国际奥林匹克数学竞赛试题教育
wmo世界奥林匹克数学竞赛试题四年级

wmo世界奥林匹克数学竞赛试题四年级WMO世界奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发学生对数学的兴趣,培养他们的数学思维和解决问题的能力。
以下是一些适合四年级学生的数学竞赛题目:1. 加法与减法:- 题目:小明有35个苹果,他给了小红15个,然后又从小红那里拿回了5个,请问小明现在有多少个苹果?- 解答:小明开始有35个苹果,减去给小红的15个,剩下20个。
再拿回5个,所以小明现在有20 + 5 = 25个苹果。
2. 乘法与除法:- 题目:一个班级有40名学生,老师要将他们分成若干个小组,每组有相同数量的学生。
如果每组有5名学生,那么可以分成多少个小组?- 解答:40名学生除以每组5名学生,可以分成40 ÷ 5 = 8个小组。
3. 几何问题:- 题目:一个正方形的边长是10厘米,求这个正方形的周长和面积。
- 解答:正方形的周长是边长乘以4,所以周长是10 × 4 = 40厘米。
面积是边长的平方,所以面积是10 × 10 = 100平方厘米。
4. 逻辑推理:- 题目:有5个盒子,编号为1到5。
每个盒子里都装有不同数量的球,分别是1个,2个,3个,4个,和5个。
现在知道盒子1和盒子2里球的总数是4个,盒子3和盒子4里球的总数是7个。
请问盒子5里有多少个球?- 解答:盒子1和2的球总数是4个,盒子3和4的球总数是7个。
因为总共有15个球(1+2+3+4+5),所以盒子5里的球数是15 - 4 -7 = 4个。
5. 数列问题:- 题目:一个数列的前5项是2, 4, 8, 16, 32。
请问这个数列的第6项是什么?- 解答:这个数列是2的幂次方数列,每一项都是前一项的2倍。
所以第6项是32 × 2 = 64。
6. 时间与日期:- 题目:小明的生日是2月29日,他每4年才过一次生日。
如果他今年12岁,请问小明出生在哪一年?- 解答:小明每4年过一次生日,所以他的生日是在闰年。
奥林匹克数学竞赛试题及答案

奥林匹克数学竞赛试题及答案奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发中学生对数学的兴趣和热爱。
以下是一份奥林匹克数学竞赛的模拟试题及答案,供参考:奥林匹克数学竞赛模拟试题一、选择题(每题2分,共10分)1. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或12. 下列哪个数不是有理数?A. πB. √2C. -3D. 1/33. 将一个圆分成三个扇形,每个扇形的圆心角都是120°,那么这三个扇形的面积之和等于:A. 圆的面积B. 圆面积的1/3C. 圆面积的2/3D. 圆面积的1/24. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
这个数列的第10项是:A. 144B. 145C. 146D. 147二、填空题(每题3分,共15分)6. 一个数的立方根等于它本身,这个数可以是______。
7. 如果一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是______。
8. 一个圆的半径为5,那么它的周长是______。
9. 一个等差数列的前5项之和为50,如果这个数列的公差为3,那么它的首项是______。
10. 如果一个多项式f(x) = ax^3 + bx^2 + cx + d,其中a, b, c, d是整数,且f(1) = 5,f(-1) = -1,那么a - d的值是______。
三、解答题(每题5分,共20分)11. 证明:对于任意的正整数n,1^3 + 1^2 + 1 + ... + 1/n^3总是大于1/n。
12. 解不等式:2x^2 - 5x + 3 > 0。
13. 一个圆的直径为10,求圆内接正六边形的边长。
14. 给定一个等比数列的前三项分别为2, 6, 18,求这个数列的第20项。
国际数学奥林匹克(IMO)竞赛试题(第47届)及答案

1.△ABC的内心为I,三角形内一点P满足∠PBA+∠PCA=∠PBC+∠PCB.求证,AP ≥AI,而且等号当且仅当P=I时成立.证:∠PBC+∠PCB= 12(∠ABC+∠ACB)=∠IBC+∠ICB,故∠PBI=∠PCI,从而P,B,C,I四点共圆.但由内外角平分线相垂直知B,C,I与BC 边上的旁切圆心T 共圆,且IT是这个圆的直径,IT的中点O为圆心.由于A,I,T共线(∠BAC的平分线),且P在圆周上,AP+PO≥AO=AI+IO,PO=IO,故AP≥AI.等号当且仅当P为线段AO与圆周的交点即P=I时成立.2.正2006 边形P 的一条对角线称为好的,如果它的两端点将P 的边界分成的两部分各含P的奇数条边.P的边也是好的.设P被不在P的内部相交的2003 条对角线剖分为三角形.试求这种剖分图中有两条边为好的等腰三角形个数的最大值.解:对于剖分图中的任一三角形ABC,P的边界被A,B,C分为3段,A-B段所含P 的边数记作m(AB).由于m(AB)+ m(BC)+ m(CA)=2006,故等腰三角形若有两条好边,,故等腰三角形若有两条好边,它们必是两腰.称这样的等腰三角形为好三角形.考虑任一好三角形ABC(AB=AC).A-B 段上若有别的好三角形,其两腰所截下的P 的边数为偶数.由于剖分图中的三角形互不交叉,由于剖分图中的三角形互不交叉,而而A-B 段上P 的边数为奇数,故A-B 段上必有P的一边α不属于更小的腰段,同理A-C段上也有P的一边β不属于更小的腰段,令△ABC 对应于{α,β}.由上述取法,两个不同的好三角形对应的二元集无公共元,因此好三角形不多于20062=1003 个.设P=A1A2…A2006,用对角线A1A2k+1(1≤k≤1002)及A2k+1A2k+3(1≤k≤1001)所作的剖分图恰有1003 个好三角形.因此,好三角形个数的最大值是1003.3.求最小实数M ,使得对一切实数 a ,b ,c 都成立不等式2222222222|()()()|()ab a b bc b c ca c a M a b c -+-+-++≤解:222222()()()ab a b bc b c ca c a -+-+-()()()()a b b c c a a b c =----++.设a b x b c y c a z a b c s -=-=-=++=,,,,则22222221()3a b c x y z s ++=+++. 原不等式成为22222()9||(0)M x y z s xyzs x y z +++++=≥.x y z ,,中两个同号而与另一个反号.不妨设 x y ,≥0.则2221||()2z x y x y x y =+++,≥,2()4x y xy +≥.于是由算术-几何平均不等式 222222223()(())2x y z s x y s +++++≥=22222111(()()())222x y x y x y s ++++++6223414())42()||162||8x y s x y s xyzs +=+≥(≥ 即9232M =时原不等式成立. 等号在21s x y ===,,2z =-,即::(23):2:(23)a b c =+-时达到,故所求的最小的9232M =. 4.求所有的整数对(x y ,),使得212122x x y +++=.解:对于每组解(x y ,),显然0x ≥,且()x y -,也是解.0x =时给出两组解(02)±,.设x y ,>0,原式化为12(21)(1)(1)x x y y ++=+-.1y +与1y -同为偶数且只有一个被4整除.故3x ≥,且可令12x y m e -=+g ,其中m 为正的奇数,1e =±.代入化简得2212(8)x m m e --=-.若1e =,2801m m -=≤,.不满足上式.故必1e =-,此时22212(8)2(8)x m m m -+=--≥,解得3m ≤.但1m =不符合,只有3m =,4x =,23y =.因此共有4组整数解(02)(423)±±,,,.5.设()P x 为n 次(n >1)整系数多项式,k 是一个正整数.考虑多项式()(((())))Q x P P P x =L L ,其中 P 出现k 次.证明,最多存在 n 个整数t ,使得()Q t t =.证:若Q 的每个整数不动点都是 P 的不动点,结论显然成立.设有整数0x 使得00()Q x x =,00()P x x ¹.作递推数列1()(012)i i x P x i +==L ,,.它以 k 为周期.差分数列1(12)i i i xxi -D =-=L ,,的每一项整除后一项.由周期性及10D ¹,所有||i D 为同一个正整数u .令121111min{}m k m m m m m m x x x x u x x x x x x -++-==-=-=L ,,,,,. 数列的周期为 2.即0x 是 P 的2-周期点.设 a 是P 的另一个2-周期点,() b P a =(允许b =a ).则0a x -与1b x -互相整除,故01||||a x b x -=-,同理01||||b x a x -=-.展开绝对值号,若二者同取正号,推出01x x =,矛盾.故必有一个取负号而得到01a b x x +=+.记01x x C +=,我们得到:Q 的每个整数不动点都是方程 ()P x x C +=的根.由于P 的次数n 大于 1,这个方程为n 次.故得本题结论.6.对于凸多边形P 的每一边b ,以b 为一边在P 内作一个面积最大的三角形.证明,所有这些三角形的面积之和不小于P 的面积的两倍.证:过P 的每个顶点有唯一的直线平分P 的面积,将该直线与P 的边界的另一交点也看作 P 的顶点(允许若干个相继顶点共线).每两条面积平分线都交于 P 内.P 可 看成一个 2n 边形122-12n n A A A A L ,每条对角线i i n A A +是P 的面积平分线(i =1,2,…,n ,2i n i AA+=).设i i n A A +与11i i n A A+++交于 i O (i n i OO+=),由面积关系得到,11()()i i i i i n i n S O A A S O A A ++++=△△,11i i i i i i n i i n O A O A O A O A ++++=g g ,故i i n i i O A O A +和11i i n i i O A O A +++ 中必有一个不小于 1,于是以 1i i A A +为一边在 P 内作的面积最大的三角形的面积 11111()max{()()}2()i i i n i i i n i i i i i S A A S A A A S A A A S O A A +++++++≥△,△≥△. 对于每条有向线段i i n A A +uuuuuu r ,P 内部的每一点T 或在它的左侧或在它的右侧.由于T 在11n A A +uuuuuu r 和12111n n n A A A A +++=uuuuuuuuu r uuuuuu r 的相反侧,故必有i 使得T 在i i n A A +uuuuuu r 和11i i n A A +++uuuuuuuuu r 的相反侧,从而T在1i i i O A A +△或1i i n i n O A A +++△中.即211n i i i i O A A P +=ÊU △.于是 221111()2()2()nn i i i i i i i S A A S O A A S P ++==åå≥△≥ P 中同一边上的各个1()i i S A A +之和就是该边上的面积最大的内接三角形面积.。
国际奥林匹克数学竞赛试题

国际奥林匹克数学竞赛试题1. 在一般直三角柱(OABC-A'B'C')中,AO=1,OB=2,OC=3,AA'=BC'=0.7,BB'=CC'=0.8,请计算AA'与OC的夹角的度数。
解答:设点E为OC的中点,连接AE和OE。
由于AA'与OC是垂直的,因此需要找到与直三角柱(OABC-A'B'C')相关的性质,才能进一步解答这道题目。
观察直三角柱(OABC-A'B'C'),我们可以发现以下几个性质:性质一:AOB是一个直角三角形。
证明:由于直三角柱的底面是一个直角三角形,所以AOB也是一个直角三角形。
性质二:底面直角三角形AOB的直角边AB平行于A'B'。
证明:考虑平行四边形ABCA',其中AA'和BC平行,且AA'=BC'。
根据平行四边形的性质,我们可以得出AB平行于A'B'。
利用性质一和性质二,我们可以将底面直角三角形AOB和直三角柱(OABC-A'B'C')的侧面COC'投影到平面上,形成一个二维平面图形。
在这个二维平面图形中,我们可以利用三角函数的概念来解答问题。
首先,由于AOB是直角三角形,我们可以利用三角函数计算角AOB的度数。
根据三角函数的定义:sin(AOB) = 对边AB / 斜边OB由于AB=1,OB=2,代入上式计算得到 sin(AOB) = 1/2,因此角AOB的度数为30°。
接下来,我们需要找到与直三角柱(OABC-A'B'C')相关的三角形。
观察直三角柱(OABC-A'B'C')的侧面COC',我们可以发现三角形OCC'与直角三角形AOB相似。
利用相似三角形的性质,我们可以得出以下比例关系:OC' / OA' = OC / OB由于OC=3,OA'=0.7,OB=2,代入上式计算得到 OC' = 4.2。
2017奥林匹克数学竞赛试题及答案

绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛试题选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
三年级试题(A卷)(本试卷满分120分,考试时间90分钟)一、填空题。
(每题5分,共计50分)1、仔细观察,想一想接着该怎么画。
2、一只猫吃完1条鱼需要6分钟,5只猫同时吃完5条同样大小的鱼需要分钟。
3、国庆阅兵中,15辆坦克排成一队,从前往后数,战士小李驾驶的坦克是第6辆,那么从后往前数这辆坦克是第_______辆。
4、车站里的汽车每隔15分钟一班,小青想搭8:45的一班车去图书馆,但是她到达车站的时间已经是8:47,那么她还要等_______分钟才能搭乘下一班汽车。
5、一只大白兔的重量是2只松鼠的重量,1只松鼠的重量是3只小鸡的重量,1只大白兔的重量等于_______只小鸡的重量。
6、东村到西村有3条路,西村到南庄有4条路。
那么从东村经过西村到南庄一共有_______条路可走。
7、学校招收了一批新生。
若编成每班55人的班级,还要招收30人。
若编成每班50人的班级,还需招收10名新生。
这次共招收了名新生。
8、妈妈买来一块豆腐准备做鱼头豆腐汤,让小军动手切8块,小军最少要切刀。
9、王奶奶有两篮桃子,从第一个篮子里拿3个放入第二个篮子里,两个篮子里桃子就一样多,已知第二个篮子里原来有8个桃子,第一个篮子里原来有______个桃子。
10、下图中有个三角形。
二、计算题。
(每题6分,共计12分)11、2015+201+20-15+512、1000-9-99-8-98-7-97-6-96-5-95-4-94-3-93-2-92-1-1三、解答题。
(第13题6分,第14题8分,第15题10分,第16题10分,第17题12分,第18题12分,共计58分)13、一条大鲨鱼,尾长是身长的一半,头长是尾长的一半,已知头长3米,这条大鲨鱼全长有多少米?14、超市新进6箱足球,连续4天,每天卖出8个。
2023年世界少年奥林匹克数学竞赛中国区选拔赛年级试题

世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛试题(10月)选手须知:本卷共120分,第1-8题,每题6分,第9-10题,每题8分,第11-13题,每题10分,第14题12分,第15题14分。
比赛期间,不得使用计算工具。
比赛完毕时,试卷及草稿纸会被收回。
本卷中所有附图不一定依比例绘成。
若计算成果是分数,请化至最简,并保证为真分数或带分数,或将计算成果写成小数。
六年级试题(A卷)(本试卷满分120分,比赛时间90分钟)一、填空题(每题6分,共48分)1、如图所示,图形有___________条对称轴。
2、国庆节,小明旳妈妈带他去旅游,妈妈给他带了蓝、红2件毛衣和黑白灰3条裤子,目前他要任意拿出一件毛衣和一条裤子配成一套,恰好是蓝毛衣和白裤子旳也许性是________。
3、一种长方体,不一样旳三个面分别是35平方厘米、21平方厘米、15平方厘米,且长、宽、高都是质数。
这个长方体旳体积是_____________立方厘米。
4、马和骡并排走着,背上都驮着包裹,马埋怨说它驮得太多了。
骡子回答说:“你埋怨什么呢?假如我从你背上拿过一包来,我旳承担就是你旳两倍。
假如你从我背上拿一包过去,你驮得也不过和我同样多。
”骡子驮了__________个包裹。
5、如图,一种直角梯形旳上底延长5厘米,就成了一种长方形,面积增长了10平方厘米。
假如本来梯形旳下底长9厘米,那么本来梯形旳面积是__________平方厘米。
6、哈尔滨冰雪大世界每年用旳冰大概能融化成6万立方米旳水,它相称于_______个长50米,宽20米,高1.2米旳游泳池旳储水量。
7、小英从上个星期五开始观测一株风信子,当时有些花已经开了。
从这天开始,每天新开旳花朵数刚好等于这天此前已开旳花朵总数,在这个过程中没有花凋落。
假如风信子旳花朵全开旳那一天是星期四,请问花刚好开完二分之一旳那一天是星期__________。
8、用红笔在一根木头上做了三次记号:第一次把木头提成12等分,第二次把木头提成15等分,第三次把木头提成20等分。
国际数学奥林匹克竞赛试题及解答

国际数学奥林匹克竞赛试题及解答国际数学奥林匹克竞赛是世界范围内最具影响力和声誉的数学竞赛之一。
每年,来自各个国家的数学高手们聚集在一起,参与这项激烈而充满挑战的竞赛。
本文将介绍一些历年的国际数学奥林匹克竞赛试题,并提供相应的解答。
试题一:证明:当n为正整数时,4^n + n^4不是素数。
解答一:我们可以通过反证法来证明这个命题。
假设4^n + n^4是一个素数,即不存在其他因子能够整除它。
考虑到任何正整数n都可以写成2k或2k+1的形式,其中k是整数。
当n为偶数时,可以将n表示为2k的形式。
那么我们有:4^n + n^4 = (2^2)^n + (2k)^4 = 2^(2n) + (2k)^4我们可以看出,2^(2n)是一个完全平方数,而(2k)^4也是一个完全平方数。
根据完全平方数的性质,它们的和2^(2n) + (2k)^4也是一个完全平方数。
因此,当n为偶数时,4^n + n^4不可能是素数。
当n为奇数时,可以将n表示为2k+1的形式。
那么我们有:4^n + n^4 = (2^2)^n + (2k+1)^4 = 2^(2n) + (2k+1)^4同样地,我们可以看出,2^(2n)是一个完全平方数,而(2k+1)^4也是一个完全平方数。
根据完全平方数的性质,它们的和2^(2n) + (2k+1)^4也是一个完全平方数。
因此,当n为奇数时,4^n + n^4同样不可能是素数。
综上所述,我们可以得出结论:当n为正整数时,4^n + n^4不是素数。
试题二:证明:对于任意正整数n,n^2 + 3n + 1不是完全平方数。
解答二:我们同样可以使用反证法来证明这个命题。
假设n^2 + 3n + 1是一个完全平方数,即存在另一个正整数m,使得m^2 = n^2 + 3n + 1。
根据完全平方数的性质,m^2必然是一个奇数,因为奇数的平方也是奇数。
我们可以将n^2 + 3n + 1拆分为两部分,即(n^2 + 2n + 1) + n。
wmo世界奥林匹克数学竞赛试题八年级

wmo世界奥林匹克数学竞赛试题八年级WMO世界奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发学生对数学的兴趣,培养他们的数学思维和解决问题的能力。
以下是一套模拟的WMO世界奥林匹克数学竞赛试题,适用于八年级学生:一、选择题(每题3分,共15分)1. 若\( a \)和\( b \)互为相反数,\( c \)和\( d \)互为倒数,且\( a \)和\( b \)的绝对值相等,求下列表达式的值:\[ \frac{1}{2}ab + cd \]A. 0B. 1C. -1D. 无法确定2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 83. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 正负16D. 正负44. 一个圆的直径是14厘米,求这个圆的面积。
A. 38.5平方厘米B. 153.94平方厘米C. 69.08平方厘米D. 98.16平方厘米5. 一个数列的前三项分别是1,2,3,如果每一项都是前一项的两倍,那么第10项是多少?A. 1024B. 2048C. 4096D. 8192二、填空题(每题2分,共10分)6. 一个数的立方根是2,这个数是________。
7. 如果一个数的绝对值是5,那么这个数可能是________或________。
8. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,它的体积是________立方厘米。
9. 一个分数的分子是7,分母是12,化简后的分数是________。
10. 一个正整数,如果它是3的倍数,同时也是5的倍数,那么这个数至少是________。
三、解答题(每题5分,共20分)11. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 =\frac{n^2(n+1)^2}{4} \)。
12. 一个长方体的长、宽、高分别是\( l \)、\( w \)和\( h \),如果长方体的表面积是\( S \),求长方体的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国际奥林匹克数学竞赛
试题教育
文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]
国际奥林匹克数学竞赛试题分享国际奥林匹克数学竞赛(International Mathematics Olympiad,简称IMO)有"数学世界杯"之称,创办于1959年,每年举办一次,由参赛国轮流主办。
目的是为了发现并鼓励世界上具有数学天份的青少年,为各国进行科学教育交流创造条件,增进各国师生间的友好关系。
今天,查字典数学网小编就给大家分享了第一届IMO试题,考验大家的智商时刻到了,一起来试试吧。
1. 求证(21n+4)/(14n+3)对每个自然数n都是最简分数。
2. 设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:
(a)A=√2;(b)A=1;(c)A=2。
3.a、b、c都是实数,已知cosx的二次方程 acos2x+bcosx+c=0,试用a,b,c作出一个关于cos2x的二次方程,使它的根与原来的方程一样。
当a=4,b=2,c=-1时比较cosx和cos2x的方程式。
4. 试作一直角三角形使其斜边为已知的c,斜边上的中线是两直角边的几何平均值。
5. 在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.)求证AF、BC相交于N点;(b.)求证不论点M如何选取直线MN都通过一定点S;(c.)当M在A与B之间变动时,求线断PQ的中点的轨迹。
6. 两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。
试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。