高中数学尖子生培优专题 数列测试
高中数学选择性必修二 第四章 数列单元检测A尖子生同步培优题典(含答案)

2020-2021年高二数学选择性必修二尖子生同步培优题典第四章数列单元检测A 解析版学校:___________姓名:___________班级:___________考号:___________ 注:本检测满分150分。
其中8道单选题,4道多选题,4道填空题,6道解答题。
一、单选题1,2,,4,…,则是这个数列的()A.第8项B.第9项C.第10项D.第11项【答案】B【解析】【分析】将数列中的每一项都写成n,即可判断.【详解】,2,3,4,... ,由此可归纳该数列的通项公式为nna=,又9=,则其为该数列的第9项.故选:B.【点睛】本题考查了由数列的前几项归纳出其通项公式,属于基础题.2.记等差数列{}n a的前n项和为n S,若52a=,25468a a a a-=,则20S=()A.180B.180-C.162D.162-【答案】B【解析】【分析】先利用等差数列的通项公式,求出等差数列的首项和公差,再根据前n项和公式即可求出20S. 【详解】52a =,24628a a a-=,11114226840a da d a d a d+=⎧∴⎨+--=+⎩,解得11114226840a d a d a d a d +=⎧⎨+--=+⎩,2d ∴=-,110a =,201019228a ,()12020201802a a S +⋅∴==-.故选:B. 【点睛】本题主要考查等差数列的性质和前n 项和公式,考查学生的运算求解能力,属于基础题. 3.在数列{}n a 中,112a =,111n n a a -=-(2n ≥,n ∈+N ),则2020a =( )A .12B .1C .1-D .2【答案】A 【解析】 【分析】通过递推式求出数列前几项可得数列为周期数列,利用数列的周期性可得答案. 【详解】2111121a a =-=-=-,3211112a a =-=+=,431111122a a =-=-=, 可得数列{}n a 是以3为周期的周期数列,202036731112a a a ⨯+∴===. 故选:A. 【点睛】本题考查数列的周期性,关键是通过递推式求出前几项观察出周期,是基础题.4.等比数列{}n a 的前n 项和为n S ,若0n a >,1q >,352620,64a a a a +==,则5S =( ) A .B .C .42D .【答案】D 【解析】 【分析】根据2664a a =,利用等比数列的性质得到3564a a =,结合3520a a +=,利用根与系数的关系构造二次方程求解得到35,a a 的值,进而得到等比数列的首项和公比,然后利用求和公式计算即得所求. 【详解】由于在等比数列{}n a 中,由2664a a =可得:352664a a a a ==, 又因为3520a a +=,所以有:35,a a 是方程220640x x -+=的二实根,又0,1n a q >>,所以35a a <, 故解得:354,16a a ==,从而公比3122,1,a q a q ==== 那么55213121S -==-,故选:D . 【点睛】本题考查等比数列的通项公式,等比数列的性质,等比数列的求和,属中档题. 5.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165 D .5110【答案】A 【解析】 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯,又因为723n n S n T n +=+,所以22071514924a ab b +=+.故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题. 6.等比数列{}n a 中( ) A .若12a a <,则45a a < B .若12a a <,则34a a < C .若32S S >,则12a a < D .若32S S >,则12a a >【答案】B 【解析】 【分析】根据等比数列的通项公式及求和公式,等比数列的公比分析即可求出答案. 【详解】等比数列{}n a 中,20q >,∴当12a a <时,可得2212a q a q <,及34a a <,故B 正确;但341a a q =和352a a q =不能判断大小(3q 正负不确定),故A 错误;当32S S >时,则12312+++a a a a a >,可得30a >,即210a q >,可得10a >,由于q 不确定,不能确定12,a a 的大小,故CD 错误. 故选:B. 【点睛】本题考查等比数列通项公式和求和公式的应用,属于基础题.7.函数()2cos 2f x x x =--{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 【答案】B 【解析】 【分析】先将函数化简为()2sin 26f x x π⎛⎫=- ⎪⎝⎭再解函数零点得4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可.【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=--=- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈,∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题. 8.已知函数()cos lnxf x x x ππ=+-,若22018201920192019f f f πππ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()1009ln 0,0)a b a b π+>>(,则11a b+的最小值为( )A .2B .4C .6D .8【答案】A 【解析】 【分析】 根据()()2ln f x fx ππ+-=,采用倒序相加的方法可得2018ln S π=,从而得到2a b +=,根据基本不等式求得最小值. 【详解】由题可知:()()()()2cos lncos ln ln 2ln x xf x f x x x x xππππππππ-+-=++-+==- 令22018201920192019S f f f πππ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又20182017201920192019S f f f πππ⎛⎫⎛⎫⎛⎫=+++⎪⎪ ⎪⎝⎭⎝⎭⎝⎭于是有22ln 2ln 2ln 22018ln S ππππ=++⋅⋅⋅+=⨯ 2018ln S π⇒= 因此2a b += 所以()()11111112222222a b a b a b a b b a ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当1a b ==时取等号本题正确选项:A 【点睛】本题考查倒序相加法求和、利用基本不等式求解和的最小值问题.关键是能够通过函数的规律求得a 与b 的和,从而能够构造出基本不等式的形式.二、多选题9.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列 【答案】AC 【解析】 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴= 所以当0c 时,{}n a 是等差数列,不可能是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:AC 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.10.数列{}n a 的前n 项和为n S ,若11a =,()*12n n a S n N +=∈,则有( ) A .13n n S -=B .{}n S 为等比数列C .123n n a -=⋅D .21,1,23,2n n n a n -=⎧=⎨⋅≥⎩【分析】根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】由题意,数列{}n a 的前n 项和满足()*12n n a S n N +=∈,当2n ≥时,12n n a S -=,两式相减,可得112()2n n n n n a a S S a +-=-=-, 可得13n n a a +=,即13,(2)n na a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以212a a =, 所以数列的通项公式为21,1232n n n a n -=⎧=⎨⋅≥⎩;当2n ≥时,11123322n n n n a S --+⋅===,又由1n =时,111S a ==,适合上式,所以数列的{}n a 的前n 项和为13n n S -=;又由11333nn n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】本题考查利用,n n a S 关系求数列的通项公式,以及等比数例的证明和判断,属综合基础题. 11.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.12.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 【答案】ACD 【解析】 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a , 再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去), ∴a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,∴a 67=17×36,∴S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()() 12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1) 故选:ACD. 【点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题.三、填空题13.已知数列{}n a 的通项公式是246n a n =-,那么n S 达到最小值时n 为________. 【答案】22或23. 【解析】 【分析】利用数列的单调性求得满足题意的n 即可. 【详解】246n a n =-,∴数列{}n a 是递增数列.令()1246021460n n a n a n +=-≤⎧⎨=+-≥⎩,解得:2223n ≤≤,∴22n =或23n =,则可知n S 达到最小值时n 为22或23. 故答案为:22或23. 【点睛】本题考查等差数列前n 项和最值的求法,属于基础题.14.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________.【答案】405 【解析】 【详解】 【分析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,9989994052S ⨯=⨯+⨯= 15.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,4进行“扩展”,第一次得到数列1,4,4;第二次得到数列1,4,4,16,4;……;第n 次得到数列1,1x ,2x ,…,i x ,4,并记()212log 14n i a x x x =⋅⋅⋅⋅⋅,其中21n t =-,*n ∈N .则{}n a 的通项n a =___________. 【答案】31n + 【解析】 【分析】先由()212log 14n t a x x x =⋅⋅⋅⋅,结合题意得到132n n a a +=-,再设13()n n a t a t ++=+求出1t =-,得到数列{}1n a -是首项为3,公比为3的等比数列,进而可求出结果.【详解】由题意,根据()212log 14n t a x x x =⋅⋅⋅⋅,可得()1211122log 1(1)((4)4)t t n a x x x x x x x +=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3333312214log 324n t x x x a ⎛⎫⋅⋅⋅⋅==-⎪⎝⎭, 设13()n n a t a t ++=+,即132n n a a t +=+,可得1t =-,则数列{}1n a -是首项为2121log 413a -=-=,公比为3的等比数列,故13n n a -=,所以31,n n a n N +=+∈.故答案为:31n +.【点睛】本题主要考查数列的应用,熟记等比数列的性质以及通项公式即可,属于常考题型.16.如图,互不相同的点12,,,n A A A 和12,,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设n n OA a =.若11a =,22a =,则数列{}n a 的通项公式是________.【答案】32n a n =-【解析】【分析】根据三角形相似和所有梯形11n n n n A B B A ++的面积均相等,找到与n a 相关的递推公式,再由递推公式求得通项公式.【详解】由于11//,n n n n A B A B ++ 所以11,n n n n OA B OA B ++梯形11n n n n A B B A ++ 的面积为11n n OA B ++∆的面积減去n n OA B △的面积,2222i i j j OA B i i OA B j jSOA a S OA a == 则可得 222211,n n n n a a a a +--=- 即递推公式为222112,n n n a a a +-=+故2{}n a 为等差数列,且公差d =2221a a -3=,故21(1)332n a n n =+-⨯=-,得32n a n =-故答案为: 32n a n =-【点睛】本题主要考查数列在平面几何中的应用,根据几何关系寻找递推有关系是解决问题的关键,属于中档题.四、解答题17.在①112n n a a +=-,②116n n a a +-=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,若问题中的n S 存在最大值,则求出最大值;若问题中的n S 不存在最大值,请说明理由.问题:设n S 是数列{}n a 的前n 项和,且14a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值.注:如果选择多个条件分别解答,按第一个解答计分.【答案】答案见解析【解析】【分析】若选①,求出数列{}n a 是首项为4,公比为12-的等比数列,求出通项公式和前n 项和,通过讨论n 的奇偶性,求出其最大值即可;若选②,求出数列{}n a 是首项为4,公差为16-的等差数列,求出通项公式和前n 项和,求出其最大值即可; 若选③,求出217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值. 【详解】解:选① 因为112n n a a +=-,14a =,所以{}n a 是首项为4.公比为12-的等比数列, 所1211422n n n a --⎛⎫⎛⎫=⨯-=- ⎪ ⎪⎝⎭⎝⎭.当n 为奇数时,141281113212n n n S ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为81132n ⎛⎫+ ⎪⎝⎭随着n 的增加而减少,所以此时n S 的最大值为14S =. 当n 为偶数时,81132n n S ⎛⎫=- ⎪⎝⎭,且81814323n n S ⎛⎫=-<< ⎪⎝⎭ 综上,n S 存在最大值,且最大值为4.选② 因为116n n a a +-=-,14a =.所以{}n a 是首项为4,公差为16-的等差数列, 所以11254(1)666n a n n ⎛⎫=+--=-+ ⎪⎝⎭. 由125066n -+≥得25n ≤, 所以n S 存在最大值.且最大值为25S (或24S ), 因为25252412545026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为50. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…19n n a a n --=-, 则2121321(79)(1)171622n n n n n n n a a a a a a a a --+---+=-+-+=-+-=, 又14a =,所以217242n n n a -+=. 当16n ≥时,0n a >,故n S 不存在最大值.【点睛】此题考查数列的通项公式和求和公式,考查等差数列和等比数列的性质,属于基础题 18.数列{}n a 的前n 项和()2=1003n S n n n N *-+∈.(1)求数列{}n a 的通项公式;(2)设n n b a =,求数列{}n b 的前n 项和n T .【答案】(1) ()()102110122n n a nn ⎧=⎪=⎨-≥⎪⎩ (2) ()()22100350100500351n n n n T n n n ⎧-++≤⎪=⎨-+≥⎪⎩【解析】【分析】(1) 当1n =时,1102a =,利用1n n n a S S -=-得到通项公式,验证1a 得到答案.(2)根据{}n a 的正负将和分为两种情况,50n ≤和51n ≥,分别计算得到答案.【详解】(1)当1n =时,11=10013=102a s =-+,当2n ≥时,()()221=10010011=1012n n n a S S n n n n n -=-------. 综上所述()()102110122n n a n n ⎧=⎪=⎨-≥⎪⎩. (2)当50n ≤时,n n b a =,所以123n n T a a a a =+++⋅⋅⋅+39997951012n =++++⋅⋅⋅+-()()991012331002n n n n +-=+=+-, 当51n ≥时,n n b a =-,123505152n n T a a a a a a a =+++⋅⋅⋅+---⋅⋅⋅-()5012312n n T a a a a a -=-+++⋅⋅⋅++()50063100n n =---21005003n n =-+.综上所述()()22100350100500351n n n n T n n n ⎧-++≤⎪=⎨-+≥⎪⎩. 【点睛】本题考查了利用1n n n a S S -=-求通项公式,数列的绝对值和,忽略1n =时的情况是容易犯的错误.19.已知数列{}n a 满足12a =,1122n n n a a ++=+.(1)证明:数列2n n a ⎧⎫⎨⎬⎩⎭为等差数列; (2)设2n n na b =,证明:122311111n n b b b b b b +++⋅⋅⋅+<. 【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由1122n n n a a ++=+变形得:11122n n n na a ++=+,可得证明. (2)由(1)知:2n n n ab n ==,∴()1111111n n b b n n n n +==-++,用裂项相消可求和,从而可证明. 【详解】 (1)由1122n n n a a ++=+变形得:11122n n n na a ++=+ 又12a =,故112a = ∴数列2n n a ⎧⎫⎨⎬⎩⎭是以1为首项1为公差的等差数列. (2)由(1)知:2n n n a b n == ∴()1111111n n b b n n n n +==-++ ∴122311111111112231n n b b b b b b n n +⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 1111n =-<+ ∴122311111n n b b b b b b +++⋅⋅⋅+< 【点睛】本题考查根据数列的递推公式证明数列为等差数列,考查用裂项相消法求和,属于基础题. 20.设{}n a 是公比大于1的等比数列,12314++=a a a ,且21a +是1a ,3a 的等差中项.(1)求数列{}n a 的通项公式;(2)若21log 2n n n b a ⎛⎫= ⎪⎝⎭,求数列{}n b 的前n 项和n T . 【答案】(1)2n n a =;(2)()1122n n T n +=-⋅-.【解析】【分析】(1)设等比数列{}n a 的公比为()1q q >,根据题中条件列出方程组,求出首项和公比,即可得出通项公式;(2)先由(1)得到2nn b n =-⋅,再由错位相减法,即可得出结果.【详解】(1)设等比数列{}n a 的公比为()1q q >.依题意,有()21321a a a +=+,将()13221a a a +=+代入12314++=a a a 得()222114a a ++=,得24a =.联立1232144a a a a ++=⎧⎨=⎩得21111144a a q a q a q ⎧++=⎨=⎩ 两式两边相除消去1a 得22520q q -+=, 解得2q 或12q =(舍去), 所以1422a ==, 所以,111222n n n n a a q --==⨯=,(2)因为21log 22n n n n b a n ⎛⎫==-⋅ ⎪⎝⎭所以,231222322n n T n -=⨯+⨯+⨯++⨯①23412122232(1)22n n n T n n +-=⨯+⨯+⨯++-⨯+⨯② ①-②,得23122222n n n T n +=++++-⨯()111212222212n n n n n n +++-=-⨯=-⋅--.所以,数列{}n b 的前n 项和11222n n n T n ++=-⋅-.【点睛】 本题主要考查求等比数列的通项公式,考查错位相减法求数列的和,涉及等差中项的应用,属于常考题型.21.已知数列{}n a 的前n 项和为23122n S n n =-. (1)求数列{}n a 的通项公式;(2)数列[]lg n n b a =,[]x 表示不超过x 的最大整数,求{}n b 的前1000项和1000T .【答案】(1)32n a n =-;(2)10002631T =.【解析】【分析】(1)利用1n n n a S S -=-可求出;(2)根据数列特点采用分组求和法求解.【详解】(1)当1n =时,111a S ==,当2n ≥时,()()221313111322222n n n a S S n n n n n -⎡⎤=-=-----=-⎢⎥⎣⎦, 将1n =代入上式验证显然适合,所以32n a n =-.(2)因为410a =,34100a =,3341000a =,333410000a =,所以0,131,4332,343333,3341000n n n b n n ≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪≤≤⎩, 所以100003130230036672631T =⨯+⨯+⨯+⨯=.【点睛】本题考查n a 和n S 的关系,考查分组求和法,属于基础题.22.已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n n n n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.【答案】(Ⅰ)n a n =,12n nb -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯. 【解析】【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211n k k c-=∑和21n k k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由11a =,()5435a a a =-,可得d =1.从而{}n a 的通项公式为n a n =.由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n nb -=. (Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++, 从而2211(1)(2)02n n n S S S n n ++-=-++<, 所以221n n n S S S ++<. (Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n n n n a b n c a a n n n n-+-+--===-++, 当n 为偶数时,1112n n n n a n c b -+-==, 对任意的正整数n ,有222221112221212121k k nn n k k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和223111211352321444444n n k k n n k k k n n c-==---==+++++∑∑ ① 由①得22314111352321444444n k n n k n n c +=--=+++++∑ ②由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑, 由于11211121221121156544144334444123414nn n n n n n n ++⎛⎫- ⎪--+⎝⎭--=-⨯--⨯=-⨯-, 从而得:21565994n k n k n c =+=-⨯∑. 因此,2212111465421949n nn n k k k n k k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯. 【点睛】本题主要考查数列通项公式的求解,分组求和法,指数型裂项求和,错位相减求和等,属于中等题.。
高中数学选择性必修二 第四章 数列单元检测B尖子生同步培优题典(含答案)

2020-2021年高二数学选择性必修二尖子生同步培优题典第四章 数列单元检测B 解析版学校:___________姓名:___________班级:___________考号:___________注:本检测满分150分。
其中8道单选题,4道多选题,4道填空题,6道解答题 一、单选题1.已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a =( ) A .-4 B .-6 C .-8 D .-10【答案】B 【解析】 【分析】把3a ,4a 用1a 和公差2表示,根据1a ,3a ,4a 成等比数列,得到2314a a a =解得. 【详解】解:因为等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,2314a a a ∴=即()()211146a a a +=+ 解得18a =- 故选:B 【点睛】本题考查等差数列基本量的计算,与等比中项的性质,属于基础题.2.设正项等比数列{}n a 的前n 项和为n S ,10103020102(21)0S S S -++=,则公比q 等于( )A .12B .13C .14D .2【答案】A 【解析】 【分析】 由条件可得302010201012S S S S -=-,即可求出q .【详解】因为10103020102(21)0S S S -++=,所以()()103020201020S S S S ---=所以302010201012S S S S -=-,即102122301011122012a a a q a a a +++==+++ 因为0n a >,所以12q = 故选:A 【点睛】本题考查的是等比数列的知识,考查了学生的转化能力,较简单. 3.已知等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-,则76a b =( ) A .67B .1211C .1825 D .1621【答案】A 【解析】 【分析】由条件可设(5)n S kn n =+,(21)n T kn n =-,然后计算出7a 和6b 即可. 【详解】因为等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-, 所以可设(5)n S kn n =+,(21)n T kn n =-, 所以77618a S S k =-=,66521b T T k =-=,所以7667a b =. 故选:A 【点睛】本题考查的是等差数列前n 项和的特点,属于基础题.4.若数列{}n a 满足:()*1119,3n n a a a n +==-∈N ,而数列{}n a 的前n 项和最大时,n 的值为( )A .6B .7C .8D .9【答案】B 【解析】 方法一: ∵n 1n a a 3+=-,∴()*n 1n a a 3n N+-=-∈,∴数列{}n a 是首项为19,公差为-3的等差数列. 则()()22n n n 134********S 19n 3n n n 2222624-⎛⎫=+⨯-=-+=--+⎪⎝⎭. 所以n 7=时,n S 取最大值.选B . 方法二:∵n 1n a a 3+=-, ∴()*n 1n a a 3n N+-=-∈,∴数列{}n a 是首项为19,公差为-3的等差数列. ∴193(1)322n a n n =--=-+,∴当7n ≤时,0n a >;当8n ≥时,0n a <. 所以n 7=时,n S 取最大值.选B .点睛:求等差数列前n 项和最值的常用方法: ①利用等差数列的单调性,求出其正负转折项; ②利用性质求出其正负转折项,便可求得和的最值;③将等差数列的前n 项和2n S An Bn =+ (A 、B 为常数)看作关于项数n 的二次函数,根据二次函数的性质求最值.5.著名物理学家李政道说:“科学和艺术是不可分割的”.音乐中使用的乐音在高度上不是任意定的,它们是按照严格的数学方法确定的.我国明代的数学家、音乐理论家朱载填创立了十二平均律是第一个利用数学使音律公式化的人.十二平均律的生律法是精确规定八度的比例,把八度分成13个半音,使相邻两个半音之间的频率比是常数,如下表所示,其中1213,,,a a a ⋯表示这些半音的频率,它们满足()1212log 11,2,,12i i a i a +⎛⎫==⋯ ⎪⎝⎭.若某一半音与#D 32,则该半音为( )频率1a2a 3a4a 5a6a7a 8a9a 10a11a 12a13a半音 C#CD#D EF#FG#GA #ABC (八度)A .#FB .GC .#GD .A【答案】B 【解析】【分析】利用对数与指数的转化,得到数列1213,,,a a a ⋯为等比数列,公比1122q =,然后求得所求半音对应的数列的项数,从而得到答案. 【详解】依题意可知()01,2,,13n a n >=⋯.由于1213,,,a a a ⋯满足()1212log 11,2,,12i i a i a +⎛⎫==⋯ ⎪⎝⎭,则12111122,2i i i i a a a a ++⎛⎫=∴= ⎪⎝⎭, 所以数列1213,,,a a a ⋯为等比数列,公比1122q =,#D 对应的频率为4a ,题目所求半音与#D 的频率41131222⎛⎫== ⎪⎝⎭,所以所求半音对应的频率为4112482a a ⎛⎫= ⎪⎝⎭,即对应的半音为G . 故选:B . 【点睛】本题考查等比数列的应用,涉及对数运算,等比数列的判定,等比数列的性质,属中档题. 6.若数列{}n a 满足:对任意的()3n Nn *∈≥,总存在,i j N *∈,使(),,n i j a a a i j i n j n =+≠<<,则称{}n a 是“F 数列”.现有以下数列{}n a :①2n a n =;②2n a n=;③3n n a =;④112n n a -⎛⎫= ⎪ ⎪⎝⎭;其中是F 数列的有( ). A .①③ B .②④ C .②③ D .①④【答案】D 【解析】 【分析】利用特殊值的方法可以否定②③,再根据通项公式的特点证明①④即可 【详解】①2n a n =,则12a =,()12122n a n n -=-=-,则11n n a a a -=+()3n ≥,故①是“F 数列”;②2n a n =,则2339a ==,若(),,n i j a a a i j i n j n =+≠<<,则,i j 只能是1,2,但2111a ==,2224a ==,此时312a a a ≠+,故②不是“F 数列”;③3n n a =,则33327a ==,若(),,n i j a a a i j i n j n =+≠<<,则,i j 只能是1,2,但13a =,2239a ==,此时312a a a ≠+,故③不是“F 数列”;④1n n a -=⎝⎭,则1121n n n a ----==⎝⎭⎝⎭,2132n n n a ----==⎝⎭⎝⎭,则2312112n n n n n a a -------⎡⎤⎢⎥+=+=+⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1111111n n n na ------⎡⎤⎢⎥=⨯⨯+=⨯⨯==⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()3n ≥,故④是“F 数列”故选:D 【点睛】本题考查数列的通项公式的应用,考查对新定义的理解,考查分析阅读能力,考查推理论证能力 7.已知数列1、1、2、1、2、4、1、2、4、8、1、2、4、8、16、…,其中第一项是02,接下来的两项是02、12,再接下来的三项是02、12、22,以此类推,若100N >且该数列的前N 项和为2的整数幂,则N 的最小值为( ) A .440 B .330C .220D .110【答案】A 【解析】 【分析】把题设中的数列分成如下的组:()()()()1,1,2,1,2,4,1,2,4,8, ,记前k 组的和为k T ,算出k T 后结合前N 项和为2的整数幂可得N 的最小值. 【详解】把题设中的数列分成如下的组:()()()()1,1,2,1,2,4,1,2,4,8, ,记前k 组的和为k T 。
新课标高考数学一轮复习名校尖子生培优大专题数列系列之数列周期性含解析新人教A版含

五、周期)数展)的运用 关于数列{A n } ,假如存在一个常数随意整数 n >N ,随意的正整数恒有 Ai=A(i+T)建称数列 {A n } 是从第起的T 的周期数列。
典型例题: 例 1. 数列 a n 知足n a +(- 1) a =2n -1 ,则a n的前 60项和为【 】 n 1 n(A )3690 (B )3660 (C )1845 (D )1830 【答案】 D 。
【考点】概括(数) ,数列。
【分析】 求出 a 的通项:由 n n a +-( 1) a =2n -1得,n 1 n 当 n=1时, a 1 a ;当 n=2时, a 3 a =2 a ;当 n=3时, a 5 a =7 a ; 2 1 3 2 1 4 3 1当 n=4时, a 7 a =a ;当 n=5时, a 6 9 a 5 =9 a 1 ;当 n=6时, a 7 11 a 6 =2 a 1 ; 5 4 1当 n=7时, a 13 a =15 a ;当 n=8时, a 8 15 a 7 =a 1 ;· · · · · · 7 6 1 当 n=4m+1时,a 8m 1 a ;当 n =4m +2时,a 4m 2 2 a 1 ;当 n =4m +3时,a 4m 4 8m 7 a 1; 4m 21当 n=4m+4时, a a ( m=0,1, 2,)。
4m 51∵ aaa ,4m4m 51∴ {a } 的 四项之 和为a a aa=a 8m 1 a2 a8m 7 a =16m 10n4m 14m 24m 34m 41111( m=0,1, 2,)。
设baaaa =16m 10 ( m=0,1, 2,)。
m4m 14m 24m 34m 4{a }的前和等于{b n∴{a }的前nm10 16 14 1015 1830 kk 11例 2.关于 n N , 将 n 表 示为na 2 a2 a 2 a 2 , 当 i k 时a1 , 当kk 11i0 i k 1时a 为0 或 1,定义b 以下:在 n的上述表示中,当a a ,a2 ,⋯ , a k 中等于 1 的i n 个数为奇数0, 12 ,⋯,a k 中等于 1 的个数为奇数时,b n=1;不然b n=0.(1)b2+b4+b6+b8= ▲. ;1(数列 {b n}中第0与第m+10c m的是 ▲ .. 【答案】( 1)3;( 2)2。
高一数学专题测试:数列(培优卷)试卷

n
n N*
,
若数列an 的前 n 项积为Tn ,则使Tn 100 成立的最小正整数 n 为( )
A.9
B.10
C.11
D.12
二、填空题
13.已知 Sn 是an 的前 n 项和, an n2 16n 60 ,对于任意 n , m N 且
n m , Sn Sm 的最大值是______.
3
1 2
n1
.
(1)求数列an 的通项公式
(2)数列 nan 的前 n 项和为 Tn ,若存在 n N * ,使得 m Tn 2 0 成立,求 m 范围?
20.已知等差数列 an 中,公差 d 2 , a2 是 a1 和 a4 的等比中项.
(1)求数列 an 的通项公式;
(2)设 bn
1
的所有项按照从大到小,左大右小的原则写成如图所示的数表,第
k
2n
行有 2k1 个数,第 k 行的第 s 个数(从左数起)记为 (k, s) ,则 1 可记为 2020
_________.
试卷第 2 页,总 4 页
1 2 11 46 11 1 1 8 10 12 14
三、解答题
17.已知正项数列an 的前 n 项和 Sn 满足 2Sn an2 an 2.
m Tn 恒成立,求 m 的取值范围.
22.已知数列an 的前 n
项和为
Sn
,且 an
1 3
Sn
2n
对任意 n
N*
都成立.
(Ⅰ)求 a1, a2 的值;
(Ⅱ)证明数列an 2 是等比数列,并求出数列an 的通项公式;
(Ⅲ)设 bn nan ,求数列bn 的前 n 项和 Tn .
高三数学 数学数列多选题的专项培优练习题(含答案

高三数学 数学数列多选题的专项培优练习题(含答案一、数列多选题1.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,0n a ≠,且202021111212a a ++≤+( )A .若数列{}n a 为等差数列,则20210S ≥B .若数列{}n a 为等差数列,则10110a ≤C .若数列{}n a 为等比数列,则20200T >D .若数列{}n a 为等比数列,则20200a <【答案】AC 【分析】由不等关系式,构造11()212xf x =-+,易得()f x 在R 上单调递减且为奇函数,即有220200a a +≥,讨论{}n a 为等差数列、等比数列,结合等差、等比的性质判断项、前n 项和或积的符号即可. 【详解】 由202021111212a a ++≤+,得2020211110212212a a +-+-≤+, 令11()212x f x =-+,则()f x 在R 上单调递减,而1121()212212xx x f x --=-=-++, ∴12()()102121xx x f x f x -+=+-=++,即()f x 为奇函数,∴220200a a +≥,当{}n a 为等差数列,22020101120a a a +=≥,即10110a ≥,且2202020212021()02a a S +=≥,故A 正确,B 错误;当{}n a 为等比数列,201820202a a q=,显然22020,a a 同号,若20200a <,则220200a a +<与上述结论矛盾且0n a ≠,所以前2020项都为正项,则202012020...0T a a =⋅⋅>,故C 正确,D 错误. 故选:AC. 【点睛】关键点点睛:利用已知构造函数,并确定其单调性和奇偶性,进而得到220200a a +≥,基于该不等关系,讨论{}n a 为等差、等比数列时项、前n 项和、前n 项积的符号.2.设n S 是公差为()d d ≠0的无穷等差数列{}n a 的前n 项和,则下列命题正确的是( ) A .若0d <,则数列{}n S 有最大项 B .若数列{}n S 有最大项,则0d <C .若对任意*n N ∈,均有0n S >,则数列{}n S 是递增数列D .若数列{}n S 是递增数列,则对任意*n N ∈,均有0n S > 【答案】ABC 【分析】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭,可看作关于n 的二次函数,由二次函数的性质逐个选项验证可得. 【详解】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭, 选项A ,若0d <,由二次函数的性质可得数列{}n S 有最大项,故正确; 选项B ,若数列{}n S 有最大项,则对应抛物线开口向下,则有0d <,故正确; 选项C ,若对任意*n ∈N ,均有0n S >,对应抛物线开口向上,0d >, 可得数列{}n S 是递增数列,故正确;选项D ,若数列{}n S 是递增数列,则对应抛物线开口向上, 但不一定有任意*n ∈N ,均有0n S >,故错误. 故选:ABC . 【点睛】本题考查等差数列的求和公式的应用,()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭可看成是二次函数,然后利用二次函数的性质解决问题,考查分析和转化能力,属于常考题.3.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( ) A .20202020a = B .()12n n n S += C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD 【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<.由题意得,12n n S n S n++=, ∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立, ∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.4.已知等差数列{}n a 中,59a a =,公差0d >,则使得前n 项和n S 取得最小值的正整数n 的值是( ) A .5 B .6C .7D .8【答案】BC 【分析】分析出数列{}n a 为单调递增数列,且70a =,由此可得出结论. 【详解】在等差数列{}n a 中,59a a =,公差0d >,则数列{}n a 为递增数列,可得59a a <,59a a ∴=-,可得5975202a a a a +==>,570a a ∴<=,所以,数列{}n a 的前6项均为负数,且70a =, 因此,当6n =或7时,n S 最小. 故选:BC.方法点睛:本题考查等差数列前n 项和最大值的方法如下:(1)利用n S 是关于n 的二次函数,利用二次函数的基本性质可求得结果; (2)解不等式0n a ≥,解出满足此不等式的最大的n 即可找到使得n S 最小.5.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n na ,进而得到nb ;利用10nnb b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n nn n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n na2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N ,5n ∴=或6 故选:AB 【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.6.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】 由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122...2212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,7.在n n n A B C (1,2,3,n =)中,内角,,n n n A B C 的对边分别为,,n n n a b c ,n n n A B C 的面积为n S ,若5n a =,14b =,13c =,且222124n n n a c b ++=,222124n n n a b c ++=,则( ) A .n n n A B C 一定是直角三角形 B .{}n S 为递增数列 C .{}n S 有最大值D .{}n S 有最小值【答案】ABD 【分析】先结合已知条件得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,得A 正确,再利用面积公式得到递推关系1221875=644n n S S ++,通过作差法判定数列单调性和最值即可. 【详解】 由222124n n n a c b ++=,222124n n n a b c ++=得,222222112244n n n n n n a c a b bc+++++=+()2221122n n n a b c =++()2225122n n b c =++,故()222211125=252n n n n b c b c +++-+-, 又221125=0b c +-,22250n n b c ∴+-=,22225=n n n b c a ∴+=,故n n n A B C 一定是直角三角形,A 正确;n n n A B C 的面积为12n n n S b c =,而()4222222222221124224416n n n n n n n n n n n n a b c a b c a c a b b c +++++++=⨯=, 故()42222222222111241875161875==1616641n n n n n n n n n n n a b c a b bS S c c S +++++++==+,故22212218751875==6446434n n n n n S S SS S +-+--,又22125=244n n n n n b c b c S +=≤(当且仅当=n n b c 22121875=06344n n n S SS +∴--≥,又由14b =,13c =知n n b c ≠不是恒成立,即212n n S S +>,故1n n S S +>,故{}n S 为递增数列,{}n S 有最小值16=S ,无最大值,故BD 正确,C 错误. 故选:ABD. 【点睛】本题解题关键是利用递推关系得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,再逐步突破.数列单调性常用作差法判定,也可以借助于函数单调性判断.8.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n nF n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n nF n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦ D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦【答案】BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭为公比的等比数列, 所以()()1nF n n +-=⎝⎭1115()n F F n n -+=+, 令1nn n Fb -=⎝⎭,则11n n b ++, 所以1n n b b +=-,所以n b ⎧⎪⎨⎪⎪⎩⎭以510-所以1n n b -+,所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.二、平面向量多选题9.定义空间两个向量的一种运算sin ,a b a b a b ⊗=⋅,则关于空间向量上述运算的以下结论中恒成立的有( ) A .()()a b a b λλ⊗=⊗ B .a b b a ⊗=⊗C .()()()a b c a c b c +⊗=⊗+⊗D .若()11,a x y =,()22,b x y =,则122a b x y x y ⊗=- 【答案】BD 【分析】对于A,B,只需根据定义列出左边和右边的式子即可,对于C,当λab 时,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin ,sin,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然不会恒成立. 对于D,根据数量积求出cos ,a b ,再由平方关系求出sin ,a b 的值,代入定义进行化简验证即可. 【详解】解:对于A :()()sin ,a b a b a b λλ⊗=⋅,()sin ,a b a b a bλλλ⊗=⋅,故()()a b a b λλ⊗=⊗不会恒成立;对于B ,sin ,a b a b a b ⊗=⋅,=sin ,b a b a b a ⊗⋅,故a b b a ⊗=⊗恒成立; 对于C ,若λab ,且0λ>,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin,sin ,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然()()()a b c a c b c +⊗=⊗+⊗不会恒成立; 对于D ,1212cos ,x x y y a b a b+=⋅,212sin ,1a b a b ⎛ ⎪=- ⎪⋅⎭,即有222121212121x x y y x x y y a b a b a b a a b ⎛⎫⎛⎫++ ⎪⊗=⋅⋅-=⋅- ⎪⎪ ⎪⋅⎭⎭21y =⎪+⎭==1221x y x y =-.则1221a b x y x y ⊗=-恒成立. 故选:BD. 【点睛】本题考查向量的新定义,理解运算法则正确计算是解题的关键,属于较难题.10.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是ABC 的外心、重心、垂心,且M 为BC 的中点,则( )A .0GA GB GC ++= B .24AB AC HM MO +=- C .3AH OM =D .OA OB OC ==【答案】ABD 【分析】向量的线性运算结果仍为向量可判断选项A ;由12GO HG =可得23HG HO =,利用向量的线性运算()266AB AC AM GM HM HG +===-,再结合HO HM MO =+集合判断选项B ;利用222AH AG HG GM GO OM =-=-=故选项C 不正确,利用外心的性质可判断选项D ,即可得正确选项. 【详解】因为G 是ABC 的重心,O 是ABC 的外心,H 是ABC 的垂心, 且重心到外心的距离是重心到垂心距离的一半,所以12GO HG =, 对于选项A :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =, 又因为2GB GC GM +=,所以GB GC AG +=,即0GA GB GC ++=,故选项A 正确;对于选项B :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =,3AM GM =,因为12GO HG =,所以23HG HO =, ()226663AB AC AM GM HM HG HM HO ⎛⎫+===-=- ⎪⎝⎭()646424HM HO HM HM MO HM MO =-=-+=-,即24AB AC HM MO +=-,故选项B 正确;对于选项C :222AH AG HG GM GO OM =-=-=,故选项C 不正确; 对于选项D :设点O 是ABC 的外心,所以点O 到三个顶点距离相等,即OA OB OC ==,故选项D 正确;故选:ABD. 【点睛】关键点点睛:本题解题的关键是利用已知条件12GO HG =得23HG HO =,利用向量的线性运算结合2AG GM =可得出向量间的关系.。
数列-2021年高考数学尖子生培优题典(新高考专版)

1数列一、选择题A .﹣5B .﹣7C .﹣9D .﹣11【答案】B【解析】数列{a n }为等差数列,设首项为 a 1,公差为 d ,∵a 3=5,S 4=24,∴a 1+2d =5,4a 1+4 3 d =24,2联立解得 a 1=9,d =﹣2,则 a 9=9﹣2×8=﹣7.A .7B .8C .15D .162a 2 ,a 3 成等【答案】C【解析】由数列因为,所以为等比数列,且,解得:成等差数列,所以,根据等比数列前 n 项和公式,即,.A . 第 2 天B . 第 3 天C . 第 4 天D . 第 5 天【解析】第一天共挖1 + 1 = 2 ,前二天共挖2 + 2 + 0.5 = 4.5 ,故前3天挖通,故两鼠相遇在第3天.A.7 B.10 C.63 D.18【答案】C【解析】等差数列{a n }的首项为a1 ,公差为d所以S= 3a +3⨯ 2d = 3a + 3d ,a =a + 5d ,3 1 2 1 6 1所以3a1 + 3d - 2a1 +a1 + 5d = 2a1 + 8d = 14 ,所以a1 + 4d = 7,即a5 =7 ,所以S=(a1 +a9 ) ⨯ 9 = 9a= 63..9 2 5差中项是()n 1 2 2 65 7 11A.2 B.2C.2D.6【答案】A【解析】 a 与a 的等差中项是 a =-2 + 3⨯3=5.2 6 4 2 2n 2 5 4A.-12B.-21C.2 D.218(a 1 + a )【解析】由等比数列的性质可得: a = a q 3 ,即: 1 = 2 ⨯ q 3,解得: q = 1.5242A .16B .17C .18D .19【答案】C【解析】由 S 8 < S 10 < S 9 得, a 9 > 0 , a 10 < 0, a 9 + a 10 > 0,所以公差大于零.又 S 17 = 17 (a 1 + a 17 ) 2= 17a 9 > 0 , S 19 =19(a 1 + a 19 ) 2=19a 10 < 0 ,S 18 = = 9 (a 9 + a 10 ) > 0,2= ( )A .1B . -1n n35C .2D . 12【答案】A(a 1 + a 9 ) ⋅ 9 【解析】 S 9 = 2 = 5 ⋅ 9= 1,故选 A.S 5(a 1 + a 5 ) ⋅ 59 52A . 9B . 8C . 6D . 4【答案】B6 3 3 9 6∴ S 3 , S 6 - S 3 , S 9 - S 6 也是等比数列,且 S 9 - S 6 = a 7 + a 8 + a 9 ,∴(S - S )2= S ⋅ (S - S ),(S + 2)2S 2 + 4S + 4 4可得: S 9 - S 6 =3= 3 3 = S SS 3 + + 4S 333≥ 4 = 8 ,当且仅当 S 3 = 2 时取等号,∴ a 7 + a 8 + a 9 的最小值为8.A .4040B .4041C .4042D .4043【答案】A【解析】∵ a 2020 ⋅ a 2021 < 0,∴ a 2020 和 a 2021 异号,又数列{a n }是等差数列,首项 a 1 > 0 ,∴{a n }是递减的数列, a 2020 > 0, a 2021 < 0 ,a+ a> 0,∴ S= 4040(a 1 + a 4040 ) = 2020(a + a ) > 0,20202021404022020 2021S = 4041(a 1 + a 4041 ) = 4041a< 0 ,4041 22021∴满足 S n > 0 的最大自然数 n 为 4040.n+n和最大项分别是()S ⎭ ⎩ n【答案】C【解析】因为 y ==1+在(-∞, 80)上单调减,在( 80, +∞) 单调减,所以当 x ∈ (-∞, 80)时 y ∈ (-∞,1) ,此时a n ∈[a 8 , a 1 ] ⊂ (-∞,1) ,当 x ∈ ( 80, +∞) 时 y ∈ (1, +∞) ,此时a n ∈[a 50 , a 9 ] ⊂ (1, +∞) ,因此数列{ a n }的前 50 项中最小项和最大项分别为 a 8 , a 9 ,选 C.S n = 2n -1 ,则 a 5= ()T n n +1b 5191737A .11 B .10 C .2D . 5【答案】B【解析】解:∵ S 是等差数列{a }的前 n 项和,∴S = 9(a 1 + a 9 ) = 9 ⨯ 2a 5 = 9a , 即 a = S 9 ,n n 9 2 2 5 59∵ T 是等差数列{b }的前 n 项和,∴ T= 9(b 1 + b 9 ) = 9 ⨯ 2b 5 = 9b ,即b = T 9 ,nn∴a 5 = S 9 = 2 ⨯ 9 -1 = 17 ,92 25 59 b 5 T 9 9 +1 10a =S n + 2(n -1)(n ∈ N *) ,则数列⎧ 1 ⎫的前 10 项的和是( )⎨ + 3n ⎬9510 A .290B .C .D .201111【答案】Cx - 79 x - 80 80 - 79x - 80nnn( 1 ) 2n ⎝ ⎭ ( )【解析】由a n =S n+ 2(n -1) (n ∈ N * )得 S n = na n - 2n (n -1) ,当 n ≥ 2 时, a n = S n - S n -1 = na n - (n - 1)a n -1 - 4(n - 1) ,整理得 a n - a n -1 = 4 ,所以{a n }是公差为 4 的等差数列,又a 1 = 1, 所以 a n = 4n -3(n ∈ N * ),从而 S n a + a + 3n = + 3n = 2n + 2n = 2n (n +1) ,2所以1 =1= 1 ⎛ 1 - 1 ⎫ ,⎪ S n + 3n 2n (n +1) 2n n +1数列 ⎧ 1 ⎫ 的前 10 项的和S = 1 ⎛1- 1 ⎫ = 5 . ⎨ S + 3n ⎬ 2 11 ⎪ 11⎩ n ⎭⎝ ⎭n n n nB n2n +1则使a n ≥ λ恒成立的实数λ的最大值为()b nA .1B . 123C .1D .2【答案】Ba 1 + a 2 n -1a 1+ a2 n -1⋅ (2n -1)【解析】由题意可得a n= 2 = 2 b n b 1 + b 2 n -1 b 1 + b2 n -1 ⋅ (2n -1) 2 2=A 2n -1 = 2n -1 = 1 - 1 .B 2n -1 2(2n -1)+1 2 2(4n -1)设 f (n ) = 1 - 1 2 2 4n -1 , n ∈ N * ,因为函数 f (n ) 是增函数,n所以当 n = 1时,函数 f (n ) 取最小值,所以 f (n )≥ f (1) = 1. 31 故实数λ的最大值为 .3则 1 + 1 + + 1 等于( )b 1 b 2 b nnA .n -1n -1 B .nn +1 C .nnD .n +1【答案】D【解析】已知{a n }是等差数列,且a 2 + a 4 = 6,a 5 = 5 ,所以 2a 1 + 4d = 6, a 1 + 4d = 5 ,解得 a 1 = 1, d = 1,所以 a n = a 1 + (n -1)d = n , 所以b n = n (n +1),所以1=1= 1 - 1 ,b nn (n +1) n n +1所 以 1 +1 + + 1 , b 1 b2 b n= 1 - 1 + 1 - 1 + 1 - 1 + ... + 1 - 1 ,1 2 2 3 3 4n n +1= 1 -1 = n + 1 nn + 1n n a ⎩ n (n -1)d 2 =A . S = 2n 2- 6nB . S = n 2- 3nC . a n = 4n - 8D .a n = 2n【答案】AC【解析】设等差数列{a }的公差为 d ,则⎧S 3 = 3a 1 + 3d = 0,解得⎧a 1 = -4 ,n⎨ ⎩ 4 a 1 + 3d = 8⎨d = 4∴a n = a 1 + (n -1)d = -4 + 4(n -1) = 4n - 8, S = na 1 += -4n + 2n (n - 1)= 2n- 6n .2(a n - a n -1 - 2)(a n - 2a n -1) = 0,下面选项中关于数列{a n }的命题正确的是()A .{a n }可以是等差数列B .{a n }可以是等比数列C .{a n }可以既是等差又是等比数列D .{a n }可以既不是等差又不是等比数列【答案】ABD【解析】解:因为(a n - a n -1 - 2)(a n - 2a n -1) = 0,所以 a n - a n -1 - 2 = 0 或 a n - 2a n -1 = 0 ,即: a n - a n -1 = 2 或 a n = 2a n -1①当 a n ≠ 0, a n -1 ≠ 0 时,{a n }是等差数列或是等比数列.② a n = 0或 a n -1 = 0时,{a n }可以既不是等差又不是等比数列C.当 d > 0 时, a10 +a22 > 0D.当d < 0 时,a10>a22【答案】BC【解析】因为S =S ,所以10a+10 ⨯ 9d = 20a +20 ⨯19d ,解得a =-29d .10 20 1 2 1 2 1 2对选项A,因为无法确定a1 和d 的正负性,所以无法确定S n 是否有最大值,故A 错误.对选项B,S= 30a +30 ⨯ 29d = 30 ⨯⎛-29d⎫+15⨯ 29d = 0 ,30 1 2 2 ⎪⎝⎭故 B 正确.对选项C,a +a =2a = 2 (a+15d )= 2 ⎛-29d +15d⎫=d > 0 ,10 22 16 1 2 ⎪⎝⎭故 C 正确.对选项D,a =a + 9d =-29d +18d =-11d ,10 1 2 2 2a 22 =a1+ 21d =-29d +42d =13d ,2 2 2因为d < 0 ,所以a10=-11d ,a2 22=-13d ,2a 10 <a22,故D 错误.A.q = 2B. a = 2n C. S10 = 2047D.a n+a n +1<a n +2n 2n 2n 2n -1 2n【解析】由题意2q 3 = 4q + 2q 2 ,得 q 2 - q - 2 = 0,解得q = 2 (负值舍去),选项 A 正确;a = 2 ⨯ 2n -1= 2n ,选项 B 正确;2 ⨯ (2n -1) S = = 2n +1 - 2 ,所以 S 10 = 2046 ,选项 C 错误; n2 -1a n + a n +1 = 3a n ,而 a n +2 = 4a n > 3a n ,选项 D 正确.18,24,32,40,50,…,则下列说法正确的是()A .此数列的第 20 项是 200B .此数列的第 19 项是 182C .此数列偶数项的通项公式为 a = 2n2D .此数列的前n 项和为 S n = n ⋅ (n -1)【答案】AC【解析】观察此数列,偶数项通项公式为 a = 2n 2,奇数项是后一项减去后一项的项数,a = a - 2n,由此可得a = 2 ⨯102 = 200 ,A 正确; a = a - 20 = 180 ,B 错误;C 正确; S = n (n -1) = n 2 - n 是 201920n一个等差数列的前 n 项,而题中数列不是等差数列,不可能有 S n = n ⋅ (n -1) ,D 错.二、 解答题(1)求{a n }的通项公式;n n n n1- (-2) n m n【解析】(1)设{a } 的公比为q ,由题设得 a = qn -1.由已知得 q 4 = 4q 2 ,解得q = 0 (舍去), q = -2 或q = 2 .故a = (-2)n -1 或 a = 2n -1.(2)若 a n = (-2)n -1,则 S n n= .由 S m= 63得(-2) 3= -188 ,此方程没有正整数解.若 a = 2n -1,则 S = 2n-1.由 S = 63得2m = 64,解得 m = 6. 综上, m = 6.a 1 =b 1 = 1, a 2 + a 4 = 10,b 3 = a 5 .(1)求{a n }的通项公式;(2)求数列{b n }的前 n 项和.【解析】(1)设等差数列{a n }公差为 d ,正项等比数列{b n }公比为q ,因为 a 1 = b 1 = 1, a 2 + a 4 = 10,b 3 = a 5 ,所以1+ d +1+ 3d = 10, q 2 = 1+ 4d ∴ d = 2, q > 0∴ q = 3因此 a n = 1+ (n -1) ⨯ 2 = 2n -1, b n = 1⨯ 3n -1= 3n -1 ;(2)数列{b n }的前 n 项和S n = 1 - 3n= 1 (3n - 1) 1 - 3 2= (n +1)a (n ∈ N * ).mn n(2)令b =4,求数列{b }的前 n 项和T .n(a + 2)(a+ 2)n nnn +1【解析】解:(1)因为 2S = (n +1)a (n ∈ N *),所以 2S n -1 = na n -1 (n ≥ 2),两式作差可得2a n = (n +1)a n - na n -1 (n ≥ 2),整理得(n -1)a= na(n ≥ 2),则a n=n(n ≥ 2),nn -1a n -1n -1故a = a ⨯ a 2 ⨯ a 3 ⨯ ⨯ a n= 2 ⨯ 2 ⨯ 3 ⨯ ⨯ n= 2n (n ≥ 2),a 1 a 2a n -11 2n -1当 n = 1时, a 1 = 2 满足上式,故 a n = 2n .(2)由(1)可知b =4 = 4 = 1 = 1 - 1 ,n(a + 2)(a + 2) (2n + 2)(2n + 4) (n +1)(n + 2) n +1 n + 2n n +1则T = b + b + b + + b = ⎛1 - 1 ⎫ + ⎛ 1 - 1 ⎫ + ⎛ 1 - 1 ⎫ + + ⎛ 1 - 1 ⎫ . n 1 2 3n 2 3 ⎪ 3 4 ⎪ 4 5 ⎪ n +1 n + 2 ⎪ = 1 - 1 = n. ⎝⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭2 n + 2 2n + 4(n ∈ N *).(1)证明:数列{a n - 2}为等比数列;(2)若b n = a n ⋅ l og 2 (a n - 2),数列{b n }的前项和为T n ,求T n .n1n n n n 2 n 1 2 3两式相减得: a n = 2a n - 2a n -1 + 2 ,∴a n = 2a n -1 - 2 ,即: a n - 2 = 2(a n -1 - 2),又 n = 1时, S 1 = a 1 = 2a 1 + 2 - 6 ,解得: a 1 = 4 ,∴ a 1 - 2 = 2 ≠ 0 , a n - 2 ≠ 0a n - 2a n -1 - 2= 2 ,∴数列{a n - 2}是以 2 为首项,2 为公比的等比数列.(2)由(1)得: a - 2 = 2 ⨯ 2n -1= 2n ,∴ a = 2n+ 2 ,又b = a ⋅ log (a - 2),∴ b = n (2n+ 2),∴ T = b + b + b + ⋅⋅⋅b = (1⨯ 2 + 2⨯ 22 + 3⨯ 23 + ⋅⋅⋅ + n ⨯ 2n)+ 2(1+ 2 + 3 + ⋅⋅⋅ + n ),设 A n = 1⨯ 2 + 2⨯ 22+ 3⨯ 23+ ⋅⋅⋅ + (n -1)⋅ 2n -1+ n ⋅ 2n ,则2A n = 1⨯ 2 + 2⨯ 2 + ⋅⋅⋅ + (n -1)⨯ 2 + n ⨯ 2 , 2 3 n n +12 (1 - 2n ) 两式相减可得: - A n = 2 + 22 + 23 + ⋅⋅⋅ + 2n - n ⨯ 2n +1=- n ⨯ 2n +1 , 1- 2∴A n= (n -1)⋅ 2n +1+ 2,又1+ 2 + 3 + ⋅⋅⋅ + n = n (n +1),2∴T n = (n -1)⋅ 2n +1+ 2 + n (n +1).n n n ∴nnb 列,数列{b }满足∑a b = (n -1)2n+1.ni i i =1(1)求数列{a n }的通项公式;(2)求证:数列{b n }是等比数列;(3)若数列{c }满足c = a n ,且c (m ∈ N *)为整数,求 m 的值.nn mn【解析】(1)因为 a 1 = 1, a 4 , a 6 , a 9 成等比数列,所 以 a 2= a ⋅ a649即(1+ 5d )2= (1+ 3d )(1+ 8d ),解得: d = 1或 d = 0 (舍去) 所以 a n = 1+ n -1 = n ,(2)因为∑a i b i= (n -1)2 +1,ni =1所以 a 1b 1 + a 2b 2 + + a n b n= (n -1)⋅2n+1,①a 1b 1 + a 2b 2 + + a n -1b n -1 = (n - 2)⋅ 2n -1 +1 (n ≥ 2) ②① -②得: a n b n = (n -1)⋅ 2n- (n - 2)⋅ 2n -1= n ⋅ 2n -1 (n ≥ 2) ,又a n = n ,所以b n = 2n -1(n 2),n当 n = 1时, a b = 1,即b = 1,也适合b = 2n -1 ,1 1 1 nn -1 *所以b n = 2 (n ∈ N ) ,b 2n由n +1 = = 2 知数列{b n }是公比为 2 的等比数列.b 2n -1(3)c n = a n b n = n ,2n -1当 n = 1时, c 1 =1, n = 2 时, c 2 = 1,当n ≥ 3时,由 n < 2n -1 知c n < 1,不是整数,所以c m (m ∈ N*)为整数则 m = 1或 m = 2 .。
高一数学专题测试:数列(培优卷)解析

对任意的 n N
, Tn
1
1 an1
1 2
,1 ,
因此,当整数 k 1 时, Tn k 最小.
故选:B. 【点睛】 本题考查裂项求和法,考查符合条件的整数的值的求解,考查计算能力,属于中等题.
4.设数列{an},{bn}均为等差数列,它们的前 n 项和分别为 Sn , Tn ,若
Sn Tn
2n 3 3n 4
令 bn a4n a4n1 a4n2 a4n3
则 bn1 bn 16 ,又 b1 10 ,故 bn 16n 6
故 S20 b1 b2 b5 5 b1 10 16 210 .
故选:A.
试卷第 4 页,总 21 页
【点睛】 本题考查由递推公式,找到通项之间的关系,属数列困难题,对计算能力要求较高.
1 an1
,
所以,
Tn
1 1 a1
1 1 a2
1 1 an
1 a1
1 a2
1 a2
1 a3
1 an
1 an1
1 a1
1 an1
1 1 , an1
a1 1 , an1 an2 an ,可得 a2 2 , a3 6 ,以此类推可得 an 0 n N ,
且 an1 an an2 0 ,所以,数列 an 单调递增,
()
A. S2020 是定值, a1 a2020 是定值
B. S2020 不是定值, a1 a2020 是定值
C. S2020 是定值, a1 a2020 不是定值
D. S2020 不是定值, a1 a2020 不是定值
【答案】A 【解析】
【分析】
按照 n 的奇偶分类讨论,可得 a2k1 a2k 6k 1以及 a2k4 a2k 12 ,再根据等差数
高中数学数学数列多选题专项训练的专项培优练习题(含答案

一、数列多选题1.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T答案:AD【分析】分类讨论大于1的情况,得出符合题意的一项.【详解】①, 与题设矛盾.②符合题意.③与题设矛盾.④ 与题设矛盾.得,则的最大值为.B ,C ,错误.故选:AD.【点睛】解析:AD【分析】分类讨论67,a a 大于1的情况,得出符合题意的一项.【详解】①671,1a a >>, 与题设67101a a -<-矛盾. ②671,1,a a ><符合题意.③671,1,a a <<与题设67101a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.得671,1,01a a q ><<<,则n T 的最大值为6T .∴B ,C ,错误.故选:AD.【点睛】考查等比数列的性质及概念. 补充:等比数列的通项公式:()1*1n n a a q n N -=∈.2.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a =B .911a a =C .当9n =或10时,n S 取得最大值D .613S S = 答案:ABD【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列的前项和为,,∴,解得,故,故A 正确;∵,,故有,故B 正确;该数解析:ABD【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=,∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确; ∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确,故选:ABD.【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.3.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( )A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =答案:AD【分析】对于,作差后利用等差数列的通项公式运算可得答案;对于,根据等差数列的前项和公式得到和, 进而可得,由此可知,故不正确; 对于,由得到,,然后分类讨论的符号可得答案;对于,由求出及解析:AD【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案;对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =.【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2n S n n a =-+,则11a S a ==,2n ≥时,221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确.故选:AD【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.4.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( )A .12d =B .12d =-C .918S =D .936S =答案:BD【分析】由等差数列下标和性质结合前项和公式,求出,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B .【详解】因为,所以.因为,,所以公差.故选:BD解析:BD【分析】由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B .【详解】因为1937538a a a a +=+=+=,所以()1999983622a a S +⨯===. 因为35a =,73a =,所以公差731732a a d -==--. 故选:BD5.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( )A .若59S >S ,则150S >B .若59S =S ,则7S 是n S 中最大的项C .若67S S >, 则78S S >D .若67S S >则56S S >.答案:BC【分析】根据等差数列的前项和性质判断.【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有.故选:BC .【点睛】关键点点睛:本题考查等差数列解析:BC【分析】根据等差数列的前n 项和性质判断.【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >.故选:BC .【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 6.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( )A .2490a a +=B .数列{}n S 中最大值的项是25SC .公差0d >D .数列{}na 也是等差数列 答案:AB【分析】根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列中,即,.对于A 选项,,所以A 选项正确.对于C 选项,,,所以,解析:AB【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,1149249,2a d a d =-=-. 对于A 选项,24912490a a a d +=+=,所以A 选项正确.对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误. 故选:AB【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.7.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减B .数列{}n a 有最大值C .数列{}n S 单调递减D .数列{}n S 有最大值答案:ABD【分析】由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD.【详解】根据等差数列定义可得,所以数列单调递减,A 正确;由数列单调递减,可知数列有最大值a1,故B 正解析:ABD【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD.【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确.故选:ABD.8.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列答案:AD【分析】利用求出数列的通项公式,可对A ,B ,D 进行判断,对进行配方可对C 进行判断【详解】解:当时,,当时,,当时,满足上式,所以,由于,所以数列为首项为,公差为2的等差数列,因解析:AD【分析】利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式,所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误,故选:AD【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题9.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >答案:ABC【分析】根据等差数列性质依次分析即可得答案.【详解】解:对于A.,若,则,所以,所以,故A 选项正确;对于B 选项,若,则,由于,公差,故,故,所以是中最大的项;故B 选项正确;C. 若解析:ABC【分析】根据等差数列性质依次分析即可得答案.【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确; 对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误.故选:ABC .【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.10.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a =B .当9n =或10时,n S 取最大值C .911a a <D .613S S =答案:AD【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误.【详解】解:,,故正确A.由,当时,,有最小值,故B 错误.,所以,故C 错误.,,故D 正确.解析:AD【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误.【详解】解:1385a a S +=,111110875108,90,02d a a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误. 9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误. 61656+5415392d S a d d d ⨯==-+=-, 131131213+11778392d S a d d d ⨯==-+=-,故D 正确. 故选:AD【点睛】考查等差数列的有关量的计算以及性质,基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学尖子生培优专题测试数列一、单选题1.等比数列{a n}满足a2+a3=2,a2-a4=6,则a6=( )A. -32B. -8C. 8D. 642.正项等比数列{a n}满足a22+2a3a7+a6a10=16,则a2+a8=()A. 1B. 2C. 4D. 83.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{a n},已知a1=1,a2=2,且满足a n+2−a n=1+(−1)n(n∈N∗),则该医院30天入院治疗流感的共有()人A. 225 B. 255 C. 365 D. 4654.已知数列{a n}的前n项和为S n,且a n+1=4S n−12n−1,a1=1,n∈N∗,则{a n}的通项公式a n=()A. nB. n+1C. 2n−1D. 2n+15.已知数列{a n}满足:a1=0,a n+1=ln(e a n+1)−a n(n∈N∗),前n项和为S n(参考数据:ln2≈0.693,ln3≈1.099,则下列选项错误的是().A. {a2n−1}是单调递增数列,{a2n}是单调递减数列B. a n+a n+1≤ln3C. S2020<670D. a2n−1≤a2n6.定义:在数列{a n}中,若满足a n+2a n+1−a n+1a n=d(n∈N∗,d为常数),称{an}为“等差比数列”,已知在“等差比数列” {a n}中,a1=a2=1,a3=3,则a2020a2018等于()A. 4×20162-1B. 4×20172-1C. 4×20182-1D. 4×201827.已知单调递增数列{a n}的前n项和S n满足2S n=a n(a n+1)(n∈N∗),且S n>0,记数列{2n⋅a n}的前n项和为T n,则使得T n>2020成立的n的最小值为()A. 7B. 8C. 10D. 118.若数列{b n}的每一项都是数列{a n}中的项,则称{b n}是{a n}的子数列.已知两个无穷数列{a n}、{b n}的各项均为正数,其中a n=32n+1,{b n}是各项和为12的等比数列,且{b n}是{a n}的子数列,则满足条件的数列{b n}的个数为( )A. 0个B. 1个C. 2个D. 无穷多个二、多选题9.已知等比数列{a n}的公比为q,前4项的和为a1+14,且a2,a3+1,a4成等差数列,则q 的值可能为()A. 12B. 1C. 2D. 310.已知等比数列{a n}的公比q<0,等差数列{b n}的首项b1>0,若a9>b9,且a10>b10,则下列结论一定正确的是()A. a9a10<0B. a9>a10C. b10>0D. b9>b1011.已知数列{a n}的前n项和为S n,且a1=p,2S n−S n−1=2p(n≥2,p为非零常数),则下列结论正确的是()A. {a n}是等比数列B. 当p=1时,S4=158C. 当p=12时,a m⋅a n=a m+n D. |a3|+|a8|=|a5|+|a6|12.已知数列{a n}的前n项和为S,a1=1,S n+1=S n+2a n+1,数列{2na n⋅a n+1}的前n项和为T n,n∈N∗,则下列选项正确的为()A. 数列{a n+1}是等差数列B. 数列{a n+1}是等比数列C. 数列{a n}的通项公式为a n=2n−1D. T n<1三、填空题13.在公差为d的等差数列{a n}(n∈N∗)中,a1=10,a1、2a2+2、5a3成等比数列,则a n= ________.14.数列{a n}的前n项和为S n,a n+2S n=3n,数列{b n}满足3bn= 12(3a n+2-a n+1)(n∈N"),则数列{b n}的前10项和为________15.已知实数x,a1,a2,y等成等差数列,x,b1,b2,y成等比数列,则(a1+a2)2b1b2的取值范围是________.16.已知函数f(x)=a⋅2x+b的图象过点(2,9)和点(4,45),若数列{a n}的前n项和S n=f(n),数列{log2a n3}的前n项和为T n,则使得T n≥55成立的最小正整数n=________.四、解答题17.已知数列{a n}的前n项和为S n,且2,a n,S n成等差数列.(1)求数列{a n}的通项公式;(2)若b n=n⋅a n,求数列{b n}的前n项和T n.18.已知数列{a n}的前n项和为S n,若a1=1,n(S n+1−S n)−n2=(n+1)a n+n.(Ⅰ)求证:数列{a nn}是等差数列;(Ⅱ)求数列{a nn·2n}的前n项和T n.19.设数列{a n}中,若a n+1=a n+a n+2(n∈N∗),则称数列{a n}为“凸数列”.(1)设数列{a n}为“凸数列”,若a1=1,a2=−2,试写出该数列的前6项,并求出该6项之和;(2)在“凸数列”中,求证a n+6=a n,n∈N∗.20.已知等比数列{a n}的公比q>1,且a1+a3=20,a2=8,等差数列{b n}的前n项和为S n,且有S6=57,b4=11.(1)求数列{a n},{b n}的通项公式;(2)设c n=b na n ,T n是数列{c n}的前n项和,对任意正整数n,不等式T n+3n2n+1>(−1)n⋅a恒成立,求实数a的取值范围.21.已知数列{a n}的前n项和为S n,且S n=2S n−1+2(n≥2,n∈N∗),数列{b n}中,a1=2b1= 2.(1)求{a n}的通项公式;(2)若b2n=b2n−1+1,b2n+1=b2n+a n,求数列{b n}的前10项和.22.等差数列{a n}的前n项和为S n.(1)求证:数列{S nn}是等差数列;(2)若a1=1,{√S n}是公差为1的等差数列,求使S k+1⋅S k+2S k2为整数的正整数k的取值集合;(3)记b n=t a n( t为大于0的常数),求证:b1+b2+⋯…+b nn ≤b1+b22.参考答案一、单选题1. A2. C3. B4. C5. C6. C7. B8. C二、多选题9. A,C 10. A,D 11. A,B,C 12. B,C,D三、填空题13. -n+11或4n+6 14. 65 15.(−∞,0]∪[4,+∞)16. 11四、解答题17. (1)解:由题意知2,a n,S n成等差数列,所以2a n=2+S n①,可得2a n−1=2+S n−1(n≥2)②① −②得a n=2a n−1(n≥2),又2a1=2+a1, a1=2,所以数列{a n}是以2为首项,2为公比的等比数列,∴a n=2n(2)解:由(1)可得b n=n⋅2n,用错位相减法得:T n=2+2×22+3×23+4×24+⋯+n×2n①2T n=22+2×23+⋯+(n−1)×2n+n×2n+1②① −②可得T n=(n−1)⋅2n+1+2.18. 解:(Ⅰ)证明:由题意得,na n+1−n2=(n+1)a n+n,∴na n+1=(n+1)a n+n(n+1),∴a n+1n+1−a nn=1.又a1=1,∴数列{a nn}是以1为首项,1为公差的等差数列.(Ⅱ)由(Ⅰ)可得,a nn=n,则a n=n2,∴a n n·2n=n 2n,∴T n =12+222+323+⋯+n2n ,① 则T n 2=122+223+324+⋯+n 2n+1,② ① − ②得, T n 2=12+122+123+124+⋯+12n−n 2n+1=1−12n−n 2n+1=1−n+22n+1,∴T n =2−n+22n.19. (1)解:因为 a n+1=a n +a n+2(n ∈N ∗) ,且 a 1=1 , a 2=−2 , 所以 a 1=1 , a 2=−2 , a 3=−3 , a 4=−1 , a 5=2 , a 6=3 , S 6=0 ; (2)证明:由题意, {a n+1=a n +a n+2a n+2=a n+1+an+3, ∴ a n+1+a n+2=a n +a n+2+a n+1+a n+3 ,即 a n +a n+3=0 ,∴ a n+3=−a n , ∴ a n+6=−a n+3=a n , n ∈N ∗ .20. (1)解:等比数列 {a n } 中, a 1+a 3=20 , a 2=8 , 故 {a 1(1+q 2)=20a 1q =8 ,又 q >1 ,所以 {a 1=4q =2 ,故 a n =2n+1 ; 等差数列 {b n } 中, S 6=6(a 1+a 6)2=57 ,即 a 1+a 6=19 ,又 b 4=11 ,故 {2a 1+5d =19a 1+3d =11 ,所以 {a 1=2d =3 ,故 a n =3n −1 ;(2)解:因为 c n =b na n=3n−12 , T n =c 1+c 2+c 3+...+c n ,故 T n =2×(12)2+5×(12)3+8×(12)4+...+(3n −1)(12)n+1 ,则 12T n =2×(12)3+5×(12)4+8×(12)5+...+(3n −4)(12)n+1+(3n −1)(12)n+2 , 两式作差得: 12T n =2×(12)2+3[(12)3+8×(12)4+...+(12)n+1]−(3n −1)(12)n+2=2×(12)2+3×(12)3[1−(12)n−1]1−12−(3n −1)(12)n+2=54−3n +52n+2 故 T n =52−3n+52n+1,所以 T n +3n 2n+1=52−3n+52n+1+3n 2n+1=52−52n+1>(−1)n ⋅a 恒成立,当n 是偶数时,不等式即 a <52−52n+1 ,易见 {52−52n+1} 是递增数列,故 n =2 时取得最小值 158,所以a <158,当n 是奇数时,不等式即 a >52n+1−52 ,易见 {52n+1−52} 是递减数列,故 n =1 时取得最大值 −54 ,所以 a >−54 ,综上可知,实数a的取值范围是−54<a<158.21. (1)解:当n=2时,S2=2S1+2=6,∴a2=S2−S1=4;当n≥3时,由S n=2S n−1+2可得出S n−1=2S n−2+2,两式作差得S n−S n−1=2(S n−1−S n−2),即a n=2a n−1,则a na n−1=2,且a2a1=2,所以,数列{a n}是等比数列,且首项为2,公比也为2,∴a n=2×2n−1=2n;(2)解:由题意得b2n−b2n−1=1,b2n+1−b2n=2n,所以b2n+1−b2n−1=1+2n,且b2=b1+1= 2,则b2n−1−b2n−3=1+2n−1,b2n−3−b2n−5=1+2n−2,⋯,b5−b3=1+22,b3−b1=1+21,所以b2n−1−b1=n−1+(21+22+⋯+2n−1)=n−1+2(1−2n−1)1−2=2n+n−3(n≥2),所以b2n−1=2n+n−2(n≥2),所以b2n=2n+n−1(n≥2),所以b2n+b2n−1=2n+1+2n−3(n≥2),易得b1+b2=3也适合上式,所以{b n}的前10项和为b1+b2+⋯+b9+b10=(22+23+⋯+26)+(−1+1+⋯+7)=22(1−25)1−2+5×(7−1)2=13922. (1)解:设等差数列{a n}的公差为d,则S n=na1+n(n−1)2d,从而S nn=a1+n−12d,所以当n⩾2时,S nn −S n−1n−1=(a1+n−12d)−(a1−n−22d)=d2,所以数列{S nn}是等差数列;(2)解:因为a1=1,{√S n}是公差为1的等差数列,所以√S1=1,所以√S n=√S1+(n−1)=n,所以S n=n2,所以S k+1S k+2S k2=[(k+1)(k+2)k2]2=(1+3k+2k2)2,显然k=1,2满足条件,k=3不满足条件,当k⩾4时,因为k2−3k−2=k(k−3)−2⩾4(4−3)−2=2>0,所以0<3k+2k2<1,所以1<1+3k+2k2<2,故S k+1⋅S k+2S k2不是整数,综上所述,正整数k的取值集合是{1,2};(3)解:设等差数列{a n}的公差为d,则a n=a1+(n−1)d,b n=a a n,所以b nb n−1=a a n−a n−1=a d(n⩾2),所以数列{b n}是首项和公比均大于0的等比数列,设公比q=a d,下面证明:b1+b n⩾b p+b k,其中p,k为正整数,且p+k=1+n,因为(b1+b n)−(b p+b k)=b1+b1q n−1−b1q p−1−b1q k−1=b1(q p−1−1)(q k−1−1),当q>1时,y=q x为增函数,因为p−1⩾0,k−1⩾0,所以q p−1−1⩾0,q k−1−1⩾0,所以b1+b n⩾b p+b k,当q=1时,b1+b n=b p+b k,当0<q<1是,y=q x为减函数,因为p−1⩾0,k−1⩾0,所以q p−1−1⩽0,q k−1−1⩽0,所以b1+b n⩾b p+b k,综上,有b1+b n⩾b p+b k,其中p,k为正整数,且p+k=1+n,所以n(b1+b n)=(b1+b n)+(b1+b n)+⋯+(b1+b n)⩾(b1+b n)+(b2+b n−1)+(b3+b n−2)+⋯+(b n+b1)=(b1+b2+⋯+b n)+(b n+b n−1+⋯+b1),所以b1+b2+⋯+b nn ⩽b1+b n2.。