硝胺丁羟推进剂高、低压燃烧性能研究
硝酸羟胺基绿色推进剂研究进展

硝酸羟胺基绿色推进剂研究进展鲍立荣1,2,3,汪辉1,2,3,陈永义1,2,3,张伟1,2,3,张晓军4,黄寅生2,3,沈瑞琪1,2,3,叶迎华1,2,3(1.南京理工大学空间推进技术研究所,江苏南京210094;2.微纳含能器件工业和信息化部重点实验室,江苏南京210094;3.南京理工大学化工学院,江苏南京210094;4.西安近代化学研究所,陕西西安710065)摘要:硝酸羟胺(HAN )基推进剂具有能量高、安全钝感和燃烧产物绿色无毒等优点,在推进系统连续启动和推力调节等操作方面具有一定优势。
综述了HAN 基液体推进剂、HAN 基凝胶推进剂和HAN 基固体推进剂的配方组成、分解特性、点火燃烧性能及相关的应用技术状况。
提出了今后的研究重点:制备HAN 基液体推进剂用高性能催化剂床,同时发展电点火为可靠点火方式;改善HAN 基凝胶推进剂点火性能,加快工程化应用;探究HAN 基固体推进剂燃熄可控机理,突破大规模推进系统应用瓶颈。
关键词:硝酸羟胺(HAN )基推进剂;配方组成;分解特性;点火燃烧性能;研究进展中图分类号:TJ55;V511文献标志码:ADOI :10.11943/CJEM20201001引言近年来,伴随着各国对航天和军事技术领域发展的不断深入,高能钝感、低特征信号及绿色无害型推进剂已成为各国的研究热点[1-3]。
此外各国也正积极发展可控推进技术,要求为微小卫星和导弹武器等提供动力源的推进系统可实现连续启动和推力调节等操作[4]。
在克服航天应用中占主导地位的肼类液体推进剂的比冲低、易燃易爆、毒性大等缺点,同时满足推进系统推力可控且安全可靠、推进剂密度比冲高以及环境友好等发展需求的前提下,硝酸羟胺(HAN )基绿色推进剂成为空间飞行器动力可控来源的研究重点[5],有望满足推进系统快速响应和低成本发展的需求,进一步为提高微小卫星和武器装备的动力可控和快速机动提供技术支撑[6]。
作为可替代肼类液体推进剂的绿色高能燃料,HAN 因为能量大、密度高以及毒性小等优势引起研究人员的广泛关注。
含FOX-12硝胺发射药的燃烧特性

含FOX-12硝胺发射药的燃烧特性
魏伦;姚月娟;刘少武;郑双;张远波;高林荣
【期刊名称】《含能材料》
【年(卷),期】2012(020)003
【摘要】采用DSC-TG、密闭爆发器、中止燃烧试验装置,研究了含N-脒基脲二硝酰胺盐(FOX-12)的硝胺发射药的热分解和燃烧特性.结果表明:该硝胺发射药中的NC-NG体系和FOX-12一起开始分解,加入FOX-12使硝胺发射药的燃速压力指数降低,其值小于1,随着FOX-12含量的增加,硝胺发射药的压力指数在低压段(10~20MPa)降低幅度大于中高压段(40 ~240 MPa)的幅度.
【总页数】4页(P337-340)
【作者】魏伦;姚月娟;刘少武;郑双;张远波;高林荣
【作者单位】西安近代化学研究所,陕西西安710065;西安近代化学研究所,陕西西安710065;西安近代化学研究所,陕西西安710065;西安近代化学研究所,陕西西安710065;西安近代化学研究所,陕西西安710065;西安近代化学研究所,陕西西安710065
【正文语种】中文
【中图分类】TJ55;O64
【相关文献】
1.含RDX的叠氮硝胺发射药热分解与燃烧性能 [J], 杨建兴;贾永杰;刘毅;李乃勤;白微;张步允
2.含RDX高能硝胺发射药的热分解动力学补偿效应 [J], 张冬梅;郑朝民;衡淑云;刘子如;潘清;陆洪林
3.NGu对含RDX硝胺发射药燃烧性能的影响 [J], 张邹邹;蒋树君;张玉成;杨雁
4.反相高效液相色谱法测定含RDX的叠氮硝胺发射药中4种组分含量 [J], 杨彩宁;赵娟;陈曼;贾林;王歌扬;张瑜;何可维
5.含羟乙基丁硝胺硝酸酯发射药的研究 [J], 陆安舫
因版权原因,仅展示原文概要,查看原文内容请购买。
低燃速高固体含量HTPB推进剂

第43卷第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀固体火箭技术JournalofSolidRocketTechnology㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀Vol.43No.32020低燃速高固体含量HTPB推进剂①韩晓娟,苏昌银,李雪飞,张爱科,梁晓东,李㊀强(西安航天化学动力有限公司,西安㊀710025)㊀㊀摘要:对大型发动机用的低燃速高固体含量HTPB推进剂进行了研制㊂采用超支化SU⁃2助剂降低推进剂药浆粘度为提高配方固体含量的方式,优化SU⁃2助剂含量,研制出固体质量分数89%的推进剂配方㊂依据抑制AP分解的质子转移机理,分别用高氯酸烷基胺衍生物A1N㊁草酸铵T29降燃速剂,获取低燃速HTPB推进剂,针对试验得到的推进剂性能数据,分析了单项降燃速剂的推进剂燃烧性能存在不足,提出了选用价廉的高氯酸烷基胺衍生物A1N/草酸铵T29/细AP复配方法,既降低燃速又能降低压强指数㊂经装药试验验证,获得6.86MPa燃速5.185mm/s,3 11MPa压强指数0.328,密度ȡ1.80g/cm3,20ħ最大拉伸强度σmȡ1.0MPa,-40ħ最大伸长率εmȡ61.0%;5h使用期粘度为2625Pa㊃s;综合性能优良的高固体含量低燃速HTPB推进剂㊂以提高推进剂固体含量增加密度,增大HTPB推进剂比冲的设计方法,可供低燃速HTPB推进剂的发动机借鉴㊂关键词:工艺助剂;HTPB推进剂;高固体含量;药浆粘度;低燃速中图分类号:V512㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1006⁃2793(2020)03⁃0290⁃06DOI:10.7673/j.issn.1006⁃2793.2020.03.005HTPBpropellantwithlowburningrateandhighsolidcontentHANXiaojuan,SUChangyin,LIXuefei,ZHANGAike,LIANGXiaodong,LIQiang(Xi'anAerospaceChemicalPropulsionCo.,Ltd.,Xi'an㊀710025,China)Abstract:HTPBpropellantswithlowburningrateandhighsolidcontentweredevelopedforlarge⁃sizemotors.Thepropellantformulationwith89%solidmassfractionwasdevelopedbyusingthehyperbranchedSU⁃2additivetoreducetheviscosityofpropel⁃lantslurryandoptimizingthecontentofSU⁃2additive.BasedontheprotontransfermechanismofAPdecompositioninhibition,theHTPBpropellantswithlowburningratewereobtainedbyusingthederivativesofalkylamineperchlorateA1Nandammoniumox⁃alateT29reducerrespectively.Accordingtotheperformancedataofthepropellantsobtainedfromthetest,theshortcomingsofthecombustionperformanceofthepropellantswithsinglereducerwereanalyzed,andthelow⁃costcompositeofalkylamineperchlorateA1N/ammoniumoxalateT29/fineAPwasproposed,whichcanreduceboththeburningrateandthepressureindex.TheresultsshowthattheHTPBpropellantwithhighsolidcontent,lowburningrateandexcellentcomprehensivepropertiesareobtained,whichtheburningrateofthepropellantis5.185mm/sat6.86MPaandthepressureexponentis0.328intherangeof3MPato11MPa,densityȡ1.80g/cm3;maximumtensilestrengthσmȡ1.0MPaat20ħ,maximumelongationεmȡ61.0%at-40ħ;Thepotlife,theviscosityafter5hoursis2625Pa㊃s.ThemethodcanprovidereferenceforthemotordesignoflowburningrateHTPBpropel⁃lantsoastoimprovethesolidcontentofpropellant,increasethedensityandthespecificimpulseofHTPBpropellant.Keywords:processadditive;HTPBpropellant;highsolidcontent;slurryviscosity;lowburningrate0㊀引言与当前使用的含硝酸酯增塑NEPE㊁GAP㊁HTPE推进剂比[1-2],HTPB结构由于低极性特点,难与含能增塑剂相容,提高能量受到限制㊂但HTPB推进剂价廉,综合性能好,在战术㊁战略㊁宇航发动机上广泛使用㊂特别是低压强工作的大型固体运载发动机,需要低燃速推进剂实现较长飞行时间,HTPB三组元推进剂相比其他推进剂更成熟,它在低压强条件下燃烧稳092 ①收稿日期:2019⁃05⁃07;修回日期:2019⁃05⁃28㊂作者简介:韩晓娟(1980 ),女,高级工程师,主要从事推进剂装药工艺与配方设计㊂E⁃mail:136****3772@163.com通讯作者:苏昌银(1953 ),男,研究员,主要从事推进剂装药工艺与配方设计㊂E⁃mail:sunagood@126.com定,压强指数较低,能量释放充分,力学性能优异而被发动机设计者看好㊂提高低燃速HTPB推进剂能量,主要从固体填料品种和固体含量增高两方面设计推进剂配方㊂选用炸药类填料HMX㊁RDX等加入推进剂配方,取代配方中固体填料高氯酸铵分数,提高推进剂能量[3-4],即通常称的四组元推进剂;但大型固体发动机内弹道在低压强低燃速工作环境中,四组元推进剂的负氧填料HMX㊁RDX能量得不到充分释放,往往出现热力学理论计算比冲高,实际发动机测试值偏低的现状,并产生燃烧不完全的铝残渣,对发动机的内热防护冲刷烧蚀严重㊂简单增高HTPB推进剂固体含量会使药浆工艺性差,粘度大装药困难;常用的低燃速推进剂固体质量分数为87%左右㊂本文采用添加工艺助剂方法降低药浆粘度,提高配方固体含量;选用降燃速剂获取低燃速推进剂,研制适应大型固体发动机装药的HTPB三组元推进剂㊂1㊀基础配方设计HTPB三组元推进剂以丁羟粘合体系㊁燃烧剂铝粉Al㊁氧化剂高氯酸铵AP三大主料构成㊂低燃速推进剂固体组分常为大颗粒堆积,基础配方以固体负燃速催化剂为降速剂,选用球形Ⅰ类高氯酸铵AP1㊁球形Ⅲ类高氯酸铵AP3为堆积主体,超细高氯酸铵AP4㊁球形铝粉Al填充堆积空隙㊂计算基础配方推进剂密度ρ按式(1):ρ=100/ð(mi/di)(1)式中㊀mi为配方组分质量百分数,%;di为配方中组分密度值,g/cm3㊂计算密度按固体质量分数89.1%,见表1㊂计算得ρ=1.8051g/cm3㊂HTPB三组元推进剂丁羟胶㊁Al㊁AP含量确定推进剂的能量水平;用QJ1393固体火箭发动机热力学计算方法,计算基础配方的理论比冲见表2㊂表1㊀设计基础配方组分密度与百分数Table1㊀DensityandpercentageofthecomponentsforbasicformulaofthepropellantComponentHTPBTDIBurningrateinhibitorPlasticizerBondingagentAlAPMassfraction/%7.10.51.13.10.217.570.5Density/(g/cm3)0.911.221.10.921.12.71.95表2㊀基础配方热力学计算值Table2㊀ThermodynamiccalculationsofbasicformulaofthepropellantChamberpressure/MPaChambertemperature/KCharacteristicvelocity/(m/s)Specificimpulse/(N㊃s/kg)6.86396217132622㊀㊀从表2看出,比冲2622N㊃s/kg,加入降速剂降低了比冲,比固体质量分数88%理论比冲(2607N㊃s/kg)高15N㊃s/kg㊂基础配方用于大型发动机装药,关键在于药浆工艺性和低燃速能否实现㊂2㊀降低推进剂药浆粘度大型固体发动机药形为同心度高的三维复杂药形,如新型的翼/柱/环型药柱等,均为内孔燃烧㊂对于固体推进剂药柱成形,国内㊁国外大都采用浇注药浆制造[5-7],直接将推进剂药浆浇注于预先装有芯模的燃烧室中㊂因此,推进剂药浆的流变性能是推进剂工艺性能好坏的主要判据,具有良好的推进剂药浆流变性,才能制备出结构完整和燃烧稳定的药柱㊂为满足推进剂浇注成形工艺,推进剂配方设计首先考虑药浆的工艺性,它具备低的药浆粘度和较长的使用期㊂2.1㊀键合型活性工艺助剂降低推进剂药浆粘度的方法较多[8],但现用几种降低药浆粘度的方法都存在不足之处㊂为获得高固体含量低燃速推进剂,配方中固体大颗粒偏多,级配不可能最佳,往往推进剂药浆流动流平性差,难以保证装药质量㊂将超支化键合型活性工艺助剂SU⁃2用于高固体质量分数的HTPB推进剂,减少粘流体胶和增塑剂含量,使固体质量分数高达89%,加入0.18%微量的SU⁃2助剂装药试验,药浆表观现象见图1㊂从药浆表观现象看出,堆积无界面,表面有光泽,视角感光滑柔软,药浆表观状态良好㊂HTPB推进剂药浆粘度测试受条件影响较大,难以确定不同装药单位的测试系统误差㊂采用加入SU⁃21922020年6月韩晓娟,等:低燃速高固体含量HTPB推进剂第3期和不加的相对比较方法,再结合实际观察药浆现状㊁沸腾高度及成品药内部密实度,确定药浆粘度的相对判断值㊂图1㊀固体质量分数89%的药浆状态Fig.1㊀Propellantslurrywith89%solidcontents2.2㊀SU⁃2助剂量与药浆粘度加入质量分数0.06%的SU⁃2药浆,粘度降低约35% 55%左右[9]㊂固体质量分数89%的推进剂,加入0.12%与0.18%SU⁃2助剂,测试药浆粘度数据见图2㊂可见,随SU⁃2助剂用量增加,药浆粘度平行下降,SU⁃2助剂增加0.06%药浆粘度下降约160Pa㊃s,占10%左右㊂与加入SU⁃2和不加的相比,药浆粘度降低幅度不大㊂图2㊀两种含量SU⁃2助剂药浆粘度对比Fig.2㊀ComparisonofpropellantslurryviscosityoftwokindsofcontentSU⁃2processaids3㊀降低推进剂燃速3.1㊀设计方案为适应大型运载发动机装药经济性和燃烧性能可控性,不采用变换AP级配调节燃速㊂对降低HTPB三组元推进剂燃速,以添加降速剂实现低燃速㊂遵循质子转移以及形成不稳定高氯酸盐的机理,增加平衡产物量使AP分解逆向,来减缓高氯酸铵的分解,达到降低推进剂燃速㊂例如常用的草酸铵降速剂㊂它的热分解为㊀㊀32分解过程中的质子转移:㊀㊀NH3抑制了质子转移过程,H2HClO4分解过程㊂使推进剂燃速降低㊂工业上由氨水与草酸反应制成,带一分子结晶水㊂反应式:㊀㊀50ħ固化的推进剂中为一良好的降速剂;草酸铵DSC见图3,图中失水温度为92.8ħ㊂国内往往将草酸铵的结晶水烘干去掉,降速剂效率不如带结晶水的高,但推进剂性能比较稳定㊂图3㊀草酸铵DSC图Fig.3㊀DSCdiagramofammoniumoxalate3.2㊀草酸铵/细AP调配草酸铵作为在低压强工作的发动机是良好的降速剂,但随着压强增加含草酸铵的推进剂压强指数增高,在10 20MPa压强指数n>0.7左右,不适应高压段工作的发动机㊂针对大型运载发动机工作压强不高,降低发动机成本,选用价廉的草酸铵为降速剂是可取的技术方案㊂以0.06%SU⁃2的固体质量分数89%推进剂配方,其中6%的草酸铵T29/细AP调配量装药,对推进剂燃速的影响见表3㊂表3中,σm为最大拉伸强度,εm为最大伸长率,εb为断裂伸长率,下同㊂由表3看出,调配草酸铵T29/细AP用量也能降低推进剂燃速,T29增加0.5%,6.86MPa燃速降低0.34mm/s;20ħ力学能性能σmȡ0.75MPa时,高㊁低㊁常温伸长率均εm>50%;密度ρȡ1.805g/cm3㊂292 2020年6月固体火箭技术第43卷表3㊀含T29推进剂性能数据Table3㊀PerformancesoftheT29propellantBatchnumberCuringparameter20ħσm/MPaεm/%εb/%-40ħσm/MPaεm/%εb/%70ħσm/MPaεm/%εb/%ST13⁃11.170.59257.762.52.13657.281.40.31662.664.6ST13⁃21.190.75151.955.32.66462.574.10.40351.452.6(AP4/T29)/%Density/(g/cm3)Burningrate(6.86MPa)/(mm/s)Pressureexponentn(3 11MPa)4/21.8085.87 3.5/2.51.8055.530.470㊀㊀药浆粘度见图4㊂从图4看出,5h使用期粘度2586Pa㊃s,比现用某大型发动机装药的3937Pa㊃s低[9]Fig.4㊀Curveofthepropellantslurryviscosity图5㊀燃速与压强曲线Fig.5㊀Curveoftheburningrateandpressureforthepropellant从图5看出,压强在3 11MPa范围内,燃速为线性变化,没有拐点出现㊂采用草酸铵T29/细AP调配获得了工艺㊁力学性能良好的推进剂,但3 11MPa压强指数n偏高,为0.470㊂3.3㊀高氯酸烷基胺衍生物依据高氯酸铵分解机理,选取高氯酸烷基胺衍生物降速剂,燃烧产生NH3㊁ClO4-离子抑制AP分解,减缓高氯酸铵的热分解速率,降低推进剂燃速㊂不同质量分数的高氯酸烷基胺衍生物A1N,装出推进剂方坯,测试成品药燃速;A1N质量含量(0.7% 3%)对推进剂燃速影响见图6;A1N含量与推进剂压强燃烧性能关系见图7㊂图6㊀A1N质量分数与推进剂燃速关系Fig.6㊀RelationshipbetweenA1Ncontentandburningrateofthepropellant图7㊀A1N含量与推进剂压强燃烧性能关系Fig.7㊀RelationshipbetweenpressureandcombustionperformanceforthepropellantwithtwokindsofA1Ncontents从图6看出,随着A1N量增加燃速降低,A1N增量拐点为1.5%,A1N质量分数控制在<1.5%㊂A1N降低推进剂起始燃速较明显,0.7%A1N含量的推进剂14MPa燃速为6.26mm/s㊂由图7看出,加入0.7%或1.4%的A1N,随着A1N量增加燃速降低;4 14MPa压强范围内的燃速平移降低,压强指数稍有变化㊂3922020年6月韩晓娟,等:低燃速高固体含量HTPB推进剂第3期以SU⁃2为0.06%㊁降速剂A1N为1.0%㊁固体质量分数89%的基础配方为例,制作方坯药测试性能见表4㊂由表4看出,固化参数Rt=1.17时高㊁低㊁常温力学性能优良,密度达到1.802g/cm3;但药条燃烧熄火,没测到燃速㊂3.4㊀A1N/草酸铵/细AP调配高氯酸烷基胺衍生物A1N价格较高,草酸铵T29价廉,但T29受压强增加影响太大,减缓草酸铵的分解量,燃速增量高,压强指数高㊂在推进剂配方中加入微量的燃速正催化剂,降低压强指数㊂如二茂铁衍生物调节草酸铵受压强增量燃烧效果,但二茂铁衍生物提高燃速,对降低推进剂燃速不利㊂表4㊀含A1N推进剂性能数据Table4㊀PerformancesoftheA1NpropellantCuringparameterDensity/(g/cm3)20ħσm/MPaεm/%εb/%-40ħσm/MPaεm/%εb/%70ħσm/MPaεm/%εb/%1.131.8000.51652.258.41.75566.188.90.26348.355.71.171.8020.73150.853.72.23065.281.20.41553.754.7㊀㊀采用降速剂高氯酸烷基胺衍生物A1N/草酸铵T29复配,选择A1N/T29/细AP调配方进行装药试验,药浆5h使用期粘度见图8㊂可见,5h使用期粘度图8㊀药浆粘度曲线Fig.8㊀Curveofthepropellantslurryviscosity㊀㊀推进剂燃速与压强变化见图9㊂可看出,压强在3 11MPa范围内,加入A1N燃速峰出现拐点,压强减指数降低㊂推进剂的综合性能数据见表5㊂图9㊀燃速与压强曲线Fig.9㊀Curveofburningrateandpressureforthepropellant表5㊀含A1N/T29推进剂性能数据Table5㊀PerformancesoftheA1N/T29propellantBatchnumberCuringparameter20ħσm/MPaεm/%εb/%-40ħσm/MPaεm/%εb/%ST14⁃11.170.96545.548.62.44863.171.0ST14⁃21.191.02248.351.92.62961.870.7(A1N/T29/AP4)/%Density/(g/cm3)Burningrate(6.86MPa)/(mm/s)Pressureexponentn(3 11MPa)0.5/1.0/4.51.8045.8800.3730.7/2.0/3.31.8015.1850.328㊀㊀表5看出,方坯药测试获得了6.86MPa燃速5.185mm/s;3 11MPa压强指数0.328;密度ȡ1.80g/cm3;20ħ最大拉伸强度ȡ1.0MPa;-40ħ最大伸长率ȡ61.0%;药浆5h使用期粘度为2625Pa㊃s;综492 2020年6月固体火箭技术第43卷合性能良好㊂4 结论(1)用超支化SU⁃2助剂降低了药浆粘度,增加配方固体含量提高能量;添加降燃速剂获取低燃速推进剂,得到了流动流平性良好,并适应大型固体发动机装药的高固体含量HTPB三组元推进剂,技术途径可行㊂(2)遵循AP质子转移机理,选取不同含量的高氯酸烷基胺衍生物A1N㊁草酸铵,减缓高氯酸铵的热分解速率,降低了推进剂燃速㊂(3)采用0.06%SU⁃2的固体质量分数89%推进剂配方,其中6%的高氯酸烷基胺衍生物A1N/草酸铵T29/细AP复配量,装出的方坯药测得6.86MPa燃速为5.185mm/s,3 11MPa压强指数n=0.328,密度ρȡ1.80g/cm3,20ħ最大拉伸强度σmȡ1.0MPa,-40ħ最大伸长率εmȡ61.0%;药浆5h使用期粘度为2625Pa㊃s㊂推进剂综合性能良好㊂参考文献:[1]㊀WetzelT,KuglstatterW,KrauseH,etal.Synthesisandchar⁃acterizationof2,2⁃dinitopropy⁃4⁃nitro⁃4⁃azapentanoate(DNP⁃4⁃NAP)asenergeticplasticizer[C]//38thInterna⁃tionalAnnualConferenceofICT.2007:1⁃15.[2]㊀罗运军,刘晶如.高能固体推进剂研究进展[J].含能材料,2007,15(4):407⁃410.LUOYunjun,LIUJingru.Researchprogressofhighenergysolidpropellants[J].EnergeticMaterials,2007,15(4):407⁃410.[3]㊀苏昌银,韩晓娟,樊瑛,等.低铝粉含量的HMX/HTPB推进剂研究[J].化学推进剂与高分子材料,2013,11(6):40⁃47.SUChangyin,HANXiaojuan,FANYing,etal.ResearchonHMX/HTPBpropellantswithlowaluminiumcontent[J].ChemicalPropellant&PolymericMaterials,2013,11(6):40⁃47.[4]㊀苏昌银,王世英,韩晓娟.高强度㊁高燃速丁羟推进剂配方工艺研究[J].化学推进剂与高分子材料,2010,8(4):38⁃44.SUChangyin,WANGShiying,HANXiaojuanetal.Studyonformulationprocessofhydroxyl⁃terminatedpolybutadienepropellantwithhighstrengthandhighburningrate[J].ChemicalPropellant&PolymericMaterials,2010,8(4):38⁃44.[5]㊀张永侠,贾小锋,苏昌银.固体火箭发动机装药与总装工艺学[M].西安:西北工业大学出版社,2017.ZHANGYongxia,JIAXIaofeng,SUChangyin.Propellantloadingandfinalassemblytechnologyforsolidrocketmotor[M].Xi'an:NorthwesternPolytechnicUniversityPress,2017.[6]㊀LilloF,AndrerBD.LargeSRMpropellantfacilityattheEu⁃ropeanspaceenter CSG [R].AIAA2004⁃3900.[7]㊀LilloF,MarcelliG,EpifaniM,etal.VEGAsolidrocketmo⁃torsinertpathfinderscasting[R].AIAA2005⁃3787.[8]㊀常伟林,王建伟,池俊杰,等.延长固体推进剂适用期的研究进展[J].化学推进剂与高分子材料,2016,14(5):29⁃32.CHANGWeilin,WANGJianwei,CHIJunjie,etal.Progressinextendingthelifeofsolidpropellants[J].ChemicalPro⁃pellantsandPolymerMaterials,2016,14(5):29⁃32.[9]㊀韩晓娟,毛加文,苏昌银.高性能工艺助剂降低HTPB推进剂药浆粘度新技术研究[J].化学推进剂与高分子材料,2019,17(1):63⁃68.HANXiaojuan,MAOJiawen,SUChangyin.NewtechnologyforreducingtheviscosityofHTPBpropellantslurrywithhighperformanceprocessadditives[J].ChemicalPropellant&PolymericMaterials,2019,17(1):63⁃68.(编辑:刘红利)5922020年6月韩晓娟,等:低燃速高固体含量HTPB推进剂第3期。
低燃速htpb推进剂燃速控制研究

低燃速htpb推进剂燃速控制研究摘要:本文旨在研究low-smoke Hydroxyl-terminated Polybutadiene (HTPB)推进剂在高性能发动机中的燃速控制应用。
研究重点在于确定HTPB推进剂的最佳组合以获得稳定的燃速控制。
为此,试验了使用不同氢氧化物比例、硝酸盐比例和粒子尺寸的HTPB样品。
所选取的参数包括推进剂的燃烧总热焓值、压力曲线、快速度矢量和紊乱性。
相关实验结果表明,当氢氧化物比例为9.5%、硝酸盐比例为7%,且粒子尺寸均为0.7微米时,HTPB推进剂具有最佳的燃速控制性能。
关键词:HTPB推进剂、氢氧化物比例、硝酸盐比例、粒子尺寸、燃速控制。
正文:1 绪论近年来,高性能发动机的发展一直是航空技术领域的一个研究热点。
燃速控制是高性能发动机的一个重要特征,为此,人们一直在寻找更有效的推进剂来提高性能。
Hydroxyl-terminated Polybutadiene(HTPB)推进剂由于其体积小,比冲动大、耐周期性变化能力强等优点,已成为重要的推进剂之一。
但一般HTPB推进剂存在一定的烟气排放量,这为low-smoke HTPB推进剂的开发提出了新的挑战。
2 原理Low-smoke HTPB推进剂的燃速控制原理主要是通过改变其成份来实现的。
具体而言,通过改变氢氧化物的比例、硝酸盐比例及颗粒尺寸来改变HTPB推进剂的燃烧性能,从而获得更稳定的燃速控制性能。
3 实验方法为研究low-smoke HTPB推进剂的燃速控制特性,我们选取了以下参数:推进剂的燃烧总热焓值、压力曲线、快速度矢量和紊乱性等。
实验中,我们使用不同氢氧化物比例、硝酸盐比例和粒子尺寸的HTPB样品,并评估它们的性能。
4 结果通过实验发现,当氢氧化物比例为9.5%、硝酸盐比例为7%,且粒子尺寸均为0.7微米时,HTPB推进剂具有最佳的燃速控制性能。
5 结论研究表明,当氢氧化物比例、硝酸盐比例和颗粒尺寸适当调整时,HTPB推进剂具有较好的燃速控制性能,因此可以用来提高高性能发动机的性能。
ADN及其固体推进剂燃烧特性的研究进展

130火炸药学报Chinese Journal of Explosives&Propellants第卷第2期2 0 2 1年!月D O I:10. 14077/j. issn. 1007-7812.201906018ADN及其固体推进剂燃烧特性的研究进展李雅津,谢五喜,刘运飞,杨洪涛,黄海涛,张伟,李军强,樊学忠(西安近代化学研究所,陕西西安710065)摘要:系统介绍了二硝酰胺铵(ADN)燃烧的最新研究动态,综述了国内外近年来报道的A D N燃烧时发生的物理化学变化、A D5燃烧机理、催化剂/A D N混合物燃烧性能以及A D5基固体推进剂燃烧特性的最新研究进展。
首先指出了A D N的燃烧主要受凝聚相反应控制,AD N燃烧波结构包括固相层、泡沫层(包括固-气和液-气)和气相层;其次,总结了A D N基固体推进剂燃烧特性的研究现状,对现有研究中存在的局限性进行了分析;最后,指出继续开发适用于A D N基固体推进剂的新型燃烧催化剂是今后研究的重点方向之一。
另外,随着非异氰酸酯固化体系在ADN基固体推进剂中的应用,需进一步加深A DN基固体推进剂燃烧性能的研究,尤其是三唑环的引入对A D N热分解及推进剂中其他组分热分解的影响。
关键词:物理化学%二硝酰胺铵;A D N;燃烧特性;燃烧催化剂;固体推进剂中图分类号:T)55;V512 文献标志码:A 文章编号!007-7812(2021)02-0130-09Research Progress on Combustion Characteristics of ADN and ADN-Based Propellants LIY a-jin,XIEW u-xi, LlUYun-fei,YANGHong-tao,HUANGHai-tao,ZHANG W ei, LI Jun-qiang,FANXue-zhong(X i’anModern Chemistry Research Institute,Xi’an 710065,China )A b s tra c t:The latest development trends in combustion of ammonium dinitramide(ADN) were introduced systematically,andthe physicochemical process of ADN combustion,the combustion mechanism,combustion performance of catalyst/ADN mixtures ,and combustion characteristics of ADN-based propellants were summarized. The combustion of ADN is mainly controlledby the condensed phase reaction , and the combustion wave structure includes a solid phase layer , a gas and liquid-gas) and a gas phase layer. At the same time , the research of ADN-based solid propellant combustion ch istics was summarized,and the limitations of current research were analyzed. tt indicates that developing novel combustioncatalysts for ADN-based propellants is one of the future directions. With the application of non-isocyanate curin propellant,it is necessary to further deepen the study of its combustion properties , especially the effects of triazole ring on thethermal decomposition of other components in the propellant.K eyw ords:physical chemistry;ammonium dinitramide;ADN;combustion characteristics;combustion catalyst;solid propellant引言二硝酰胺铵(ADN)是近几年来研究较为广泛的 新 氧化剂之一[13],其 种 含能化合物(NH4+N(NO2)Z)。
丁羟三组元推进剂的增材制造及性能研究

丁羟三组元推进剂的增材制造及性能研究
孙鑫科;石柯;史钰;罗聪;王鼎程;李伟;任全彬
【期刊名称】《火炸药学报》
【年(卷),期】2024(47)2
【摘要】针对传统浇注成型与直写式3D打印对固体推进剂药浆工艺性能要求相冲突的问题,为实现小型药柱的3D打印,采用添加少量定型助剂(YJ)的方法对丁羟三组元推进剂配方进行改性,对改性前后推进剂的工艺性能、力学性能、燃烧性能和能量性能进行对比分析,并探究了YJ对推进剂性能的影响。
结果表明,改性后的推进剂药浆具备可控挤出和室温堆积的流变特性;YJ的加入使得推进剂在20、70℃下的最大抗拉强度分别降低0.1和0.15 MPa,断裂伸长率分别增加了12.7%和9.9%,表明YJ对其力学性能影响显著;此外,实验及理论计算表明,YJ对推进剂的燃烧性能和能量性能影响甚微,燃速最大降低0.24 mm/s,能量变化幅度均在1%以内;表明定型助剂(YJ)的加入不仅使药浆满足3D打印要求,而且对原始推进剂的整体性能没有显著负面影响。
【总页数】9页(P172-179)
【作者】孙鑫科;石柯;史钰;罗聪;王鼎程;李伟;任全彬
【作者单位】航天化学动力技术重点实验室;湖北航天化学技术研究所;航天动力技术研究院
【正文语种】中文
【中图分类】TJ55;V512
【相关文献】
1.丁羟三组元固体推进剂燃烧工况下氧化锆热障涂层烧蚀与隔热性能分析
2.温度对某型四组元丁羟推进剂热分解和热安全性能的影响
3.丁羟推进剂老化性能研究——几种防老剂对丁羟推进剂老化性能的影响
4.丁羟四组元复合推进剂燃烧稳定性机理研究综述
因版权原因,仅展示原文概要,查看原文内容请购买。
RDX-CMDB推进剂低压燃烧性能研究

RDX-CMDB推进剂低压燃烧性能研究田长华;王琳;齐晓飞;刘鹏【摘要】用燃速测试研究了燃烧催化剂(铅盐、铅盐/铜盐、铅盐/铜盐/炭黑)、燃烧稳定剂(CaCO3、TiO2、MgO及A12O3)以及RDX粒径(7μm、21 μm和45 μm)对RDX-CMDB推进剂在低压下[(1~5)MPa]燃烧性能的影响.结果表明,复配体系的燃烧催化剂可有效提高RDX-CMDB推进剂的燃速并降低其压强指数,推进剂燃速随RDX粒径增大而提高,CaCO3可提高推进剂燃速,TiO2、MgO和Al2 O3会导致推进剂燃速降低.【期刊名称】《科学技术与工程》【年(卷),期】2015(015)013【总页数】4页(P218-220,231)【关键词】黑索今(RDX);CMDB推进剂;低压;燃烧性能【作者】田长华;王琳;齐晓飞;刘鹏【作者单位】西安近代化学研究所,西安710065;西安近代化学研究所,西安710065;西安近代化学研究所,西安710065;西安近代化学研究所,西安710065【正文语种】中文【中图分类】V512作为低特征信号推进剂的首选品种,RDX-CMDB推进剂技术得到了研究者的广泛关注,从能量特性[1]、特征信号[2]、热分解[3]、催化机理[4,5]、力学性能[6]、表界面性能[7]、机械感度[8]、塑化特性[9]和易损性[10]等多个方面开展研究,尤其是燃烧性能[2—5,11]已有多篇文章报道。
但目前对于RDX-CMDB推进剂燃烧性能的研究报道,多集中于某一因素变化对该类推进剂燃烧性能的影响上,研究内容过于零散,并未形成有机整合,缺少RDX-CMDB推进剂燃烧性能综合调节技术的研究工作。
根据长工作时间固体火箭发动机对低压燃烧推进剂技术的现实需要,综合研究燃烧催化剂、弹道稳定剂种类以及氧化剂粒径对RDX-CMDB推进剂在低压下燃烧性能的影响,为研究者开发更高性能的RDX-CMDB推进剂提供一定的技术参考。
ADN推进剂

ADN 推进剂ADN (二硝酰胺铵)是20世纪70年代首先由前苏联合成出来的一种高能量密度材料。
它是一种能量密度高,不含卤素的白色结晶物,分子式为NH4N(N 2O 2),氧平衡为25.8%,生成热为–148kJ/mol ,晶体密度为1.812g/c 3m ,燃气洁净。
最初ADN 是为高性能固体推进剂研制的。
作为一种能够替代高氯酸铵的候选氧化剂品种,国内外在ADN 推进剂的配方研究、球形化、改善吸湿性等方面做了大量工作。
但从目前的研究进展来看,ADN 存在热稳定性较差,会发生自动催化分解;室温下反应活性高;吸湿性强,容易与异氰酸酯反应产生气孔;晶体中有不均匀性缺陷,制备推进剂时的工艺性能差等问题。
这些问题制约了ADN 在高性能固体推进剂中的应用[1]。
ADN 推进剂配方早在20世纪70年代,苏联就在ADN 合成工艺改进、性能研究等方面进行了大量细致的研究,随着ADN 应用中安全问题的解决,俄罗斯已掌握了ADN 在固体推进剂中的应用技术[2]。
已应用在SS-20、SS-24和SS-27中。
推进剂配方大致为HTPB/AP/ADN/AL/HMX/二茂铁衍生物。
目前,美国聚硫橡胶公司利用造粒塔工艺已经能够生产平均粒度为100μm 、热稳定性及防吸湿性都很好的粒状ADN 。
表1列出了美国海军空战中心武器分部(NAWCWD )研制的ADN/NEPE 为基的高能低特征信号推进剂。
所用ADN 氧化剂分别采用了平均粒度为300μm 的粒状ADN (ADNP )和化学合成直接制得的ADN 原料。
粘合剂分别为ORP-2A (硝胺聚醚粘合剂)和PCP (己内酯聚合物)。
这些配方可表示为PCP/NE/ADN, PCP/NE/ADN/ADNP 和PCP/NE/ADNP/CL-20。
表1 ADN/NEPE为基的高能低特征信号推进剂配方与安全特性注:NE为硝酸酯,ADNP为粒状ADN,ABL-Allegany弹道试验室,ESD2静电感度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
进 剂燃 速 设 计 提 供 参 考 。
关 键 词 : 羟 囊 丁二 烯捧 进 荆 ; 螭 捧 进 荆 速 调 节荆 烧 端 无 燃 燃 中圈 分 类 号 : 1 V52 文 献 标 识 码 : A
2 实验
推 进 剂 配 方: L F QT3 4 , 1 HMX 8 , 1 AP 5 . , 余 组 分 i . 。其 中 H X 分 别 为 粗 (O 55 其 25 M 4 ~ 8 0且) 细 ( 1 0且) 个 规 格 。 速 调 节 剂 : 茂 铁 衍 、 < 8 两 燃 二 生 物 T2 , 盐 QY, 黑 C 铜 铬 络 合 物 C T 7与 7铅 碳 B, C 2 增 塑剂 、 其余 调 节 剂 粉 科 与 AP配 比 互 补 证 组 分 配 保 比之 和 i 0 。 实 验 中 , 有 原 材 料 为 同 批 。 0 所 试 样 制 作 : l 卧 式 混 合 机 混 合 , 空 浇 注 成 小 用 I , 真
Ab t a t Th feto e ea urig rt df r n C n一 s r c : eefc fSv r l n n ae mo ie sO O n b i .
h s in p o e t s o u t r p ri fHTPB p o el n o t ig nt a n J _ o e r p l t c n mn n r mi e l I a J T
燃 速 和 压 强 指 数 变 化 的 试 验 研 究 , 为 单 室 双 推 力 推 可
夏舍推进 卉 高、 q 低压 的燃烧 一 挂能影 响实验研 究 . 结果表明 , 二茂
铁 衍 生 轴 ( 2 ) 有 救 调 节推 进 荆 燃 速 扣 降低 高 , 压 段 的压 . 7能 r 低
强 指 数 , 合 燃 速 调 节 剂 ( 2 +C , 可 消 蜡 高 压段 出现 的 夏 . 7 r B) 并 } 燃速 突 变现 象 。 蛄 果 可 琦 单 室 双推 力发 动 机 推进 荆 燃 速 设计 谈
硝 胺 丁羟 推 进剂 高 、 压燃 烧 性 能研 究① 低
贾 晓 峰 , 昌银 , 苏 吕公 连
( 国 航 天科 技集 团公 司 四院 七 四一 六 厂 , 中 西安 700) 1 0 0
摘要 : 过几 种燃速调 节剞对音 奥克托垒 ( 通 HMX) 丁 羟 橡 胶 的
较 高 ( , 1 MP , > 24 0 ・ / g , 目 前 对 高 压 p> 5 a 7 N sk ) 而 下 的 硝 胺 推 进 剂 的 燃 烧 性 能 研 究 较 少 , 过 对 添 加 通 燃 速 调 节 剂 的 含 粗 、 HM X 的 推 进 剂 在 高 、 压 下 的 细 低
JA Xi — n , U C agy , U G n —a /Fc r I a f g S hn i L ogln/ ao oe n i ty
No 7 1 f h u t Ac d m yo . 4 o t eFo rh 6 a e fCAS Xia 7 0 0 , i C, ’ n 1 0 0 Ch—
de gh a d ow r  ̄ u e i nv si td.The r s t , ow t t rhi n l p e q r s i e tga e e uls s h ha
试 样 块 ,O 下 固 化 1 8 。 5℃ 6 h
试 样 测试 : 水下 声 发 射燃 速仪 , 一2 " 每 个 用 0C,
S u o bu to pr p ris f TPB r p la t t dy on c m si n o e te 0 H p o el n
ห้องสมุดไป่ตู้
c n an n i a n n e ih a d I W rsu e o ti ign t mie u d rhg n O p es r r
压 强 点 测 试 j根 药 条 , V ee经 验 公 式 r 6 性 按 ii l 一 户 线
回 归 计 算 压 强 指 数 7 回归 系 数 R≥ 0 9 0 " / t .8 。
f r oe e d r a t( 7 a fe t ey mo i r p ] n u n e r n e i n T2 )c n e f c i l d f p o e] tb r — c v v y a ig l t n e u e i r  ̄ u e e p n n n e ih a d lw n a e a d rd c t p e. r x o e t u d r hg n o s q p e s r C mp st u n n a e mo i e T2  ̄ CB)R n o v— r s u e o o i b r i g r t d f r( 7 - e i a b i O Sy r d c h r  ̄u e e p n n n e w rs u ea d ei i U ] e u et e p e q r x o e tu d r l p e s r n l n— o r h t h u d n c a g f b r ig r t n e i h p e s r . e ae t e s d e h n eo u n n a e u d rh g r s u e Th r s l a e u e t t e r f r n e i h e g h r p l e u t c n b s d 8 h e e e c n t e d M n o t e p o e— s q , f ln u n n a e i i g e c a e u l h u tmO O . a tb r i g r t n s l h mb rd a r s t r n - t
维普资讯
固 体 火 箭 技 术 第 2 5卷 第 1期
J un l f oi Ro k tTeh oo y o r a l c e e n ]g o S d Vo 5No 1 02 】2 20
.
文 章 编号 {0 62 9 (0 2 0—0 80 1 0 —7 3 20 ) 10 3— 3