PO=10W,R L=8Ω,80kHz BW 2005947220059473Mute Attenuation vs Mute Pin Voltage ±17V,PO=1W,R L=8Ω,80kHz BWStandby Attenuation vsStandby Pin Voltage±17V,PO=1W,R L=8Ω,80kHz BW2005945920059465LM4730 9Typical Performance Characteristics(Continued)Supply Current vs Standby Pin Voltage±17V20059466L M 4730 10Application InformationMUTE MODEBy placing a logic-high voltage on the mute pins,the signal going into the amplifiers will be muted.If the mute pins are left floating or connected to a logic-low voltage,the amplifi-ers will be in a non-muted state.There are two mute pins, one for each amplifier,so that one channel can be muted without muting the other if the application requires such a configuration.Refer to the Typical Performance Character-istics section for curves concerning Mute Attenuation vs Mute Pin Voltage.STANDBY MODEThe standby mode of the LM4730allows the user to drasti-cally reduce power consumption when the amplifiers are idle.By placing a logic-high voltage on the standby pins,the amplifiers will go into Standby Mode.In this mode,the current drawn from the V CC supply is typically less than10µA total for both amplifiers.The current drawn from the V EE supply is typically3.5mA.Clearly,there is a significant re-duction in idle power consumption when using the standby mode.There are two Standby pins,so that one channel can be put in standby mode without putting the other amplifier in standby if the application requires such flexibility.Refer to the Typical Performance Characteristics section for curves showing Supply Current vs.Standby Pin Voltage for both supplies.UNDER-VOLTAGE PROTECTIONUpon system power-up,the under-voltage protection cir-cuitry allows the power supplies and their corresponding capacitors to come up close to their full values before turning on the LM4730such that no DC output spikes occur.Upon turn-off,the output of the LM4730is brought to ground before the power supplies such that no transients occur at power-down.OVER-VOLTAGE PROTECTIONThe LM4730contains over-voltage protection circuitry that limits the output current while also providing voltage clamp-ing,though not through internal clamping diodes.The clamp-ing effect is quite the same,however,the output transistors are designed to work alternately by sinking large current spikes.THERMAL PROTECTIONThe LM4730has a sophisticated thermal protection scheme to prevent long-term thermal stress of the device.When the temperature on the die exceeds150˚C,the LM4730shuts down.It starts operating again when the die temperature drops to about145˚C,but if the temperature again begins to rise,shutdown will occur again above150˚C.Therefore,the device is allowed to heat up to a relatively high temperature if the fault condition is temporary,but a sustained fault will cause the device to cycle in a Schmitt Trigger fashion be-tween the thermal shutdown temperature limits of150˚C and 145˚C.This greatly reduces the stress imposed on the IC by thermal cycling,which in turn improves its reliability under sustained fault conditions.Since the die temperature is directly dependent upon the heat sink used,the heat sink should be chosen such that thermal shutdown will not be reached during normal ing the best heat sink possible within the cost andspace constraints of the system will improve the long-termreliability of any power semiconductor device,as discussedin the Determining the Correct Heat Sink Section.DETERMlNlNG MAXIMUM POWER DISSIPATIONPower dissipation within the integrated circuit package is avery important parameter requiring a thorough understand-ing if optimum power output is to be obtained.An incorrectmaximum power dissipation calculation may result in inad-equate heat sinking causing thermal shutdown and thuslimiting the output power.Equation(1)exemplifies the theoretical maximum powerdissipation point of each amplifier where V CC is the totalsupply voltage.P DMAX=V CC2/2π2R L(1) Thus by knowing the total supply voltage and rated outputload,the maximum power dissipation point can be calcu-lated.The package dissipation is twice the number whichresults from equation(1)since there are two amplifiers ineach LM4730.Refer to the graphs of Power Dissipationversus Output Power in the Typical Performance Charac-teristics section which show the actual full range of powerdissipation not just the maximum theoretical point that re-sults from equation(1).DETERMINING THE CORRECT HEAT SINKThe choice of a heat sink for a high-power audio amplifier ismade entirely to keep the die temperature at a level suchthat the thermal protection circuitry does not operate undernormal circumstances.The thermal resistance from the die(junction)to the outsideair(ambient)is a combination of three thermal resistances,θJC,θCS,andθSA.In addition,the thermal resistance,θJC(junction to case),of the LM4730TA is1.5˚C/ing Ther-malloy Thermacote thermal compound,the thermal resis-tance,θCS(case to sink),is about0.2˚C/W.Since convectionheat flow(power dissipation)is analogous to current flow,thermal resistance is analogous to electrical resistance,andtemperature drops are analogous to voltage drops,thepower dissipation out of the LM4730is equal to the following:P DMAX=(T JMAX−T AMB)/θJA(2) where T JMAX=150˚C,T AMB is the system ambient tempera-ture andθJA=θJC+θCS+θSA.Once the maximum package power dissipation has beencalculated using equation(1),the maximum thermal resis-tance,θSA,(heat sink to ambient)in˚C/W for a heat sink canbe calculated.This calculation is made using equation(3)which is derived by solving forθSA in equation(2).θSA=[(T JMAX−T AMB)−P DMAX(θJC+θCS)]/P DMAX(3) Again it must be noted that the value ofθSA is dependentupon the system designer’s amplifier requirements.If theambient temperature that the audio amplifier is to be workingunder is higher than25˚C,then the thermal resistance for theheat sink,given all other things are equal,will need to besmaller.SUPPLY BYPASSINGThe LM4730has excellent power supply rejection and doesnot require a regulated supply.However,to improve systemperformance as well as eliminate possible oscillations,theLM4730should have its supply leads bypassed with low-inductance capacitors having short leads that are locatedclose to the package terminals.Inadequate power supplybypassing will manifest itself by a low frequency oscillationknown as“motorboating”or by high frequency instabilities.LM473011Application Information(Continued)These instabilities can be eliminated through multiple by-passing utilizing a large tantalum or electrolytic capacitor (10µF or larger)which is used to absorb low frequency varia-tions and a small ceramic capacitor (0.1µF)to prevent any high frequency feedback through the power supply lines.If adequate bypassing is not provided,the current in the supply leads which is a rectified component of the load current may be fed back into internal circuitry.This signal causes distortion at high frequencies requiring that the sup-plies be bypassed at the package terminals with an electro-lytic capacitor of 470µF or more.BRIDGED AMPLIFIER APPLICATIONThe LM4730has two operational amplifiers internally,allow-ing for a few different amplifier configurations.One of these configurations is referred to as “bridged mode”and involves driving the load differentially through the LM4730’s outputs.This configuration is shown in Figure 2.Bridged mode op-eration is different from the classical single-ended amplifier configuration where one side of its load is connected to ground.A bridge amplifier design has a distinct advantage over the single-ended configuration,as it provides differential drive to the load,thus doubling output swing for a specified supply voltage.Consequently,theoretically four times the output power is possible as compared to a single-ended amplifier under the same conditions.This increase in attainable output power assumes that the amplifier is not current limited or clipped.A direct consequence of the increased power delivered to the load by a bridge amplifier is an increase in internal power dissipation.For each operational amplifier in a bridge con-figuration,the internal power dissipation will increase by a factor of two over the single ended dissipation.Thus,for an audio power amplifier such as the LM4730,which has two operational amplifiers in one package,the package dissipa-tion will increase by a factor of four.To calculate the LM4730’s maximum power dissipation point for a bridged load,multiply equation (1)by a factor of four.This value of P DMAX can be used to calculate the correct size heat sink for a bridged amplifier application.Since the inter-nal dissipation for a given power supply and load is in-creased by using bridged-mode,the heatsink’s θSA will have to decrease accordingly as shown by equation (3).Refer to the section,Determining the Correct Heat Sink,for a more detailed discussion of proper heat sinking for a given appli-cation.SINGLE-SUPPLY AMPLIFIER APPLICATIONThe typical application of the LM4730is a split supply am-plifier.But as shown in Figure 3,the LM4730can also be used in a single power supply configuration.This involves using some external components to create a half-supply bias which is used as the reference for the inputs and outputs.Thus,the signal will swing around half-supply much like it swings around ground in a split-supply application.Along with proper circuit biasing,a few other considerations must be accounted for to take advantage of all of the LM4730functions.The LM4730possesses a mute and standby function with internal logic gates that are half-supply referenced.Thus,to enable either the Mute or Standby function,the voltage at these pins must be a minimum of 2.5V above half-supply.In single-supply systems,devices such as microprocessors and simple logic circuits used to control the mute and standby functions,are usually referenced to ground,not half-supply.Thus,to use these devices to control the logic circuitry of the LM4730,a “level shifter,”like the one shown in Figure 5,must be employed.A level shifter is not needed in a split-supply configuration since ground is also half-supply.When the voltage at the Logic Input node is 0V,the 2N3904is “off”and thus resistor R c pulls up mute or standby input to the supply.This enables the mute or standby function.When the Logic Input is 5V,the 2N3904is “on”and consequently,the voltage at the collector is essentially 0V.This will disable the mute or standby function,and thus the amplifier will be in its normal mode of operation.R shift ,along with C shift ,creates an RC time constant that reduces transients when the mute or standby functions are enabled or disabled.Additionally,R shift limits the current supplied by the internal logic gates of the LM4730which insures device reliability.Refer to the Mute Mode and Standby Mode sections in the Application Information section for a more detailed description of these functions.CLICKS AND POPSIn the typical application of the LM4730as a split-supply audio power amplifier,the IC exhibits excellent “click”and “pop”performance when utilizing the mute and standby modes.In addition,the device employs Under-Voltage Pro-tection,which eliminates unwanted power-up and power-down transients.The basis for these functions are a stable and constant half-supply potential.In a split-supply applica-tion,ground is the stable half-supply potential.But in a single-supply application,the half-supply needs to charge up just like the supply rail,V CC .This makes the task of attaining a clickless and popless turn-on more challenging.Any un-even charging of the amplifier inputs will result in output clicks and pops due to the differential input topology of the LM4730.20059412FIGURE 5.Level Shift CircuitL M 4730 12Application Information(Continued)To achieve a transient free power-up and power-down,the voltage seen at the input terminals should be ideally the same.Such a signal will be common-mode in nature,and will be rejected by the LM4730.In Figure3,the resistor R INP serves to keep the inputs at the same potential by limiting the voltage difference possible between the two nodes.This should significantly reduce any type of turn-on pop,due to an uneven charging of the amplifier inputs.This charging is based on a specific application loading and thus,the system designer may need to adjust these values for optimal perfor-mance.As shown in Figure3,the resistors labeled R BI help bias up the LM4730off the half-supply node at the emitter of the 2N3904.But due to the input and output coupling capacitors in the circuit,along with the negative feedback,there are two different values of R BI,namely10kΩand200kΩ.These resistors bring up the inputs at the same rate resulting in a popless turn-on.Adjusting these resistors values slightly may reduce pops resulting from power supplies that ramp extremely quick or exhibit overshoot during system turn-on. PROPER SELECTION OF EXTERNAL COMPONENTS Proper selection of external components is required to meet the design targets of an application.The choice of external component values that will affect gain and low frequency response are discussed below.The gain of each amplifier is set by resistors R f and R i for the non-inverting configuration shown in Figure1.The gain is found by Equation(4)below:A V=1+R f/R i(V/V)(4) For best noise performance,lower values of resistors are used.A value of1kΩis commonly used for R i and then setting the value of R f for the desired gain.For the LM4730 the gain should be set no lower than10V/V and no higher than50V/V.Gain settings below10V/V may experienceinstability and using the LM4730for gains higher than50V/Vwill see an increase in noise and THD.The combination of R i with C i(see Figure1)creates a highpass filter.The low frequency response is determined bythese two components.The-3dB point can be found fromEquation(5)shown below:f i=1/(2πR i C i)(Hz)(5)If an input coupling capacitor is used to block DC from theinputs as shown in Figure4,there will be another high passfilter created with the combination of C IN and R IN.Whenusing a input coupling capacitor R IN is needed to set the DCbias point on the amplifier’s input terminal.The resulting-3dB frequency response due to the combination of C IN andR IN can be found from Equation(6)shown below:f IN=1/(2πR IN C IN)(Hz)(6)PHYSICAL IC MOUNTING CONSIDERATIONSMounting of the TO-220package to a heat sink must bedone such that there is sufficient pressure from the mountingscrew to insure good contact with the heat sink for efficientheat flow.Over tightening the mounting screw will cause theTO-220package to warp reducing contact area with the heatsink.Less contact with the heat sink will increase the thermalresistance from the TO-220package case to the heat sink(θCS)resulting in higher operating die temperatures andpossible unwanted thermal shut down activation.Extremeover tightening of the mounting screw will cause severephysical stress resulting in cracked die and catastrophic ICfailure.The recommended maximum mounting screw torqueis40inch-lbs or3.3foot-lbs(4.5newton-meter).Additionally,if the mounting screw is used to force the TO-220package into correct alignment with the heat sink,pack-age stress will be increased.This increase in package stresswill result in reduced contact area with the heat sink increas-ing die operating temperature and possible catastrophic ICfailure.LM473013Application Information(Continued)20059458FIGURE 6.Reference PCB SchematicL M 4730 14Application Information(Continued)LM4730REFERENCE BOARD ARTWORKComposite ViewSilk Screen2005945420059455Top Layer Bottom Layer2005945620059457LM473015Application Information(Continued)BILL OF MATERIALS FOR REFERENCE PCBSymbol Value ToleranceType/DescriptionCommentsR IN1,R IN247k Ω5%1/4Watt R B1,R B21k Ω1%1/4Watt R F1,R F220k Ω1%1/4Watt R i1,R i21k Ω1%1/4Watt R SN1,R SN24.7Ω5%1/4Watt R G 2.7Ω5%1/4WattC IN1,C IN21µF 10%Metallized Polyester Film C i1,C i247µF 20%Electrolytic Radial /35V C SN1,C SN20.1µF 20%Monolithic Ceramic C V 0.1µF 20%Monolithic Ceramic C M 10µF 20%Electrolytic Radial /16V C S1,C S20.1µF 20%Monolithic Ceramic C S3,C S410µF 20%Electrolytic Radial /35V C S5,C S61,000µF20%Electrolytic Radial /35V S 1,S 2SPDT (on-on)SwitchJ 1,J 2Non-switched PC Mount RCA JackJ 4,J 7,J 8PCB Banana Jack-BLACK J 3,J 5,J 6,J 9PCB Banana Jack-RED U 115lead TO-220Power Socket U 2LM340,5V Fixed Regulator,TO-263package (TS3B)L M 4730 16。
4730标准

全国锅炉压力容器标准化技术委员会 2005 年 3 月
1
标准对应 部分
JB 4730.2
JB 4730.3
JB 4730.4 JB 4730.3
承压设备无损检测审查意见汇总处理表
条款号
意见内容
提出人 结论意见
4.1.5 6.1.7、6.1.8 4.11.3 4.1
6
标准对应 部分
JB 4730.1 JB 4730.5 JB 4730.6
JB 4730.2
JB 4730.1 JB 4730.2
条款号
意见内容
提出人
本部分适用于在制和在用金属材料制锅炉、压力容器及压力管道
(含管道元件)的无损检测。改成本部分适用于在制和在用金属材
1
质的锅炉、压力容器(含气瓶)及压力管道(含管道元件)的无损
第二段中的数值“50kV”、“40kV”、“30kV”应为“500kV”、“400kV”、 “300kV”。 图 1 纵坐标“100kV”应向下一格。 表 4 中射线源栏“X 射线(1MeV~MeV)”应“X 射线(1MeV~4MeV)”
武汉锅 股份有 公司技 开发部
炉 限 术
表 18 中,缺陷长径栏“3~8”应为“4~8”;
黑度大的圆形缺陷定义为深孔缺陷当焊接接头存在深孔缺陷时接头质量评为iv采纳已作修改16标准对应部分条款号意见内容提出人结论意见处理意见备注jb473035122对接接头的超声检测中探头的选择表18试块的适用范围表17距离波幅曲线灵敏度的选择表19表20焊缝质量等级评定表23等都是以120mm为界限只有在5122条不同检测级别的检测要求中是以100mm为分界线因此建议将100mm改为120mm这样更便于记忆与操作
Agilent E4406A 矢量信号分析仪商品说明书

1981Agilent E4406AVector Signal AnalyzerAccuracyS p e e d2Fast and accurate measurements To stay competitive, wireless equipment manufacturers need flexible test equipment capable of testing different formats with little change in set-up. The Agilent E4406A vector signal analyzer (VSA) is the perfect fit, offering the best combination of speed and accuracy for making one-button,standards-based measurements.2.5G and 3G formatsFor engineers developing next-generation wireless components and systems, the E4406A provides W-CDMA, cdma2000,1xEV-DO and EDGE/GSM formats. Using one-button measurements, engineers can quickly verify conformance to these new formats. As the standards have evolved, we have continued to enhance existing measurement personalities, and add new ones. The modular architecture of the E4406A makes it simple for you to upgrade and be ready for the latest standards.You develop the wireless future…Easy to useMulti-format3…we provide the signal analysis.An investment for your future The number of wireless technologies deployed around the world is growing and the demand for any particular format can change quickly. The E4406A offers format and frequency flexibility.Comprehensive signal analysis Speeding up production means being ready to manufacture anything and lose no time doing it. The E4406A easily adapts to virtually any popular format:•W-CDMA •cdma2000•1xEV-DO •cdmaOne •EDGE •GSM •NADC •PDC •iDEN •Spectrum •Waveform“We have decreased the (transmitter power calibration)test time by 25%.”–T est Systems Designer4Built for speed…Fast standards-based measurements As a wireless system or componentmanufacturer, you are under pressure to increase throughput while minimizing capital investments. Long test times can severely limit your manufacturing throughput, so we designed the E4406A.Since its introduction, progressive enhancements to the E4406A ensure its performance keeps pace with the ever-increasing need for speed.Today's E4406A is faster than ever. For example, the W-CDMA adjacent channel power ratio (ACPR) measurement is now nearly eight times faster than it used to be.Output radio frequency spectrum (ORFS) is two times faster, W-CDMA code domain power (CDP) is five times faster, and other measurements have improved as well.The E4406A transmitter power calibration uses time record data and built-in algorithms to provide complete transmitter level calibration with incredible speed – with all the accuracy you expect from the affordably-priced E4406A.In addition to high-speed throughput and accuracy in the manufacturing environment,the E4406A is designed to allow research and development engineers to quickly obtain results with minimal keystrokes.The E4406A delivers a logical user interface and a wealth of quick “one button” measurments, enabling designers to quickly try multiple test without getting bogged down in crypitic menus. The E4406A interface provides the edge needed to expediently evaluate new designs and successfully meet the demands of today's competitive environment.Base station transceiver suite of testsTypical spectrum analyzerNow even faster…without giving up accuracy.Fast spectrum measurementsThe E4406A features pre-configured, one-button measurements for many cellular standards and can also be used for narrowband spectrum measurements. Manufacturers can expect to make inter-modulation distortion and other amplitude measurements up to three times faster using the E4406A. AccuracyYou don’t need to reduce measurementspeed to get accurate results. Superiorabsolute level accuracy of ±0.6 dB(±0.4 dB typical) provides unmatchedperformance and minimizes test uncertainty.Combined with a linearity of ±0.25 dBover a 76 dB range, the E4406A is astate-of-the-art measurement tool.Absolute level accuracyNarrow span spectrum measurement over GPIB E4406A VSA spectrum analyzer25 updates/second Typicalspectrumanalyzer56The E4406A VSA…Focused applications including EDGE, GSM,W-CDMA, cdma2000, 1xEV-DO, cdmaOne,and NADC as well as narrow-span spectrum and waveform analysisBaseband measurements with balanced/unbalanced multiple impedance inputsLarge,high-resolution, color display makes viewing multiple traces easyZoomfeature allows users to display selected measurement windowsAutomatic alignment ensures accurate measurement resultsOne-button,standards-based measurements7…comprehensive signal analysis.High-speed LAN, parallel, and GPIB ports provide speed and flexibility whenIntuitive key strokesBuilt-in floppy disk drive provides PC compatibility and data archivingManufacturing8Standards complianceIn manufacturing, you need straightforward pass/fail verification of critical specifications.With built-in test limits you don ’t have to keep track of every standard. The E4406A performs tests to the requirements of current industry standards with free, easy-to-install, firmware updates.Speed and throughputIn the world of high-speed manufacturing every millisecond counts. Identify your throughput restrictions and if measurement speed is creating a bottleneck, consider the significant speed advantage of the E4406A.Transmitter and receiver testingIn combination with the Agilent E4438C ESG vector signal generator, the E4406A offers base station receiver and transmitter testing for major 2G, 2.5G, and 3G wireless formats.The E4406A combined with an E4438C is a test solution that provides the required flexibility, without compromising accuracy, for maximum throughput in base station production with the ability to migrate to new formats.Designed for manufacturing…Development9Verify next-generation designs For R&D engineers developing next-generation wireless components and systems, the E4406A is a low-cost tool that quickly verifies conformance. Your investment is secure because the E4406A has a modular architecture – making it easy to upgrade to the latest standards.Characterize using leading test methodsDigital modulation presents new challenges to amplifier manufacturers.Designers need effective methods to quickly characterize digital signals. The E4406A ’s complementary cumulative-distribution function (CCDF) is useful for determining a signal ’s power statistics,revealing the power peaks relative to the average power for assessing linearity requirements.Flexible power measurements Multicarrier power amplifier (MCPA)designers are faced with new measurement challenges. Designers must characterize intermodulation distortion at many frequency offsets and evaluate the effects of different modulation formats over a wide dynamic range. The E4406A features a fully-configurable ACP measurement that can test up to five frequency offsets and be optimized for dynamic range or speed.…and product development.10GSM with EDGE (Option 202)The EDGE measurement personality performs the latest standards-based measurements, including:•Error vector magnitude (EVM)•Multi-slot power versus time (PvT)•ORFS •IQ offset•Channel plans for 400, 800, 900, 1800, 1900 MHz•GSM measurements from Option BAH The EVM measurement features a unique algorithm to simultaneously display the EVM numerical results and the EDGE constellation diagram using the industry-specified measurement filter.GSM (Option BAH)The GSM measurement personality lets you quickly perform measurements to the latest ETSI standards:•Mean transmitter carrier power •Multi-slot PvT •ORFS•Phase and frequency error (PFER)•IQ offset•Transmitter band spurious•Channel plans for 400, 700, 800, 900, 1800, 1900 MHzThe personality features easy channel and timeslot selections, configurable PvT masks,and a typical ORFS dynamic range of 90 dB.NADC and PDC (Option BAE)Both the North American Digital Cellular (NADC) and Personal Digital Cellular (PDC)measurement personalities are included in this option. The NADC measurements are structured according to the IS-136 TDMA standard. Measurements included in this option are:•ACP •EVM•Occupied bandwidth (for PDC)The personalities feature base station and mobile radio mode set-ups, as well as sync word search capability.iDEN (Option HN1)The iDEN measurement personality performs measurements to the Motorola iDEN specialized mobile radio format. •Occupied bandwidth (OBW)•ACPR•Transmitter bit error rate (BER)TDMA measurement personalities…11W-CDMA (Option BAF)The complexity of W-CDMA demands the flexibility and depth of demodulation capability provided by this personality.Perform the following measurements on the HPSK uplink or downlink QPSK signals:•Code domain •QPSK EVM•Modulation accuracy (composite rho and EVM)•Channel power•Adjacent channel power leakage ratio (ACLR)•Power control •PvT•Intermodulation distortion •Multicarrier power•Spectrum emission mask •OBW •CCDFThis personality has the ability toautomatically determine active channels,to synchronize with any W-CDMA channel,to display code domain power in a multi-rate view, and to demodulate down to the symbol level. Variable capture intervals and pre-defined test models enable the user to perform fast, accurate measurements for manufacturing or in-depth analysis for R&D.cdma2000 (Option B78)The cdma2000 measurement personality offers the logical upgrade path from IS-95 to IS-2000 testing. Measurements support the forward and reverse links.•Code domain •QPSK EVM•Modulation accuracy (composite rho and EVM)•Channel power •ACPR•Intermodulation distortion •Spectrum emission mask •OBW •CCDFAdvanced code domain analysis algorithms display Walch codes for either Hadamard or OVSF coding schemes in a multi-rate view. Other capability includes code domain power error, symbol EVM,symbol power versus time, active channel identification, variable PN offset, quasi-orthogonal functions and demodulated symbol bit displays after de-spreading.… and CDMA measurement personalities.12Expanding measurement potential…cdmaOne (Option BAC)Built on Agilent ’s pioneering efforts in CDMA measurement techniques,this personality provides quick and easy measurement set-ups for the TIA/EIA-95, J-STD-008,IS-97D, and IS-98D band classes:•Modulation accuracy (rho)•Code domain •Channel power •ACPR•Close-in spuriousAlong with the world ’s fastest ACPR measurements, this personality features PN (pseudo-noise sequence) search, time offset, and carrier feed-through analysis.1xEV-DO (Option 204)With digital demodulation analysis, the 1xEV-DO measurement personality provides the most comprehensive, easy-to-use,1xEV-DO measurement solution available in an analyzer. This personality, which performs measurements for both forward link and reverse link signals, provides key transmitter measurements for analyzing systems based on the 3GPP2 and TIA/EIA/IS-856 standards.Forward link•Channel power•Power versus time mask •Spurious emissions and ACP •Intermodulation distortion •OBW•Code domain•Modulation accuracy (composite rho)•QPSK EVM•Power statistics (CCDF)Reverse link •Code domain•Modulation accuracy (composite rho)For forward link, the PvT mask and spurious emissions/ACP measurements support both the idle slot (burst signal) and active slot (full power signal). With the auto-burst search function, you can see the standard-based time mask for the 1xEV-DO idle slot in PvT. Code domain, modulation accuracy (composite rho), and QPSK EVM can also measure for each channel ’s Pilot, MAC, and Data in QPSK/8PSK/16QAM. Designed with flexibility in mind, this personality supports the unique 1xEV-DO forward link signals ’feature of time divisions multiplex (TDM). For reverse link, code domain, and modulation accuracy provide powerful modulation analysis functions for transmitter tests.13IQ inputs (Option B7C)Capitalize on the E4406A ’s demodulation capabilities by extending the measurement range to baseband. The baseband IQ input option enables engineers to measure the complete signal path of a receiver or transmitter and directly compare signals both before and after frequency conversion and IQ (de)modulation.Ideally suited for R&D engineers and manufacturing environments, this option allows measurement of baseband I and Q signals in either balanced or unbalanced systems. Input configurations include 50-ohm unbalanced, 600-ohm balanced, and 1-Mohm balanced or unbalanced –enabling a variety of systems to be directly tested without cumbersome and error-inducing conversion networks.Applicable in-band 3GPP W-CDMA,cdma2000, EDGE/GSM, and Basic mode measurements are supported via RF and IQ inputs, enabling engineers to track down signal degradation both before and after RF/IF conversion.Additional features include auto calibration of input signals, variable dc offsets and a dc to 5-MHz input frequency range (10 MHz in I + jQ mode)....tailored to user requirements.14E4406A VSA/89601Asoftware combinationThe standards-based, one-button test capabilities of the E4406A can be expanded with the flexible digital demodulation and analysis capabilities of the Agilent 89601A PC software. This teaming provides fast and accurate data acquisition with powerful,flexible modulation analysis tools for, both common and evolving communications standards.The 89601A vector signal analysis software is the heart of the Agilent 89600 series of vector signal analyzers. This software provides flexible tools for demodulating and analyzing even the most advanced digital modulations, whether or not they are contained in an established standard. Features include variable block size signal acquisition with user-selectable pulse search and synch words, and a user-con-trollable adaptive equalizer. Filter types include cosine (raised and square-root raised), Gaussian, and low-pass – all with configurable alpha/BT. Supported modula-tion formats for both continuous and burst carriers include FSK (2, 4, 8, and 16 level),BPSK, QPSK, OQPSK, DQPSK, p/4DQPSK,8PSK, QAM (16 to 256 level), VSB (8 and 16 level), EDGE, and MSK.The software also provides signal capture and analysis features, such as the capability to download signal capture files for playback through signal generators,and display high-speed spectrograms.The 89601A software runs on a PC connected to the E4406A, via LAN or GPIB,and provides hardware control and results displays along with modulation analysis.Coupling speed and power…15/find/vsa…with Agilent’s tradition of excellence.Service and supportThe speed and accuracy of the E4406A VSA is only a small part of what you get from Agilent. We strive to provide complete solutions that go beyond our customers ’expectations. Only Agilent offers the depth and breadth of enhancements, software, services, connectivity, accessibility, and support to help you reach your measurement objectives. For more information on the E4406A VSA, including product and application literature, visit our Web site at /find/vsaPre-sales service• rentals, leasing, and financing • application engineering services Post-sales service• standard 3-year global warranty • Worldwide Call Center and Service Center support network • one-year calibration intervals • firmware upgrades downloadable from the Web PC connectivity • 10 baseT LAN port • floppy disk drive • GPIB interface• VXI Plug and Play driversPeripheral and product interfaces • parallel printer port • printer support • VGA monitor output• Agilent E4438C ESG vector signal generator•Agilent 89601A vector signal analysis softwareTraining and access to information • on-site user training • factory service training• Web-based support of frequently asked questions• manuals on CD-ROM and on the Web Software• programming examples on CD-ROM • SCPI (Standard Commands for Programmable Instruments)• PC-based performance verification and adjustment softwareOrdering Array informationE4406A vector signal analyzerModel DescriptionE4406A7 MHz to 4 GHzOption DescriptionDigital Demodulation MeasurementsE4406A-202EDGE with GSM measurementpersonalityE4406A-2041xEV-DO measurementpersonalityE4406A-B78cdma2000 measurementpersonalityE4406A-BAC cdmaOne measurementpersonalityE4406A-BAE NADC, PDC measurementpersonalityE4406A-BAF W-CDMA measurementpersonalityE4406A-BAH GSM measurement personality E4406A-HN1IDEN measurementpersonalityInputs and outputsE4406A-300321.4 MHz IF outputBBIQE4406A-B7C I/Q inputsCalibration documentationE4406A-UK6Commercial calibrationcertificate with test data AccessoriesE4406A-1CM Rack mount kitE4406A-1CN Handle kitE4406A-1CP Rack mount and handle kitE4406A-1CR Rack slide kit* Includes English manual set.。
473QB发动机

1
发动机
F3/F3-R 轿车维修手册
十一、油底壳的安装..................................................................................................... 83 第二章 润滑系统......................................................................................................................... 86
一、机油压力报警器的检测......................................................................................... 87 二、机油压力的测试..................................................................................................... 87 三、发动机机油的更换................................................................................................. 88 四、发动机机油滤清器的更换..................................................................................... 88 五、机油滤清器螺纹连接管的更换............................................................................. 89 六、机油泵的大修......................................................................................................... 90 七、呼吸器盖板的安装................................................................................................. 93 第三章 进气歧管和排气系统..................................................................................................... 95 一、维修标准值............................................................................................................. 94 二、进气系统位置组件索引......................................................................................... 94 三、空气滤清器总成..................................................................................................... 94 四、进气歧管................................................................................................................. 94 五、排气管与消音器..................................................................................................... 94 六、检查......................................................................................................................... 94 七、进气歧管的拆卸与安装......................................................................................... 94 八、排气歧管的拆卸与安装......................................................................................... 94 第四章 发动机冷却系统............................................................................................................. 100 一、维护标准信息....................................................................................................... 101 二、冷却液................................................................................................................... 101 三、密封剂................................................................................................................... 101 四、车上维护............................................................................................................... 101 五、节温器................................................................................................................... 102 六、水泵....................................................................................................................... 103 七、进出水软管........................................................................................................... 104 八、散热器 ................................................................................................................. 105 九、调温器的检测....................................................................................................... 107 十、水泵的检测........................................................................................................... 107 十一、水泵更换........................................................................................................... 108 十二、调温器更换....................................................................................................... 108 十三、水温传感器更换............................................................................................... 109 第五章 燃油和排放系统............................................................................................................. 110 一、燃油箱................................................................................................................... 110 二、电动燃油泵........................................................................................................... 111
astma473标准中文版

astma473标准中文版
ASTMA473标准(ASTM A473 standard)是由美国材料与试
验协会(American Society for Testing and Materials,ASTM)
制定的钢材标准,适用于钢材的化学成分、力学性能和热处理要求的规定。
ASTMA473标准覆盖了一系列不同类型的钢材,包括不锈钢、合金钢和碳钢等。
该标准规定了钢材的化学成分要求,包括元素的最大和最小含量,以及钢材的制造方法和加工要求。
此外,ASTMA473还规定了钢材的力学性能要求,包括抗拉
强度、屈服强度、延伸率和冲击韧性等指标。
这些性能要求对于确保钢材在使用过程中的可靠性和安全性非常重要。
此外,ASTMA473标准还涉及到钢材的热处理要求,包括固
溶处理、时效处理和淬火等工艺的规定。
这些热处理工艺可以改变钢材的组织和性能,使其具有特定的力学性能和耐蚀性能。
ASTMA473标准的应用范围广泛,适用于各个行业的钢材制
造和使用。
它为钢材的生产商、供应商和使用者提供了一种统一的标准,以确保钢材的质量和性能符合要求,从而保证使用者的安全和利益。
最新版JBT4730标准补充说明(标准解释)

最新版JB4730标准的补充介绍本文源自:无损检测招聘网 一.JB4730标准重大意义JB4730《压力容器无损检测》是锅炉压力容器压力管道无损检测的强制性技术标准。
修改后标准涉及的面更宽,将复盖锅炉压力容器压力管道制造,安装,在用检验整个领域,包括从原材料验收到焊接接头质量检测各个环节。
鉴于该标准在无损检测行业内位臵重要,影响巨大,甚至无损检测人员资质的考核也与之密切相关,所以全国考委会标准修改动态十分关注。
二.JB4730标准修改过程及全国无损检测考委会参与情况全国压力容器标准化技术委员会(容标委)1999年提出修改JB4730标准的意见,随后成立标准起草组。
标准起草组于2000年2月拿出修改稿(1),2001年9月提交修改稿(2),2002年7月提交修改稿(3), 2002年9月提交修改稿(4)。
全国锅炉压力容器无损检测考委会第一次拿到JB4730修改稿是在2001年11月,当时看到的版本是2001年9月的修改稿(2)。
有关技术专家阅后发现问题很多,认为事关重大。
出自对锅炉压力容器安全和对标准质量的关心,全国考委会向锅炉局报告了有关情况,提出一些建议。
与此同时,为配合做好JB4730修改工作,全国考委会两次召开专家研讨会,对修改工作提出具体意见:2002年元月苏州会议,对2001年9月修改稿(2)研讨;2002年底9月南京会议,对2002年7月修改稿(3)研讨;两次专家研讨会都邀请了全国压力容器标准化技术委员会寿比南秘书长出席,并把专家的书面意见毫无保留地交寿秘书长转起草组,以便修改。
2002年10月,全国考委会于收到2002年9月修改稿(4),该稿作为送审稿在张家界通过了容标委制造分会初审。
对修改稿(4)审查认为,在编写标准的总体思路上存在问题,在具体内容上问题错误也很多。
2003年3月,全国压力容器标准化技术委员会在合肥召开JB4730修改会,重新组织起草组,并展开讨论。
2003年4月,在南昌召开JB4730修改分组会,确定修改稿(5)。
JB4730标准简介(条文略)

JB/T 4730.1~4730.2—2005《承压设备无损检测》(通用要求及射线检测部分)简介幻灯片稿本编写:孟传亨新的JB/T4730标准与94标准不同,共有6个标准组成,JB/T4730.1—2005是5种常规检测方法的通用要求,JB/T4730.2—2005是射线检测的规定,以下顺次为UT、MT、PT和ET。
新的JB/T4730标准仍是机械行业的标准,经主管部门批准后,适用于涉及承压设备的所有行业。
新的JB/T4730标准将“压力容器”改为“承压设备”,扩大了范围。
承压设备应包括锅炉、压力容器和承压管道。
§1 JB/T4730.1—2005中有关射线检测的规定1.1JB/T4730.1—2005标准的适用范围条文:1范围理解:本节规定了JB/T4730标准所涉及的内容,即5种常规检测方法的一般要求和使用原则。
本节明确了JB/T4730标准的适用范围,即凡金属材料的在制和在用的承压设备的无损检测均适用。
每种检测方法都包括了两方面的内容,即检测方法和缺陷等级评定。
1.2规范性引用文件条文:2规范性引用文件。
理解:以上是涉及射线检测的几个规范性文件,被引用后就成了本部分的条款。
1.3 一般要求条文:3术语和定义理解:除上列国标规定的术语适用于本标准外,对下列术语重新作了明确的定义。
条文:3.1理解:公称厚度可以理解为材料规格所标明的厚度。
条文:3.2理解:过去的标准将公称厚度规定为透过的母材厚度加余高,本标准规定为射线所穿过的公称厚度,例如双壁透照就是两倍公称厚度。
条文3.3理解:工件至胶片距离b就是过去的L2。
条文:3.4理解:射线源至工件距离f就是过去的L1。
条文:3.53.63.7理解:以上几条术语不难理解。
条文:3.83.93.10理解:本标准将气孔、夹渣和夹钨明确分成圆形缺陷和条形缺陷两类,有利于对缺陷的评定。
透照厚度比就是教材中图4-11所示的T’/T。
条文:3.11理解:以前的标准将小径管的外径定为≤89mm,本标准提高到100mm,考虑到透照的实际情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PowerMOS transistorBUK473-60A/BIsolated version of BUK453-60A/BGENERAL DESCRIPTIONQUICK REFERENCE DATAN-channel enhancement mode SYMBOL PARAMETERMAX.MAX.UNIT field-effect power transistor in a plastic full-pack envelope.The BUK473-60A -60B device is intended for use in Switched V DS Drain-source voltage 6060V Mode Power Supplies (SMPS),I D Drain current (DC)1312A motor control,welding,DC/DC and P totTotal power dissipation 2525W AC/DC converters,and in automotive R DS(ON)Drain-source on-state 0.080.1Ωand general purpose switching resistanceapplications.PINNING - SOT186APIN CONFIGURATIONSYMBOLLIMITING VALUESLimiting values in accordance with the Absolute Maximum System (IEC 134)SYMBOL PARAMETER CONDITIONS MIN.MAX.UNIT V DS Drain-source voltage --60V V DGR Drain-gate voltage R GS = 20 k Ω-60V ±V GS Gate-source voltage--30V -60A -60B I D Drain current (DC)T hs = 25 ˚C -1312A I D Drain current (DC)T hs = 100 ˚C -8.27.6A I DM Drain current (pulse peak value)T hs = 25 ˚C -5248A P tot Total power dissipation T hs = 25 ˚C -25W T stg Storage temperature -- 55150˚C T jJunction temperature--150˚CTHERMAL RESISTANCESSYMBOL PARAMETERCONDITIONSMIN.TYP.MAX.UNIT R th j-hs Thermal resistance junction to with heatsink compound--5K/W heatsinkR th j-aThermal resistance junction to -55-K/WambientSTATIC CHARACTERISTICSThs= 25 ˚C unless otherwise specifiedSYMBOL PARAMETER CONDITIONS MIN.TYP.MAX.UNITV(BR)DSS Drain-source breakdown VGS= 0 V; ID= 0.25 mA60--V voltageVGS(TO)Gate threshold voltage VDS= VGS; ID= 1 mA 2.1 3.0 4.0VI DSS Zero gate voltage drain current VDS= 60 V; VGS= 0 V; Tj= 25 ˚C-110µAI DSS Zero gate voltage drain current VDS= 60 V; VGS= 0 V; Tj=125 ˚C-0.1 1.0mAI GSS Gate source leakage current VGS= ±30 V; VDS= 0 V-10100nARDS(ON)Drain-source on-state VGS= 10 V;BUK473-60A-0.0650.08Ωresistance ID= 9 A BUK473-60B-0.080.10ΩDYNAMIC CHARACTERISTICSThs= 25 ˚C unless otherwise specifiedSYMBOL PARAMETER CONDITIONS MIN.TYP.MAX.UNITg fs Forward transconductance VDS= 25 V; ID= 9 A 4.5 6.5-SCiss Input capacitance VGS= 0 V; VDS= 25 V; f = 1 MHz-650825pFCoss Output capacitance-240350pFCrssFeedback capacitance-120160pFtd on Turn-on delay time VDD= 30 V; ID= 3 A;-1020nst r Turn-on rise time VGS= 10 V; RGS= 50 Ω;-3555nstd off Turn-off delay time Rgen= 50 Ω-6090nstfTurn-off fall time-5580nsL d Internal drain inductance Measured from drain lead 6 mm- 4.5-nHfrom package to centre of dieL s Internal source inductance Measured from source lead 6 mm-7.5-nHfrom package to source bond padISOLATION LIMITING VALUE & CHARACTERISTICThs= 25 ˚C unless otherwise specifiedSYMBOL PARAMETER CONDITIONS MIN.TYP.MAX.UNITVisol R.M.S. isolation voltage from all f = 50-60 Hz; sinusoidal-2500V three terminals to external waveform;heatsink R.H. ≤ 65% ; clean and dustfreeCisol Capacitance from T2 to external f = 1 MHz-10-pF heatsinkREVERSE DIODE LIMITING VALUES AND CHARACTERISTICSThs= 25 ˚C unless otherwise specifiedSYMBOL PARAMETER CONDITIONS MIN.TYP.MAX.UNITI DR Continuous reverse drain---13A currentI DRM Pulsed reverse drain current---52AVSD Diode forward voltage IF= 13 A ; VGS= 0 V- 1.1 1.3Vt rr Reverse recovery time IF= 13 A; -dIF/dt = 100 A/µs;-60-nsQrr Reverse recovery charge VGS= 0 V; VR= 30 V-0.20-µCAVALANCHE LIMITING VALUET hs = 25 ˚C unless otherwise specified SYMBOL PARAMETERCONDITIONSMIN.TYP.MAX.UNIT W DSSDrain-source non-repetitive I D = 22 A ; V DD ≤ 25 V ;--50mJunclamped inductive turn-off V GS = 10 V ; R GS = 50 ΩenergyMECHANICAL DATANotes1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to preventdamage to MOS gate oxide.2. Refer to mounting instructions for F-pack envelopes.3. Epoxy meets UL94 V0 at 1/8".DEFINITIONSData sheet statusObjective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.Limiting valuesLimiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application informationWhere application information is given, it is advisory and does not form part of the specification.© Philips Electronics N.V. 1996All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.LIFE SUPPORT APPLICATIONSThese products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.。