势能面的交叉
佚名:势能面交叉16页文档

佚名:势能面交叉
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
计算化学-势能面

• 计算电子波函数和能量
ˆ E , E H el el el
• 因为有核对电子的吸引和核之间的排斥作用, 能量E 与核的 位置有关 • E = 0 对应于所有粒子(电子和原子核)互相处于无穷远的状 态
最后一项是最容易计算的, 因为原子核的坐标被冻结了, 所以, 它们之 间的距离就是固定的, 即对于一个确定的分子结构, rAB是一个常数, 通 过库仑定律, 我们可以把这一项精确地计算出来。 在Gaussian03中, 在相当前面的位置会出现这么一句话: nuclear repulsion energy 9.1571759050 Hartrees.
*ˆ Od
d
*
O
变分定理
• Hamilton量的期望值是变分能量
* ˆ Hd
d
*
Evar Eexact
• 变分能量是体系最低能量的上限 • 任何近似波函数得到的能量都高于基态能量 • 近似波函数中的参数可以变化, 直至使Evar达到最 小值 • 由此很好地估计出基态能量和近似波函数
体系的电荷分布
自洽通常通过前后两次的电子密度差值和能量差值进行判定, 在Gaussian09中, 默认最多进行128个自洽场循环, 默认的自洽判据是, 能量差小于 10-6Hartree, 电子密度的平均方差小于10-8, 电子密度的最大平均方差小于10-6. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. 如果达到自洽后, 就会给出自洽后, 就会给出体系的能量和收敛结果: SCF Done: E(RHF) = -74.9607232757 A.U. after 7 cycles Convg = 0.2315D-09 -V/T = 2.0051 S**2 = 0.0000 这里的能量是电子能量加上原子核之间的排斥能. 最后, 在输出文件的最后的存档部分前有各项能量的数值: N-N= 9.157175904960D+00 E-N=-1.969263790887D+02 KE=7.458406050689D+01 其中分别给出了原子核之间的静电排斥, 电子受到的原子核的吸引势能, 和电子的 动能项, 结果的输出中还有另外一个结果表达我们没有解释, 就是势能v除以动能T的负值, 它约等于2.0, 在物理上称为维里系数. 现在, 大家计算出电子之间的排斥, 把它和电子受到核的吸引能和原子核之间的排 斥能加起来, 得到的就是总的势能V, 势能V除以动能T, 是不是与给出的结果相同 呢
势能面的锥形交叉及其在光化学领域的应用

光化学反应中激发态衰减机制示意图
两个势能面的交叉区域
• 两个势能面的交叉区定义:两个势能 面(相同对称性也可)可以相交于一 个n-2 维的超线(曲面)中。(前提: 所画的势能面是 n维核坐标的函数)
• 是多维的超曲间。 (high-dimensional hyperspaces)
锥形交叉
• 势能面的真实交叉,交叉点存在于由两个矢量 XX12-和--非X绝2 共热同耦决合定矢的量分。支如平果面在之这内个。特X定1--的--梯空度间差 中画势能面,那么势能面的形状是双锥形在锥 形交叉点上电子态是简并的。
Fig. 5 Dissociation probabilities on the upper (black) and lower (grey)
adiabatic dissociation limits, for initial conditions (nr , 0), nr = 1,2 (a), (0,ny ), ny= 0,7 (b), and (1, ny), ny = 0,4 (c).
Fig. 6 Population on S1 as a function of time after photoexcitation of the neutral GFP chromophore. Dotted lines refer to the results of individual simulations and solid lines are averaged over all such single runs. Results in vacuum (grey) and in a microsolvated
aqueous environment 近研究二:吡咯光化学
势能面交叉与非绝热动力学

势能面交叉与非绝热动力学以势能面交叉与非绝热动力学为题,本文将介绍势能面交叉和非绝热动力学的基本概念和相关理论。
势能面交叉是指在分子或原子的势能面上,不同势能面之间的相交现象。
在化学反应和分子动力学中,势能面交叉是一个重要的现象,它直接影响着分子的行为和反应路径。
势能面交叉通常发生在分子间的共振结构或多重态系统中。
在这些系统中,分子的势能面可以通过改变键长、键角或电子状态等方式发生变化。
当不同势能面交叉时,分子的行为将受到这些交叉点的影响。
势能面交叉的一个重要应用是在光化学反应中。
在光化学反应中,光子的能量被吸收,分子的电子状态发生变化。
当光激发态的势能面与基态的势能面交叉时,分子将从激发态返回到基态,释放出能量。
这种过程被称为非绝热跃迁。
非绝热动力学研究的是分子在非绝热过程中的行为和反应。
非绝热过程是指分子在势能面交叉点附近发生的跃迁和转变。
非绝热动力学理论的发展使得我们能够更好地理解和描述这些非绝热跃迁过程。
在非绝热动力学中,我们通常使用Landau–Zener定理和Marcus理论来描述非绝热过程。
Landau–Zener定理是描述势能面交叉点处的跃迁概率的一个重要定理。
它指出,当两个势能面交叉时,跃迁的概率与交叉速度和能量差有关。
Marcus理论则是描述电子转移反应中的非绝热过程的理论,它考虑了电子的隧穿效应和溶剂的影响。
非绝热动力学的研究对于理解和控制化学反应和光化学反应具有重要意义。
通过研究势能面交叉和非绝热过程,我们可以预测和调控分子的行为和反应路径。
这对于设计新型催化剂、开发高效能源材料和优化化学合成过程等具有重要的应用价值。
势能面交叉和非绝热动力学是化学和物理领域中重要的研究课题。
通过研究势能面交叉和非绝热过程,我们可以更好地理解和描述分子的行为和反应路径。
这对于推动化学科学的发展和应用具有重要的意义。
势能面相交规则

势能面相交规则————————————————————————————————作者:————————————————————————————————日期:1.7 势能面相交规则一个分子体系可以有不同的电子态,非简并态具有不同的能级,因而有不同的势能面,这些势能面都是(3N-6)/(3N-5)个独立坐标的函数. 不同势能面有可能相交,当两个势能面发生交叉时,两能级将出现简并,习惯上称之为“偶然简并”. 在势能面相交区域,分子常常会表现出一些特殊的动态学行为,因此有必要研究势能面的相交规则. 先讨论双原子分子的势能曲线,此时,我们有如下的相交规则:对称性(包括自旋和空间)相同的态的势能曲线不能相交,对称性不同的态的势能曲线可以相交.简要解释一下上述规则. 我们知道,势能曲线是电子哈密顿量的本征能量曲线,相应的本征函数应具有两种对称性,一是自旋对称性,即电子波函数应该是自旋算符的本征函数,总自旋算符有确定值S ,通常用(21)S +表示电子波函数的自旋多重度. 此外,电子波函数还应具有分子所属点群的对称性,即它应当是分子所属点群不可约表示的基. 上述规则意味着,当两个电子态波函数具有相同的自旋多重度并属于分子点群同一不可约表示时,相应的势能曲线不能相交,称之为避免交叉.现在来证明这一规则. 双原子分子具有h D ∞(同核)或h C ∞(异核)对称性. 设1(21)()1(,)SR q +λv Ψ和2(21)()2(,)S μR q +v ψ为某一双原子分子的两个正交归一化的非简并电子态波函数,分别为点群的λ和μ不可约表示的基,自旋多重度分别为1(21)S +和2(21)S +,相应的势能曲线分别记作)(1R E 和)(2R E . 如图(1.14) 所示。
图1.14 势能曲线相交假定两曲线相交于c R 点,即)()(21c c R E R E =,并设0R 为c R 附近的一点,记)(00R H H =, )(0101R E E =, )()(,)1(2S 10110R q +λ=vψψ,)(0202R E E =,)()(,)2(2S 10220R q +μ=vψψ,则有: 0000111H E =ψψ (1.7.1)0000222H E =ψψ (1.7.2) 假定核间距有一微小变化R δ,R R R δ+=0,这时体系的Hamilton 算符相应变为00R R H H H R H V R δ=∂⎛⎫=+=+ ⎪∂⎝⎭ (1.7.3) 式中, 0R R H V R R δ=∂⎛⎫= ⎪∂⎝⎭ 相应的Schrödinger 方程为);();(q R E q R H ϖϖψ=ψ (1.7.4)势能曲线是R 的连续函数,由于)()(21c c R E R E =,在c R 附近的任何点R ,都应有)()(21R E R E ≈,因此可按简并态微扰方法求解方程(1.7.4),于是有022011);(ψ+ψ=ψc c q R ϖ(1.7.5)代入(1.7.4)式,分别左乘*01ψ和*02ψ,并对电子坐标积分,可得久期方程为:022211211=--EH V V E H (1.7.6)式中,0000ii i ii i i i H E V E V =+=+ψψ,0oij i j V V =ψψ. 假定不考虑自旋-轨道耦合(体系中不含重原子),则01ψ和02ψ可以选为实函数,这时12V 和21V 为实数,并有1221V V =. 由(1.7.6)式可解得()1222112211221211()422E H H H H V ±⎡⎤=+±-+⎣⎦ (1.7.7)相应的波函数分别为+12=-22cossinθθψψψ, 12=22sin +cos θθ-ψψψ (1.7.8) 式中θ由下式确定 122211V H H -t anθ=(1.7.9)我们来考察交点c R 的坐标所应满足的条件. 显然,在交点上(1.7.7)式中的两个能量必须相等. 为此,根号中的表达式必须为零,即有,()()001112221200E V E V V ⎧+-+=⎪⎨=⎪⎩(1.7.10)现在,微扰V 中只含有一个可变参量R ,要使(1.7.10)中的两式同时为零是很困难的,仅当012=V 恒成立时才可能实现. 这就是说,仅当12V 恒为零时两曲线才可能相交. 由群论知道,当两个波函数具有不同的对称性时,恒有012=V ,此时两势能面发生交叉是可能的,如图1.15()a 所示. 而当01ψ和02ψ具有相同的对称性时,一般说来012≠V ,此时两势能面不可能相交,而应相互回避(避免交叉),如图 1.15()b 所示. 这就证明了上述势能曲线的相交规则.()a ()b图1.15 势能面相交规则由图 1.15,我们可以进一步讨论在势能面交叉或避免交叉时相应电子态的变化. 首先讨论两势能曲线相交的情况(图1.15()a ),这时012=V ,由(1.7.8)式可知V的强度 22,E ψ11,E ψV 的强度()120V ≠ ,E ++ψ ,E --ψ11,E ψ22,E ψ12,-+ψ=ψ ψ=ψ (1.7.11)这表明,在交叉前后,能量为1E 的态的波函数始终为1ψ,而能量为2E 的态的波函数始终为2ψ. 在通过交叉点后,波函数并不“混合”,或者说电子态并不跃迁,因而电子运动是绝热的. 但是在避免交叉时,情况有所不同(图15()b ). 这时,由于012≠V ,由(1.7.7)和(1.7.8)可知,能级由1E 和2E 变为E -和E +,相应的波函数则由1ψ和ψ2变为-ψ和ψ+,-ψ和ψ+均为1ψ和ψ2的线性组合. 这表明,在两个势能面相互靠近的过程中,波函数发生了“混合”,或者说电子态发生了跃迁,因而电子运动是非绝热的(Nonadiabatic ). 后一种表象,即{},,,E E -+-+ψψ,就是所谓的Diabatic (透热)表象. 在前一种表象{}1212,,,E E ψψ中看,在势能面相互靠近的过程中,电子态发生了跃迁,化学反应不是在一个势能面上发生的;但在后一种表象{},,,E E -+-+ψψ中看,电子态始终用(1.7.8)式表示,并没有发生跃迁,化学反应仍是在一个势能面(E -或E +)上发生的. 不过,在远离交叉点时,由于2211H H -很大,因而(1.7.9)式中的θ角很小,于是(1.7.8)式中的波函数基本上只有一个分量,相当于前一表象中的态,或者说两个表象基本上没有区别. 因此,仅在交叉点附近,才需要考虑透热表象.必须指出,这里所说的非绝热与1.2节中的非绝热是有区别的. 1.2节中的非绝热(Nonadiabatic )问题是由于电子运动受到核运动(核动能算符)的扰动造成的,而本节所讨论的非绝热问题则是由于电子的Hamilton 量发生变化(由核构型变化引起)时引起的电子态的跃迁.前边已经提到,在势能曲线交叉或避免交叉区域,常伴有特殊的分子动态学行为. 以NaCl 为例,它有两条势能曲线对应的电子态具有相同的对称性∑1,但是这两个态具有不同的解离极限,其中一个的解离极限是生成两个原子(Na+Cl ),记作∑11,另一个生成两个离子(Na ++Cl -),记作∑12。
势能面 - 测量学

∗ f v , ≠ = (1 − e − h ν / k B T ) − 1
因沿反应途径的振动将分解为产物, 此时发生振动的“键”比正 常键弱得多, 即ν 很小, hν <<kT. 又因 x << 1时, ex = 1 + x , 故
4
艾林方程
过渡状态理论认为: “反应物分子要变成产物, 总要经过足 够能量的碰撞先形成高势能的活化络合物; 活化络合物可能分 解为原始反应物, 并迅速达到平衡, 也可能分解为产物; 活化络 合物以单位时间ν 次的频率分解为产物, 此速率即为该基元反 应的速率”. 以公式表示, 即
c ⎯⎯ ⎯ ⎯ ⎯ X≠ ⎯k1 产物 ⎯ ⎯ ⎯→ A + B ← 快速平衡 ⎯→
对于双分子气相反应可以证明 Ea = ∆H≠ + 2RT kT 2 ∆S ≠ Θ / R − Ea / RT ⋅e 代入上式, 得 k = Θ e e hc
与阿仑尼乌斯方程对比, 可得
A = Pz AB
Θ
式中 ( k B T / hc )e 的数量级与 z AB 大体相当 , 故 e
00-7-27
2
得
≠ ≠ Kc = Kc Θ / c Θ
标准平衡常数Kc≠ 与标准活化摩尔吉布斯函数∆G≠ , 标准活 化摩尔熵∆S≠ 和标准活化摩尔焓∆H≠ 之间的关系为
≠ Kc Θ
00-7-27
=e
−∆G ≠ Θ / RT
=e
∆S ≠ Θ / R
⋅e
−∆H ≠ Θ / RT
代入艾林方程, 得
8
艾林方程的热力学表示式
kT 2 ∆ S ≠ Θ / R = e e Θ hc
在势能面上-物理化学

Z AA 2 d
2 AA
L
2
RT 2 cA MA
第十二章 化学动力学基础(二)
物理化学电子教案
若每次碰撞都能起反应, 则其反应速率为:
d[ N A / V ] dcA L ZAB dt dt 8 RT dcA z AB 2 d AB L cA cB dt L
ur
b
A
B
b dAB sin
d AB
b
第十二章 化学动力学基础(二)
物理化学电子教案
由图可见:
b d AB sin
ur
b
A
B
当θ= 0时, b = 0, 两分 子迎头碰撞; 当θ= 90°时, b = dAB, 为侧碰撞; 当 b > dAB时不碰撞. 所以碰撞截面为:
d AB
第十二章 化学动力学基础(二)
物理化学电子教案
两个分子的一次碰撞过程
v
v
b
o
第十二章 化学动力学基础(二)
物理化学电子教案
势能面相交规则

1.7 势能面相交规则一个分子体系可以有不同的电子态,非简并态具有不同的能级,因而有不同的势能面,这些势能面都是(3N-6)/(3N-5)个独立坐标的函数. 不同势能面有可能相交,当两个势能面发生交叉时,两能级将出现简并,习惯上称之为“偶然简并”. 在势能面相交区域,分子常常会表现出一些特殊的动态学行为,因此有必要研究势能面的相交规则. 先讨论双原子分子的势能曲线,此时,我们有如下的相交规则:对称性(包括自旋和空间)相同的态的势能曲线不能相交,对称性不同的态的势能曲线可以相交.简要解释一下上述规则. 我们知道,势能曲线是电子哈密顿量的本征能量曲线,相应的本征函数应具有两种对称性,一是自旋对称性,即电子波函数应该是自旋算符的本征函数,总自旋算符有确定值S ,通常用(21)S +表示电子波函数的自旋多重度. 此外,电子波函数还应具有分子所属点群的对称性,即它应当是分子所属点群不可约表示的基. 上述规则意味着,当两个电子态波函数具有相同的自旋多重度并属于分子点群同一不可约表示时,相应的势能曲线不能相交,称之为避免交叉.现在来证明这一规则. 双原子分子具有h D ∞(同核)或h C ∞(异核)对称性.设1(21)()1(,)S R q +λΨ和2(21)()2(,)SμR q +ψ为某一双原子分子的两个正交归一化的非简并电子态波函数,分别为点群的λ和μ不可约表示的基,自旋多重度分别为1(21)S +和2(21)S +,相应的势能曲线分别记作)(1R E 和)(2R E . 如图(1.14) 所示。
图1.14 势能曲线相交假定两曲线相交于c R 点,即)()(21c c R E R E =,并设0R 为c R 附近的一点,记)(00R H H =, )(0101R E E =, )()(,)1(2S 10110R q +λ=ψψ, )(0202R E E =,)()(,)2(2S 10220R q +μ=ψψ,则有: 0000111H E =ψψ (1.7.1)0000222H E =ψψ (1.7.2)假定核间距有一微小变化R δ,R R R δ+=0,这时体系的Hamilton 算符相应变为00R R H H H R H V R δ=∂⎛⎫=+=+ ⎪∂⎝⎭ (1.7.3) 式中, 0R R H V R R δ=∂⎛⎫= ⎪∂⎝⎭ 相应的Schrödinger 方程为);();(q R E q R Hψ=ψ (1.7.4)势能曲线是R 的连续函数,由于)()(21c c R E R E =,在c R 附近的任何点R ,都应有)()(21R E R E ≈,因此可按简并态微扰方法求解方程(1.7.4),于是有022011);(ψ+ψ=ψc c q R(1.7.5)代入(1.7.4)式,分别左乘*01ψ和*02ψ,并对电子坐标积分,可得久期方程为:022211211=--EH V V E H (1.7.6)式中,0000ii i ii i i i H E V E V =+=+ψψ,0oij i j V V =ψψ. 假定不考虑自旋-轨道耦合(体系中不含重原子),则01ψ和02ψ可以选为实函数,这时12V 和21V 为实数,并有1221V V =. 由(1.7.6)式可解得()1222112211221211()422E H H H H V ±⎡⎤=+±-+⎣⎦ (1.7.7)相应的波函数分别为+12=-22cossinθθψψψ, 12=22sin+cosθθ-ψψψ (1.7.8)式中θ由下式确定 122211V H H -t a n θ=(1.7.9)我们来考察交点c R 的坐标所应满足的条件. 显然,在交点上(1.7.7)式中的两个能量必须相等. 为此,根号中的表达式必须为零,即有,()()001112221200E V E V V ⎧+-+=⎪⎨=⎪⎩(1.7.10) 现在,微扰V 中只含有一个可变参量R ,要使(1.7.10)中的两式同时为零是很困难的,仅当012=V 恒成立时才可能实现. 这就是说,仅当12V 恒为零时两曲线才可能相交. 由群论知道,当两个波函数具有不同的对称性时,恒有012=V ,此时两势能面发生交叉是可能的,如图1.15()a 所示. 而当01ψ和02ψ具有相同的对称性时,一般说来012≠V ,此时两势能面不可能相交,而应相互回避(避免交叉),如图 1.15()b 所示. 这就证明了上述势能曲线的相交规则.()a ()b 图1.15 势能面相交规则由图 1.15,我们可以进一步讨论在势能面交叉或避免交叉时相应电子态的变化. 首先讨论两势能曲线相交的情况(图1.15()a ),这时012=V ,由(1.7.8)式可知12,-+ψ=ψ ψ=ψ (1.7.11)这表明,在交叉前后,能量为1E 的态的波函数始终为1ψ,而能量为2E 的态的波函数始终为2ψ. 在通过交叉点后,波函数并不“混合”,或者说电子态并不跃迁,因而电子运动是绝热的. 但是在避免交叉时,情况有所不同(图15()b ). 这时,由于012≠V ,由(1.7.7)和(1.7.8)可知,能级由1E 和2E 变为E -和E +,相应的波函数则由1ψ和ψ2变为-ψ和ψ+,-ψ和ψ+均为1ψ和ψ2的线性组合. 这表明,在两个势能面相互靠近的过程中,波函数发生了“混合”,或者说电子态发生了跃迁,因而电子运动是非绝热的(Nonadiabatic ). 后一种表象,即{},,,E E -+-+ψψ,就是所谓的Diabatic (透热)表象. 在前一种表象{}1212,,,E E ψψ中看,在势能面相互靠近的过程中,电子态发生了跃迁,化学反应不是在一个势能面上发生的;但在后一种表象{},,,E E -+-+ψψ中看,电子态始终用(1.7.8)式表示,并没有发生跃迁,化学反应仍是在一个势能面(E -或E +)上发生的. 不过,在远离交叉点时,由于2211H H -很大,因而(1.7.9)式中的θ角很小,于是(1.7.8)式中的波函数基本上只有一个分量,相当于前一表象中的态,或者说两个表象基本上没有区别. 因此,仅在交叉点附近,才需要考虑透热表象.必须指出,这里所说的非绝热与1.2节中的非绝热是有区别的. 1.2节中的非绝热(Nonadiabatic )问题是由于电子运动受到核运动(核动能算符)的扰动造成的,而本节所讨论的非绝热问题则是由于电子的Hamilton 量发生变化(由核构型变化引起)时引起的电子态的跃迁.前边已经提到,在势能曲线交叉或避免交叉区域,常伴有特殊的分子动态学行为. 以NaCl 为例,它有两条势能曲线对应的电子态具有相同的对称性∑1,但是这两个态具有不同的解离极限,其中一个的解离极限是生成两个原子(Na+Cl ),记作∑11,另一个生成两个离子(Na ++Cl -),记作∑12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Nuclear coordinate R
Energy
When electronic states approach each other, more than one of them should be included in the expansion
Na
T (r,R) I (R)Ie (r;R)
fIJ
I J
I H J EJ EI
fIJ fJI
fII 0
For real wavefunctions
I 2 J fIJ fIJ fIJ
The derivative coupling is inversely proportional to the energy difference of the two electronic states. Thus the smaller the difference, the larger the coupling. If E=0 f is infinity.
T (r,R) I (R)Ie (r;R)
HT T ET T
H eIe
E
e I
Ie
Electronic eq.
(T N
E
e I
)
I
ET I
Nuclear eq.
Nonadiabatic processes are facilitated by the close proximity of potential energy surfaces. When the potential energy surfaces approach each other the BO approximation breaks down. The rate for nonadiabatic transitions depends on the energy gap.
• H12=0 by symmetry • Seam has dimension N-1
• Example: A1-B2 degeneracy in C2v symmetry in H2+OH
Accidental same-symmetry conical intersections
• Seam has dimension N-2
Born-Huang expansion
I 1
If the expansion is not truncated the wavefunction is exact since
tBhHoerens-eHIetuaEIneIegis ecIe xopmapnlseioten.
The total Schrodinger becomes
separable, the Schrodinger equation is separated into
an electronic and nuclear part. R and r are nuclear and
electronic coordinates respectively. The total wavefunction T is a product of electronic Ie and nuclear I wavefunctions for an I state.
Geometric phase effect (Berry
phase)
If the angle changes from to +2:
1
cos 2
1
sin
2
2
2
sin
2
1
c
os 2
2
1( 2 ) 1() 2( 2 ) 2()
The electronic wavefunction is doubled valued, so a
H TV
H tot (r,R) T N T e V ee V eN V NN
1 2M
2
i
1 2me
2 i
i
1
r ji ij
Z
Z Z
i ri
R
T N H e (r;R)
H T
TN He
1 2M
2
H
e
(r;R)
Assuming that the motion of electrons and nuclei is
seam: points of conical
-2 -3
intersections are connected 2.9
continuously
0.6
0.4
0.2
3
3.1
0 -0.2
x (a.u.)
r (a.u.) 3.2
3.3
-0.4 3.4 -0.6
The Branching Plane
The Hamiltonian matrix elements are expanded in a Taylor series expansion around the conical intersection
势能面交叉
Conical Intersections
The Born-Oppenheimer approximation
Energy
TS Nuclear coordinate R
The study of chemical systems is based on the separation of nuclear and electronic motion
H(R) H(R0) H(R0) R H(R) 0 H(R0) R H12(R) 0 H12(R0) R
Then the conditions for degeneracy are
H(R0) R 0 H12(R0) R 0
g H h H12
He
(sx x
sy
y)I
gx hy
phase has to be added so that the total wavefunction is
single valued
Every electronic state has its own PES.
On this potential energy surface, we can treat the motion of the nuclei classically or quantum mechanically
Hamiltonian for molecules
J. von Neumann and E. Wigner, Phys.Z 30,467 (1929)
Conical intersections and
symmetry
He HH1211
H12 H 22
Symmetry required conical intersections, Jahn-Teller effect
For diatomic molecules there is only one internal coordinate and so states of the same symmetry cannot cross (noncrossing rule). But polyatomic molecules have more internal coordinates and states of the same symmetry can cross.
• H12=0, H11=H22 by symmetry • seam has dimension N of high symmetry
• Example: E state in H3 in D3h symmetry
Symmetry allowed conical intersections (between states of different symmetry)
Example: X3 system
branching coordinates
R
Q
x
Qy
r
Seam coordinate
Q
s
Two internal coordinates lift the degeneracy linearly: g-h or branching plane
energy (a.u.)
hy gx
E1,2 sx x sy y (gx)2 (hy)2
Topography of a conical intersection
asymmetry
tilt
E E0 sxx syy g2x2 h2y2
Conical intersections are described in terms of the characteristic parameters g,h,s
equation
using the
(T N
1 K II
E
e I
)
I
N
JI
1 (2f IJ
2
J
K IJJ
)
ET I
fIJ (R) Biblioteka e Ie Jr
Derivative coupling: couples
k IJ (R) e 2e
the different electronic states
I
Jr
Derivative coupling
The total Hamiltonian operator for a molecular system is the sum of the kinetic energy operators (T) and potential energy operators (V) of all particles (nuclei and electrons). In atomic units the Hamiltonian is: