初中数学第09章不等式与不等式组

合集下载

人教七下第9章《不等式与不等式组》知识点汇总

人教七下第9章《不等式与不等式组》知识点汇总

第九章 不等式与不等式组一、不等式的概念1、不等式:(1)定义:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.常见的不等号有5种:“≠”、“>”、“<”、“≥”、“≤”.(2)常见不等式的基本语言的符号表示.①a 是正数:0a >. ①a 是负数:0a <. ①a 是非负数:a≥0①a 是非正数:a≤0 ①a ,b 同号:0ab >. ①a ,b 异号:0ab <.(3)不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

(4)不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

(5)在数轴上表示不等式的解集:没有等号画空心圆圈,有等号画实心圆点。

“大于”向右画,“小于”向左画。

(6)不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值。

(7)二者的关系是:解集包括解,所有的解组成了解集。

(8)解不等式:求不等式解的过程叫做解不等式。

二、不等式基本性质基本性质1:不等式两边都加上(或减去)同一个数(或式子),不等号方向不变.如果,那么;如果,那么基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.如果,并且,那么(或) 如果,并且,那么(或) 基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.如果,并且,那么(或) 如果,并且,那么(或)不等式的互逆性:如果,那么;如果,那么.不等式的传递性:如果,,那么.a b >a c b c ±>±a b <32(1)x a x +≥-a b >0c >ac bc >a b c c >a b <0c >ac bc <a b c c<a b >0c <ac bc <a b c c<a b <0c <ac bc >ax b >a b >b a <b a <a b >a b >b c >a c >易错点:①不等式两边都乘(或除以)同一个负数,不等号的方向改变.②在计算的时候符号方向容易忘记改变.三、一元一次不等式1、定义:含有一个未知数,未知数的次数是1,且不等号两边都是整式的不等式,叫做一元一次不等式。

七年级下册数学不等式与不等式组知识点归纳

七年级下册数学不等式与不等式组知识点归纳

第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。

不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。

3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。

4、解不等式:求不等式的解集的过程,叫做解不等式。

5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。

规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。

⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。

用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。

人教版数学七年级下册第九章—不等式与不等式组

人教版数学七年级下册第九章—不等式与不等式组

第九章—不等式与不等式组一、不等式(一)不等式概念及其性质1.概念:用符号“>”(“≥”)或“<”(“≤”)表示大小关系的式子叫做不等式,用“≠”表示不等关系的式子也是不等式。

2.常见的不等号有:“>”、“≥”、“<”、“≤”和“≠”五种。

3.常见的关键词及对应的不等符号:”连接用“最多不高于不超过不大于小于或等于≤⎪⎪⎪⎭⎪⎪⎪⎬⎫”连接用“至少不少于不低于不小于大于或等于≥⎪⎪⎪⎭⎪⎪⎪⎬⎫ 4.常见的符号表示:(1)a 是正数表示为a >0;a 是负数表示为a <0;(2)a 是非负数表示为a ≥0;a 是非正数表示为a ≤0;(3)a 、b 同号表示为ab >0;a 、b 异号表示为ab <0;例题例 1.在下列各式中:①03>-x ;②034>+y x ;③4=x ;④22b ab a ++;⑤7=+y x ;⑥21>-;⑦23+≤-n m ,是不等式的有( )A.1个B.2个C.3个D.4个例2.有下列式子:①01<-;②132>-y x ;③112<-x ;④1+=x y ;⑤0≠x ;⑥12+x 。

其中是不等式的有( )A.2个B.3个C.4个D.5个例3.某种品牌粥,外包装标明:净含量为300±10g ,表明了这粥的净含量x (单位:g )的范围是( )A. 340320<<xB. 340320<≤xC.340320≤<xD.340320≤≤x例4.用不等号“>”、“<”、“≥”或“≤”填空:12+a 0。

例5.用适当的不等式表示下列关系:(1)a 的3倍与b 的51的和不大于3; (2)2x 的非负数;(3)x 的相反数与1的差不小于2;(4)x 与17的和比x 的5倍小。

例6.用不等式表示下列语句中的数量关系:(1)x 与1的和是正数;(2)y 的2倍与1的和大于3;(3)铅球的质量1m 比篮球的质量2m 大;(4)小丽的体重是a kg ,小花的体重是b kg ,她们的体重之和不超过100kg 。

人教版七年级下册数学第9章 不等式与不等式组全章课件

人教版七年级下册数学第9章 不等式与不等式组全章课件
10天的工作量 < 500件
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组

人教版七年级数学下册第九章《不等式与不等式组》课件

人教版七年级数学下册第九章《不等式与不等式组》课件

巩固练习
判断下列说法是否正确? (1) x=2是不等式x+3<4的解; (2) 不等式x+1<2的解有无穷多个; (3) x=3是不等式3x<9的解; (4) x=2是不等式3x<7的解集.
(× ) (√) ( ×) ( ×)
探究新知 知识点 3 不等式解集的表示方法
第一种:用式子(如x>2),即用最简形式的不等式 (如x>a或x<a)来表示.
不等式的识别
例1 判断下列式子是不是不等式:
① -1<3; 是; ③ 3x ≠ 4y; 是; ⑤ 2x -3; 不是;
② -x+2=4; 不是; ④ 6 > 2; 是; ⑥ 2m < n. 是.
巩固练习
下列式子哪些是不等式?哪些不是不等式? 为什么?
①-2<5;
⑤a+b≠c;
②x+3>6;
⑥5m+3=8;ຫໍສະໝຸດ 2 x 50 3不 是
不 是
不 是

是是 是

(1)你发现了哪些数是这个不等式的解? (2)你从表格中发现了什么规律?
探究新知
一般地,一个含有未知数的不等式的所有的解,组成 这个不等式的解集. 求不等式的解集的过程叫解不等式.
【讨论】1.不等式的解和不等式的解集是一样的吗? 2.不等式的解与解不等式一样吗?
第二种:用数轴,一般标出数轴上某一区间,其中的点对应
的数值都是不等式的解. 用数轴表示不等式的解集的步骤:
第一步:画数轴;
第二步:定界点;
第三步:定方向.
探究新知
【画一画】 利用数轴来表示下列不等式的解集.
空心圆表示不含此点 (1)x>-1 ;

人教版七年级数学下册9章 不等式与不等组(在数轴上表示解集)+答案

人教版七年级数学下册9章 不等式与不等组(在数轴上表示解集)+答案

9章不等式与不等组(在数轴上表示解集)象湖学校数学教研组专用1. 不等式组的解集在数轴上表示为( )A. B.C. D.2. 不等式组的解集在数轴上表示正确的是( )A. B.C. D.3. 下列用数轴表示不等式组解集正确的是A. B.C. D.4. 如果点在平面直角坐标系的第四象限内,那么的取值范围在数轴上可表示为A. B.C. D.5. 不等式组’的解集在数轴上表示正确的是()A. B.C. D.6. 不等式组的解集在数轴上表示为A. B.C. D.7. 不等式的解集在数轴上表示正确的是A. B.C. D.8. 把不等式组的解集表示在数轴上,正确的是A. B.C. D.9. 在方程组中,若未知数,满足,则的取值范围在数轴上的表示应是如图所示的A. B.C. D.10. 不等式组的解集在数轴上表示正确的是( )A. B.C. D.二、填空题11. 若关于的不等式组的解集在数轴上的表示如图所示,则________.12. 解不等式组,请结合题意填空,完成本题的解答:解不等式①,得________;Ⅱ解不等式②,得________;Ⅲ把不等式①和②的解集在数轴上表示出来:Ⅳ原不等式组的解集为:________.13. 如图所示是某个不等式组的解集在数轴上的表示,它是下列四个不等式组①;②;③;④中的________(只填写序号)14. 已知不等式组解集如图所示,则________,________.三、解答题15. 已知关于的方程的解为非负数,求的取值范围,并在数轴上表示出来.16. 解不等式组,并把解集在数轴上表示出来.17. 若不等式组的解集为.(1)试求,的值;(2)把不等式的解集在数轴上表示出来.18. (1)解不等式,并把它的解集在数轴上表示出来; 18. (2)若关于的一元一次不等式只有个负整数解,则的取值范围是________.参考答案9章不等式与不等组(在数轴上表示解集)一、选择题1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】A6.【答案】B7.【答案】B8.【答案】B9.【答案】B10.【答案】C二、填空题11.【答案】12.【答案】,,13.【答案】④14.【答案】,三、解答题15.【答案】解:,去分母得,移项得,解得,因为方程的解为非负数,所以,解得.的取值范围在数轴上表示如图:16.【答案】不等式组的解集为.不等式组的解集在数轴上表示为17.【答案】解不等式组得,,∴,即=.=.由(1)可知=,解得,在数轴上表示为:.18.【答案】∵,∴,解得,这个不等式的解集在数轴上表示如下:.。

七年级数学下册9不等式与不等式组教案新人教版

七年级数学下册9不等式与不等式组教案新人教版

第九章不等式与不等式组1.了解不等式的概念,会从实际问题中成立不等式的数学模型.2.经历探讨的进程,把握不等式的性质,会运用它进行简单的不等式变形.3.经历问题的建模进程,感受不等式是刻画现实世界的有效模型.4.明白得不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),能在数轴上表示一元一次不等式(组)的解集,并能求一元一次不等式(组)的特殊解,初步体会数形结合思想.5.能依照具体问题中的数量关系列出一元一次不等式(组),解决简单的实际问题.1.通过学生自己动手、动脑去体验、发觉、归纳、归纳不等式的性质.2.通过类比一元一次方程(组)学习一元一次不等式(组),充分利用知识的类比进行学习、探讨.3.把不等式(组)的解集在数轴上直观地表示出来,加深学生对不等式(组)解集的明白得,使学生形象地熟悉不等式解集的几何意义和它的无穷性.通过对不等式、不等式的解与解集的探讨,培育学生的实践能力、归纳能力、类比推理能力,也培育学生的合作交流意识和探讨精神.单元开始从一个实际问题引入,表现了现实生活中的不等关系,从熟悉不等式开始入手,在一元一次方程的基础上,依次介绍了不等式及其解的意义,不等式的性质,一元一次不等式(组)的解法和一元一次不等式(组)在实际问题中的应用与探讨等问题,表现了类比、化归思想在数学中的应用.【重点】一元一次不等式的解法、不等式的性质和不等式(组)的应用.【难点】1.不等式的解和不等式组的解.2.应用不等式(组)解决实际问题.1.在单元学习的进程中注意贯彻类比思想,借助于等式、一元一次方程帮忙、指导学生学习一元一次不等式(组)的相关知识.2.在数轴上表示不等式的解集是数形结合的具体表现,要结合教学对学生进行数形结合思想、方式的指导.3.在利用不等式(组)解决实际问题时,注意对一些关键词语的明白得,同时要注意挖掘题目中所隐含的不等关系,利用建模思想,将不等关系与实际问题结合起来,并注意不等式(组)解的特殊性.不等式3课时9.1.1不等式及其解集(1课时)9.1.2不等式的性质(2课时)一元一次不等式2课时一元一次不等式组2课时单元概括整合1课时不等式1.了解不等式、不等式的解、不等式解集的概念.2.明白得不等式的性质.3.运用不等式的性质解简单的不等式.4.能在数轴上表示不等式的解集.通过类比思想,借助于等式的概念和性质,学习和把握不等式的性质及其解法.培育学生踊跃寻求研究问题方式的意识,培育学生细心探讨和擅长合作的精神.【重点】利用不等式的性质解简单的不等式.【难点】1.利用数轴表示不等式的解集.2.依如实际意义确信不等式的解集.9.1.1不等式及其解集感受生活中不等关系的存在,了解不等式的意义,能把不等式的解集正确地表示在数轴上.经历探讨不等式的解与解集的不同意义的进程,体会数形结合思想.培育学生的合作交流意识和探讨精神.【重点】明白得不等式、不等式的解与解集的意义,能把不等式的解集正确地表示在数轴上.【难点】把不等式的解集正确地表示在数轴上.【教师预备】课堂教学讨论问题的投影.【学生预备】温习方程的有关概念.导入一:如下图,小明与小丽比身高,小丽身高为q cm,小明身高为p cm,小丽站在20 cm高的箱子上尚未小明高,则q+20与p哪个大?[设计用意]通过生活情境引导学生从不等的角度试探问题,初步感受不等的数量关系.导入二:天平是物理课上经常使用的一种仪器,如图(1)所示的天平两边托盘上的物体一样重,现在天平平稳,假设天平两边托盘上的物体不一样重,就会显现如图(2)(3)所示的情形,现在两天平不平稳.【问题试探】咱们应如何表示物体A的质量呢?[设计用意]通过“天平”暗示方程与不等式的关系,暗示等式和不等式之间的联系.导入三:如下图,小明和爸爸、妈妈三人在操场上玩跷跷板,爸爸的体重为72千克,坐在跷跷板的一端;体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端.这时,爸爸坐的一端仍然着地,后来小明借来一个质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被翘起.在上面的例子中,若是设小明的体重为x千克,那么妈妈的体重为2x千克,当爸爸所坐的一端着地时,(x+2x)千克小于72千克;当爸爸被翘起时,(x+2x+6)千克大于72千克.如何用数学式子表示上述不等关系呢?[设计用意]借助于生活情境,帮忙学生体会未知数的数量关系,为引入不等式解决问题作认知的预备.[过渡语]生活中不仅有等量关系还有不等量关系,从本课时开始,咱们学习新的数量关系:不等量关系.什么条件?问题1若是把原题变成:要在12:00正好抵达A地,车速应该是多少?[设计用意]通过时刻和路程的关系,学生很容易算出车速.以那个车速为依据,帮忙学生进行下一步的试探.问题2若是设车速为x km/h,从时刻上看, h和 h是什么关系?板书总结:<.①问题3若是设车速为x km/h,从路程上看,汽车要在12:00之前驶过A地,那么以那个速度行驶 h的路程和50 km是什么关系?板书总结:x>50.②问题4依照上面的式子,你能总结什么是不等式吗?总结:像①和②如此用符号“<”或“>”表示大小关系的式子,叫做不等式.像a+2≠a- 2如此用符号“≠”表示不等关系的式子也是不等式.有些不等式中不含未知数,例如3<4,- 1>- 2.有些不等式中含有未知数,例如①和②式中字母x表示未知数.(补充)以下各式:①- 3<0;②4x+3y>0;③x=3;④x2+2x+y2;⑤x≠2;⑥x+2>2x+3.其中属于不等式的有()个个个个〔解析〕此题直接考查不等式的概念.③是等式;④是一个代数式.③④均不是不等式.只有效不等号连接,表示不等关系的式子才是不等式.应选D.[设计用意]在辨别不等式的进程中,加深对不等式意义的明白得.培育学生主动参与、合作交流的意识,同时体会在现实生活中,不等关系要比相等关系多得多.[知识拓展]1.不等式的概念也能够表达到“用不等号表示不等关系的式子叫做不等式”.2.常见的不等号有:①“>”读作“大于”;②“<”读作“小于”;③“≠”读作“不等于”,它没有明确大小关系.[过渡语]尽管不等式①和②表示了车速应知足的条件,可是咱们希望更明确地得出x能够取哪些值.上面的不等式中,有哪些数值能够知足或不知足不等式的条件呢?问题1以不等式②为例,你能说出几个使不等式成立的数值吗?例如:当x=80时,x>50;当x=78时,x>50.这确实是说,当x取某些值(如80,78)时,不等式x>50成立.问题2以不等式②为例,你能说出几个使不等式不成立的数值吗?例如:当x=72时,x<50;当x=75时,x=50.这确实是说,当x取某些值(如72,75)时,不等式x>50不成立.问题3你能借助方程的解,总结什么是不等式的解吗?总结:与方程的解类似,咱们把使不等式成立的未知数的值叫做不等式的解.思路二问题1要使汽车在12:00之前驶过A地,你以为车速应该为多少呢?问题2车速能够是每小时85千米吗?每小时82千米呢?每小时千米呢?每小时74千米呢?问题3以下各数中哪些能够使不等式x>50成立?76,73,79,80,,,90,60.问题4“使方程两边相等的未知数的值确实是方程的解”,那么什么是不等式的解呢?讨论后得出:当x为76,79,80,,90时,也确实是当x>75时,不等式x>50成立;同理可得,当x<75或x=75时,不等式x>50不成立.总结:咱们把使不等式成立的未知数的值叫做不等式的解.[过渡语]除80和78,不等式x>50还有其他解吗?若是有,这些解应知足什么条件?〔解析〕当>75时,不等式>50总成立;而当<75或=75时,不等式>50不成立这确实是说,任何一个大于75的数都是不等式x>50的解,如此的解有无数个;任何一个小于或等于75的数都不是不等式x>50的解.因此,x>75表示能使不等式x>50成立的x的取值范围,它能够在数轴上表示,如以下图所示.由上可知,在前面问题中,汽车要在12:00之前驶过A地,车速必需大于75 km/h.问题1如何表示不等式的所有解呢?问题2什么叫解方程呢?问题3什么叫解不等式呢?总结:一样地,一个含有未知数的不等式的所有的解,组成那个不等式的解集.求方程解的进程叫做解方程.求不等式的解集的进程叫做解不等式.[设计用意]在数轴上表示不等式的解集,是让学生感受数形结合的思想.让学生充分发表意见,并通过计算、动手验证、动脑试探,初步体会不等式的解集的意义和不等式的解集与方程的解的不同的地方.成心识、有打算、有层次地设计一些引人入胜的问题,可让学生始终处在踊跃的试探状态,不知不觉中同意了新知识.(补充)若是关于不等式x<5,当x=1,2,3,4时都成立,那么就说不等式x<5的解是x=1,2,3,4,这种说法正确吗?解:这种说法不正确,因为不等式的解是一个范围内的数,不是在那个范围内的几个数,正确说法是“若是关于不等式x<5,当x=1,2,3,4时都成立,那么就说x=1,2,3,4都是不等式x<5的解”.[知识拓展]不等式的解与不等式的解集是两个不同的概念:①不等式的解是指某一范围内的数,用它代替不等式中的未知数,不等式成立;②不等式的解集是一个含有未知数的不等式的所有解组成的集合,简称不等式的解集,不等式的解集是一个范围,在那个范围内的每一个数值都是不等式的一个解;③不等式的解是指知足那个不等式的未知数的某个值,而不等式的解集是指知足那个不等式的未知数的所有值.不等式的解和解集的区别和联系如下表:区别举例:x- 1>2 概念个数表示方法不等式的解x=4,5……是一些具体的值无数个用等号表示不等式的解集x>3 是一个范围一个用不等号表示联系在不等式解集范围内的每一个数值都是此不等式的一个解或者说不等式的每一个解都在它的解集的范围内1.下面各式是不等式的个数为()①- 2<1;②x=1;③a+b;④2a+b>0;⑤a≠3;⑥x+1>y+4.解析:用不等号表示不等关系的式子叫不等式,①④⑤⑥是不等式.应选D.2.以下说法中正确的选项是()=3是不等式2x>1的解=3是不等式2x>1的唯一解=3不是不等式2x>1的解=3是不等式2x>1的解集解析:x=3能使2x>1成立,则x=3是不等式2x>1的所有解中的一个解.应选A.3.在数轴上表示不等式x<2的解集.解析:在表示2的点上画空心圆圈,表示不包括这一点.解:如以下图所示.4.用不等式表示:(1)a与b的和的3倍是负数;(2)x的与3的和比5大;(3)代数式3x+2的值大于1.解:(1)3(a+b)<0. (2)x+3>5. (3)3x+2>1.9.1.1不等式及其解集1.不等式例12.不等式的解3.不等式的解集例2一、教材作业【必做题】教材第115页练习第1题.【选做题】教材第116页练习第2题.二、课后作业【基础巩固】1.在以下式子中,不是不等式的是()<1 ≠- 2+5>0 =32.以下说法中,错误的选项是()A.不等式x<5的整数解有无数多个B.不等式x>- 5的负整数解有有限个C.不等式2x>- 8的解集是x<- 440是不等式2x<- 8的一个解3.在- ,- 1,0,,- 3中,能使不等式x+2>1成立的有()个个个个4.“x的4倍与2的和是负数”用不等式表示为.5.在课后的探讨性学习活动中,小明、小丽和小颖三位同窗对某个不等式的解集有着不同的说法:小明说,x=是不等式的一个解;小丽说,- 2,- 1,0都是不等式的解;小颖说,不等式的正整数解只有1,2.请你能依照他们三位同窗的描述,写出符合如此条件的一个不等式.(只写出其中一个即可,没必要考虑所有情形)【能力提升】6.以下说法正确的选项是()=3是不等式x+1>2的解集B.不等式4x<- 8的解是x<- 2C.不等式- 6x<18的解集为x<- 3>是不等式2x- 1>0的解集7.以下不等式必然成立的是()<6 x<0C.|x|+1>0 >08.如下图,天平右盘中每一个砝码的质量都是1 g,那么图中显示出来的某药品A的质量的范围是 ()A.大于2 gB.小于3 gC.大于2 g且小于3 gD.大于2 g或小于3 g9.规定一种新运算:aΔb=a·b- a- b+1,如:3Δ4=3×4- 3- 4+1.请比较大小:(- 3)Δ44Δ(- 3)(填“<”“=”或“>”).10.先阅读下面的材料,然后解答问题:要比较a,b的大小,能够先求出a与b的差,再看那个差是正数、负数或零.假设差是正数,则a大于b;假设差是0,则a等于b;假设差是负数,则a小于b.例如:5- 2>0,则5>2;- 6- (- 4)<0,则- 6<- 4;8- 8=0,则8=8.试比较2x2- 2x+3与x2- 2x- 1的大小.【拓展探讨】11.某班26名同窗到人民公园举行活动.人民公园的门票是:每人5元,一次购票满30张,能够享受优惠:每张少收1元.当领队小明同窗预备好了零钱到售票处买26张票时,爱动脑筋的小丽却喊住了小明,提议要买30张票.(1)若是那时你在现场,你会支持谁?什么缘故?(2)若是是23名同窗呢?12.某学校要刻录一批电脑光盘,假设到电脑公司刻录,每张需8元(包括空白光盘费),假设自刻,那么每张需4元,另外,还需120元空白光盘费.设刻录x张电脑光盘,请用不等式或等式表示:(1)刻录这批电脑光盘,到电脑公司刻录省钱.(2)刻录这批电脑光盘,自刻省钱.(3)刻录这批电脑光盘,到电脑公司和自刻费用一样.【答案与解析】(解析:依照不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式可得答案.A,B,C是不等式,D是等式.应选D.)(解析:正确求出不等式的解集,就能够够进行判定.A.正确;B.不等式x>- 5的负整数解有- 4,- 3,- 2,- 1,正确;C.不等式2x>- 8的解集是x>- 4,错误;D.不等式2x<- 8的解集是x<- 4,包括- 40,正确.应选C.)(解析:把已知的5个数代入不等式中,- ,0和能使不等式x+2>1成立,因此能使不等式x+2>1成立的有3个.应选C.)+2<0(解析:x的4倍为4x,负数<0,据此列不等式为4x+2<0.)5.解:此题答案不唯一,例如:x- 3<0.(解析:因为x=3是不等式x+1>2的一个解,而不是不等式的解集,因此A错;因为x<- 2是不等式4x<- 8的解集,而不是解,因此B错;取一个小于- 3的数代入不等式,例如当x=- 5时,不等式的左侧是(- 6)×(- 5)=30>18,因此C错;选项D正确.)(解析:依照不等式的概念对各选项进行一一分析即可.A.当x为3或大于3时不成立,故本选项错误;B.当x为0或比0小时不成立,故本选项错误;C.不论x为何值,不等式均成立,故本选项正确;D.当x=0时不成立,故本选项错误.应选C.)(解析:观看第一幅图易发觉A的质量>2 g,再观看第二幅能够发觉A的质量<3 g.故A的质量大于2 g且小于3 g.应选C.)9.=(解析:因为aΔb=a·b- a- b+1,因此(- 3)Δ4=(- 3)×4- (- 3)- 4+1=- 12,4Δ(- 3)=4×(- 3)- 4- (- 3)+1=- 12,因此(- 3)Δ4=4Δ(- 3).)10.解:因为2x2- 2x+3- (x2- 2x- 1)=2x2- 2x+3- x2+2x+1=x2+4>0,因此2x2- 2x+3>x2- 2x- 1.11.解:(1)支持小丽.因为30×(5- 1)=120(元),26×5=130(元),130>120,因此小丽的说法更有道理. (2)若是是23名同窗,应该选择购买23张票,理由是30×(5-1)=120(元),23×5=115(元),120>115.12.解:因为要刻录x张电脑光盘,因此到电脑公司刻录需8x元,自刻需(120+4x)元.(1)8x<120+4x. (2)8x>120+4x. (3)8x=120+4x.本课时在教学设计时遵从学生的生活体会,从生活情境中抽象出不等量关系的数学问题,帮忙学生进一步感受数学与生活的联系,让学生在生活情境体验中进行学习.借助于一元一次方程知识的学习,通过类比思想引导学生学习了不等式、不等式的解及解集等相关概念,使学生在正确理念和适当方式的指导下进行学习.在用数轴表示不等式解集的时候,忽略了对空心圆圈表示的含义的强调.补设的例题能够让学生独立去完成,教师没必要详细讲解和示范.从学生的生活体会看,对教材中情境材料的不等量关系不存在明白得困难,因此在教学的进程中,能够淡化不等量关系的计算进程,把重点放在不等式概念的总结、不等式的解和不等式解集的含义上.练习(教材第115页)1.解:(1)a>0. (2)a<0. (3)a+5<7. (4)a- 2>- 1. (5)4a>8. (6)<3.2.解:,,8,12是不等式x+3>6的解,- 4,- ,0,1,,3不是不等式x+3>6的解.3.解:(1)x>3. (2)x<4. (3)x>2.以下各数中,哪些是不等式x+1<3的解?哪些不是?哪些是方程x+1=3的解?- ,0,1,2,3.解:当x=- 时,x+1=- +1=- <3,不等式x+1<3成立,因此x=- 是不等式x+1<3的解.当x=0时,x+1=0+1=1<3,不等式x+1<3成立,因此x=0是不等式x+1<3的解.当x=1时,x+1=1+1=2<3,不等式x+1<3成立,因此x=1是不等式x+1<3的解.当x=2时,x+1=2+1=3,左侧=右边,方程x+1=3成立,因此x=2是方程x+1=3的解,不是不等式x+1<3的解.当x=3时,x+1=3+1=4>3,不等式x+1<3不成立,方程x+1=3也不成立,因此x=3既不是不等式x+1<3的解,也不是方程x+1=3的解.[解题策略]此题要紧考查不等式的解的概念.不等式的解是指能使不等式成立的未知数的值.把题中给出的值一一代入x+1<3,假设符合此不等式表示的不等关系,那么该值为此不等式的解,反之不是.9.1.2不等式的性质1.明白得不等式的性质.2.依据不等式的性质,会解简单的一元一次不等式.3.能在数轴上表示不等式的解集.4.能解简单的一元一次不等式的应用题.1.借助于等式、一元一次方程的知识,学习不等式的性质和解不等式.2.通过生活情境明白得不等式解的特殊含义.培育学生主动探讨的精神和合作交流的意识.【重点】1.不等式的性质和不等式的解法.2.不等式在生活中的简单应用.【难点】1.用数轴表示不等式的解集.2.明白得不等式解集的实际意义.第课时明白得不等式的性质.经历通过类比、猜想、验证,发觉不等式性质的探讨进程,初步体会不等式与等式的异同.体会在解决问题的进程中与他人交流合作的重要性.【重点】明白得并把握不等式的性质.【难点】比较等式性质和不等式性质的区别.【教师预备】不等式性质的板书投影.【学生预备】温习等式的有关知识.导入一:设“▲”“●”“■”别离表示三种不同的物体,现用天平称两次,情形如下图,把▲,●,■这三种物体按质量从大到小排列.解:设▲,●,■的质量别离为a,b,c,依照图形,可得a+c>2a,2a=3b,故可得c>a>b.即■>▲>●.[设计用意]通过那个思维难度不大的情境,需要学生借助于等式的知识进行试探.同时那个地址也暗含了不等式的性质.导入二:关于某些简单的不等式,咱们能够直接得出它们的解集,例如不等式x+3>6的解集是x>3,不等式2x<8的解集是x<4,可是关于比较复杂的不等式,例如- 2>,直接得出解集就比较困难.因此,还要讨论如何解不等式.与解方程需要依据等式的性质一样,解不等式需要依据不等式的性质.为此,咱们先来看看不等式有什么性质.[设计用意]借助于教材中的这段引言,直接提出了两个问题:求不等式的解集不能完全靠观看,还需要靠计算去求得.另一个问题是依据什么去解不等式.这两个问题的提出,为本节课的两个课时的学习指明了方向.[过渡语]咱们明白,等式两边加或减同一个数(或式子),乘或除以同一个数(除数不为0),结果仍相等.不等式是不是也有类似的性质呢?一、探讨不等式的性质问题1等式有哪些性质?问题2用“>”或“<”填空,并总结其中的规律:(1)5>3,5+23+2,5- 23- 2;(2)- 1<3,- 1+23+2,- 1- 33- 3;(3)6>2,6×52×5,6×(- 5)2×(- 5);(4)- 2<3,(- 2)×63×6,(- 2)×(- 6)3×(- 6).依照发觉的规律填空:当不等式两边加或减同一个数(正数或负数)时,不等号的方向.当不等式两边乘同一个正数时,不等号的方向;而乘同一个负数时,不等号的方向.问题3除以一个数,如何用乘法去明白得?[设计用意]除以一个数等于乘那个数的倒数.这问是针对不等式的性质2,3中同时除以一个数的情形设置的.[处置方式]学生集中讨论,形成一起的结论和观点.二、不等式的性质思路一问题1依照前面问题当中的(1)和(2),你总结的不等式的性质是什么?如何用数学语言去表示?解:不等式两边加(或减)同一个数(或式子),不等号的方向不变.符号表示:若是a>b,那么a±c>b±c.问题2依照前面问题当中的(3)和(4),你总结的不等式的性质是什么?如何用数学语言去表示?解:不等式两边乘(或除以)同一个正数,不等号的方向不变.符号表示:若是a>b,c>0,那么ac>bc.不等式两边乘(或除以)同一个负数,不等号的方向改变.符号表示:若是a>b,c<0,那么ac<bc.思路二1.等式的性质.教师第一与学生一路回忆等式的性质,学生回答等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数或除以同一个不为0的数,结果仍相等.[处置方式]教师帮忙学生回忆总结,关注学生术语表达的准确性.[设计用意]帮忙学生回忆等式的性质的得出进程,类比本节课将要学习的知识,为探讨不等式的性质做好预备,而且从学生的已有体会动身,培育学生梳理知识体系的适应.通过类比等式的性质,探讨不等式的性质,体会不等式的性质与等式性质的异同.体会类比的学习方式,积存数学活动体会.2.不等式性质的推导.师:让学生自己先确信一个不等式,仿照等式的性质1,在不等式的两边加(或减)同一个整式,看结果有何特点,在小组内讨论并总结出来.生:先任意确信一个不等式,然后按教师的要求变形,观看试探后在组内交流并总结出不等式的性质1:不等式的两边加(或减)同一个整式,不等号的方向不变.符号表示:若是a>b,那么a±c>b±c.师:让学生再仿照等式的性质2,在不等式的两边乘同一个数,看结果有何特点,交流一下并总结出来.生:先自己任意确信一个不等式,然后按要求变形,观看特点,交流并总结.说明:那个地址教师设计了一个不容易发觉的陷阱,极可能会引发学生的争辩,这正是教师所期望的,思维快但考虑不周的学生可能会做出类似下面的推导:因为3<5,3×2<5×2,3×<5×,因此在不等式的两边乘同一个数,不等号的方向不变.而思维缜密的学生会做出类似的反对:3<5,但3×(- 2)>5×(- 2),因此上面的总结是错的.师:引导学生做出正确的总结.生:细致观看发此刻不等式的两边乘同一个正数与乘同一个负数结果不同,从而总结出:不等式两边乘同一个正数,不等号的方向不变;不等式两边乘同一个负数,不等号的方向改变.[设计用意]让学生在争辩中发觉等式和不等式的性质的不同的地方,从而更好地明白得不等式的性质3.总结:不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.符号表示:若是a>b,c>0,那么ac>bc.不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.符号表示:若是a>b,c<0,那么ac<bc.三、例题讲解利用不等式的性质,填“>”或“<”.(1)若a>b,则2a+12b+1;(2)若- y<10,则y - 8,(3)若a<b,且c>0,则ac+c bc+c.;(4)若a>0,b<0,c<0,则(a- b)c 0.〔解析〕(1)因为a>b,将不等式两边都乘2,由不等式的性质2,得2a>2b,再由不等式的性质1,得2a+1>2b+1;(2)因为- y<10,将不等式两边都除以- ,由不等式的性质3,得y>- 8;(3)因为a<b,c>0,将不等式两边都乘c,由不等式性质2,得ac<bc,再由不等式的性质1,得ac+c<bc+c;(4)因为a>0,b<0,因此a- b>0,两边都乘c,而c<0,由不等式性质3,得(a- b)c<0.〔答案〕(1)>(2)>(3)<(4)<已知a,b,c在数轴上的对应点的位置如以下图所示,以下式子中正确的有()①b- c>0;②a+b>a+c;③bc>ac;④ab>ac.个个个个〔解析〕由数轴上a,b,c对应点的位置可知a>0,b>0,c<0,且a>b>c.①因为b>c,因此不等式两边都减去c,不等号方向不变,因此b- c>0,正确;②因为b>c,因此不等式两边都加a,不等号方向不变,因此a+b>a+c,正确;③因为b<a,c<0,不等式两边同乘c,不等号方向改变,因此bc>ac,正确;④因为b>c,a>0,不等式两边同乘a,不等号方向不变,因此ab>ac,正确.应选D.[知识拓展]不等式的概念和性质与等式的概念和性质的相同点和不同点.相同点:不论是等式仍是不等式,都能够在它的两边加或减同一个数或代数式,乘或除以同一个正数,而维持符号不变.不同点:(1)关于等式,在它的两边乘或除以同一个正数或同一个负数,情形是一样的,等式仍然成立;但关于不等式,在它的两边乘或除以同一个正数或同一个负数却大不一样:当两边乘或除以的是正数时,不等号的方向不变,而当两边乘或除以的是负数时,不等号的方向要改变.这是等式没有的性质,它是不等式特有的,在运用不等式的性质时要专门注意这一点.(2)由于不等号“>”或“<”具有方向性,因此表达不等式的性质时不能像等式那样笼统地说“……仍是不等式”,而应明确说明变形后的不等式中的不等号的方向是改变。

数学 中考 第一轮 单元讲义(含中考真题)第09章 不等式与不等式组

数学 中考 第一轮 单元讲义(含中考真题)第09章 不等式与不等式组

3 ,则 a 的取值范围是( 2a
)
A.a>0 B.a>2 C.a<0 D.a<2 分析 分析题中不等式解集的特点,结合不等式的性质 3,可知 2-a<0,即 a>2.故选 B. 三、思想方法专题 专题 4 数形结合思想 【专题解读】在解有关不等式的问题时,有些问题需要我们借助图形来给出解答.解决 此类问题时,要充分利用图形反馈的信息,或将文字信息反馈到图形上,做到有数思形,有 形思数,顺利解决问题. 例 5 关于 x 的不等式 2x-a≤-1 的解集如图 9-60 所示, 则 a 的取值是 ( ) A.0 B.-3 C.-2 D.-1 分析 由图 9-60 可以看出, 不等式的解集为 x≤-1, 而由不等式 2x-a≤-1, 解得 x≤ 所以
15 x , x 根据题意,得 2 600 x 120(15 x) 5000.
解得 5 x
20 . 3
因为 x 为正整数,所以满足条件的 x 为 5 或 6. 所以共有两种购票方案. 方案一:购买 A 种票 5 张,B 种票 10 张. 方案二:购买 A 种票 6 张,B 种票 9 张. (2)方案一的购票费用为 600×5+120×10=4200(元); 方案二的购票费用为 600×6+120×9=4680(元). 因为 4500 元<4680 元,所以方案一更省钱. 【解题策略】运用不等式知识解决实际问题,关键是把实际问题的文字语言转化为数学 符号语言. 二、规律方法专题 专题 2 求一元一次不等式(组)的特殊值 【专题解读】在此类问题中,一般给出一个一元一次不等式(组) ,然后在解集的范围 内限制取值,解决的方法通常是先求出不等式(组)的解集,再由题意求出符合条件的数值. 例 2 求不等式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 不等式与不等式组测试1 不等式及其解集学习要求:知道不等式的意义;知道不等式的解集的含义;会在数轴上表示解集.(一)课堂学习检测一、填空题:1.用“<”或“>”填空:⑴4______-6; (2)-3______0;(3)-5______-1; (4)6+2______5+2;(5)6+(-2)______5+(-2); (6)6×(-2)______5×(-2). 2.用不等式表示:(1)m -3是正数______; (2)y +5是负数______; (3)x 不大于2______; (4)a 是非负数______;(5)a 的2倍比10大______; (6)y 的一半与6的和是负数______;(7)x 的3倍与5的和大于x 的31______;(8)m 的相反数是非正数______.3.画出数轴,在数轴上表示出下列不等式的解集: (1)⋅>213x(2)x ≥-4.(3)⋅≤51x(4)⋅-<312x二、选择题:4.下列不等式中,正确的是( ).(A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 5.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-3三、解答题:6.利用数轴求出不等式-2<x ≤4的整数解.(二)综合运用诊断一、填空题:7.用“<”或“>”填空:⑴-2.5______-5.2; (2);125______114--(3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不小于-4的相反数”,用不等式表示为______. 二、选择题:9.如果a 、b 表示两个负数,且a <b ,则( ).(A)1>b a(B)1<b a (C)ba 11< (D)ab <110.如图在数轴上表示的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零三、判断题:13.不等式5-x >2的解集有无数多个. ( ). 14.不等式x >-1的整数解有无数多个. ( ).15.不等式32421<<-x 的整数解有0、1、2、3、4. ( ). 16.若a >b >0>c ,则.0>cab( ).四、解答题:17.若a 是有理数,比较2a 和3a 的大小.(三)拓广、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a 、b 、c 、d ,定义bd ac c d b a -=,已知3411<<d b,则b +d 的值为______.测试2 不等式的性质学习要求:知道不等式的三条基本性质,并会用它们解简单的一元一次不等式.(一)课堂学习检测一、填空题:1.已知a <b ,用“<”或“>”填空:⑴a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4);2______2b a (5);7______7ba -- (6)5a +2______5b +2; (7)-2a -1______-2b -1; (8)4-3b ______6-3a . 2.用“<”或“>”填空: (1)若a -2>b -2,则a ______b ; (2)若,33ba <则a ______b ; (3)若-4a >-4b ,则a ______b ;(4),22ba -<-则a ______b . 3.不等式3x <2x -3变形成3x -2x <-3,是根据______. 4.如果a 2x >a 2y (a ≠0).那么x ______y . 二、选择题:5.若a >2,则下列各式中错误的是( ). (A)a -2>0 (B)a +5>7 (C)-a >-2 (D)a -2>-4 6.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >0 7.若a >b ,且c 为有理数,则( ). (A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 2 8.若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0三、解答题:9.根据不等式的基本性质解下列不等式,并将解集表示在数轴上.(1)x -10<0. (2).62121+->x x(3)2x ≥5.(4).131-≥-x10.用不等式表示下列语句并写出解集: ⑴8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.(二)综合运用诊断一、填空题:11.(1)若x <a <0,则把x 2;a 2,ax 从小到大排列是______.(2)关于x 的不等式mx -n >0,当m ______时,解集是;mnx <当m ______时,解集是⋅>mn x 12.已知b <a <2,用“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0; (3)(a -2)(a -b )______0.13.不等式4x -3<4的解集中,最大的整数x =______. 14.如果ax >b 的解集为,abx >则a ______0. 二、选择题:15.已知方程7x -2m +1=3x -4的根是负数,则m 的取值范围是( ).(A)25=m (B)25>m (C)25<m (D)25≤m 16.已知二元一次方程2x +y =8,当y <0时,x 的取值范围是( ).(A)x >4 (B)x <4 (C)x >-4 (D)x <-4 17.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是( ).(A)a <2 (B)a <3 (C)a <4 (D)a <5三、解答题:18.当x 取什么值时,式子563-x 的值为(1)零;(2)正数;(3)小于1的数.(三)拓广、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解一元一次不等式学习要求:会解一元一次不等式.(一)课堂学习检测一、填空题:1.用“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则ab______0; (3)若a -b <0,则a ______b ;(4)当x >x +y ,则y ______0.2.当a ______时,式子152-a 的值不大于-3.3.不等式2x -3≤4x +5的负整数解为______. 二、选择题:4.下列各式中,是一元一次不等式的是( ).(A)x 2+3x >1(B)03<-yx (C)5511≤-x(D)31312->+x x 5.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ).(A)0 (B)-3 (C)-2 (D)-1三、解下列不等式,并把解集在数轴上表示出来:6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1.8.⋅-->+22531x x 9.⋅-≥--+612131y y y10.求不等式361633->---x x 的非负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.(二)综合运用诊断一、填空题:12.已知a <b <0,用“>”或“<”填空:⑴2a ______2b ;(2)a 2______b 2;(3)a 3______b 3;(4)a 2______b 3;(5)|a |______|b |(6)m 2a ______m 2b (m ≠0). 13.⑴已知x <a 的解集中的最大整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最小整数为-2,则a 的取值范围是______.二、选择题:14.下列各对不等式中,解集不相同的一对是( ).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2十x )≥2(2x -1) (D)x x ->+414321与3x >-1 15.如果关于x 的方程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ) (A)b a 53>(B)a b 53≥(C)5a =3b (D)5a ≥3b三、解下列不等式:16.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4)⋅-+≤--+15)2(22537313x x x(5)).1(32)]1(21[21-<---x x x x (6)⋅->+-+2503.002.003.05.09.04.0x x x四、解答题:17.已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0.求m 的取值范围.18.x 取什么值时,代数式413--x 的值不小于8)1(32++x 的值.19.已知关于x 的方程3232xm x x -=--的解是非负数,m 是正整数,求m 的值.*20.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.(三)拓广、探究、思考21.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有一个整数解; (2)x 一个整数解也没有.22.解关于x 的不等式2x +1≥m (x -1).(m ≠2)23.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.测试4 实际问题与一元一次不等式学习要求:会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题.(一)课堂学习检测一、填空题:1.若x 是非负数,则5231x-≤-的解集是______. 2.使不等式x -2≤3x +5成立的负整数有______. 3.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______ 4.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 二、选择题:5.三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ). (A)13cm (B)6cm (C)5cm (D)4cm6.一商场进了一批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ). (A)900元 (B)920元 (C)960元 (D)980元三、解答题:7.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?8.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?(二)综合运用诊断一、填空题:9.直接写出解集:(1)4x -3<6x +4的解集是______; (2)(2x -1)+x >2x 的解集是______;(3)5231052--≤-x x x 的解集是______. 10.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.二、选择题:11.初三⑴班的几个同学,毕业前合影留念,每人交0.70元,一张彩色底片0.68元,扩印一张相片0.50元,每人分一张,将收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人 (B)3人 (C)4人 (D)5人12.某出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11 (B)8 (C)7 (D)5三、解答题:13.已知:关于x 、y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.14.某工人加工300个零件,若每小时加工50个可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?(三)拓广、探究、思考15.某商场出售A 型冰箱,每台售价2290元,每日耗电1度;而B 型节能冰箱,每台售价比A 高出10%,但每日耗电0.55度.现将A 型冰箱打折出售(打九折后的售价为原价的十分之九),问商场最多打几折时,消费者购买A 型冰箱才比购买B 型冰箱更合算?(按使用期10年,每年365天,每度电0.4元计算)16.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元,在这20名工人中,车间每天安排x 名工人制造甲零件,其余工人制造乙种零件. ⑴若此车间每天所获利润为y (元),用x 的代数式表示y ;(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?测试5 一元一次不等式组(一)学习要求:会解一元一次不等式组,并会利用数轴正确表示出解集.(一)课堂学习检测一、填空题:1.解不等式组⎩⎨⎧>--<+)2(223)1(,423x x 时,解⑴式,得______,解(2)式,得______.于是得到不等式组的解集是______.2.解不等式组⎪⎩⎪⎨⎧-≥--≥-)2(21)1(,3212x x 时,解⑴式,得______,解(2)式,得______,于是得到不等式组的解集是______.3.用字母x 的范围表示下列数轴上所表示的公共部分: (1)________________________; (2)_______________________; (3)________________________.二、选择题:4.不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ).(A)x <-4 (B)x >2 (C)-4<x <2 (D)无解5.不等式组⎩⎨⎧>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x(C)32-<x (D)无解三、解下列不等式组,利用数轴确定不等式组的解集.6.⎩⎨⎧≥-≥-.04,012x x7.⎩⎨⎧>+≤-.074,03x x 8.⎪⎩⎪⎨⎧+>-≤-.3342,121x x x x 9.-5<6-2x <3.四、解答题:10.解不等式组⎪⎩⎪⎨⎧⋅<-+≤+321),2(352x x x x 并写出不等式组的整数解.(二)综合运用诊断一、填空题:11.当x 满足______时,235x-的值大于-5而小于7. 12.不等式组⎪⎪⎩⎪⎪⎨⎧⋅≤-+<2512,912x x x x 的整数解为______.二、选择题:13.如果a >b ,那么不等式组⎩⎨⎧<<.,b x a x 的解集是( ). (A)x <a(B)x <b(C)b <x <a(D)无解14.不等式组⎩⎨⎧+>+≤+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2 (C)m <1 (D)m >1三、解答题:15.求不等式组73123<--≤x 的整数解.16.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x 、y 都是负数?18.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x 、y 满足且0<y -x <1,求k 的取值范围.(三)拓广、探究、思考19.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-.02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组⎩⎨⎧->-≥-.123,0x a x 的整数解共有5个.求a 的取值范围.测试6 一元一次不等式组(二)学习要求:进一步掌握一元一次不等式组.(一)课堂学习检测一、填空题:1.直接写出解集:(1)⎩⎨⎧->>3,2x x 的解集是______;(2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><32x x 的解集是______;(4)⎩⎨⎧-<>3,2x x 的解集是______.2.一个两位数,它的十位数字比个位数字小2,如果这个数大于20且小于40,那么此数为______.二、选择题:3.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是( ).(A)76<x (B)31>x (C)7631<<x (D)无解4.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ).(A)1个(B)2个(C)3个(D)4个5.若不等式组⎩⎨⎧>≤<k x x 21有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1 (D)1≤k <2三、解下列不等式组,并把解集在数轴上表示出来:6.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x7.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx8.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x9..234512x x x -≤-≤-(二)综合运用诊断一、填空题:10.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______.11.k 满足______时,方程组⎩⎨⎧=-=+.4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式组:12.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x13.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x三、解答题:14.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?15.已知关于x 、y 的方程组⎩⎨⎧-=-+=+3472m y x m y x ,的解为正数.(1)求m 的取值范围;(2)化简|3m +2|-|m -5|.(三)拓广、探究、思考16.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利用不等关系分析实际问题学习要求:利用不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际生活中的作用.(一)课堂学习检测列不等式(组)解应用题:1.一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?2.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元,如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?3.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满,问学生有多少人?宿舍有几间?4.今年5月12日,汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:①(2)班与(3)班的捐款金额各是多元;②(1)班的学生人数.(二)综合运用诊断5.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.(三)拓广、探究、思考6.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30m2或乙种板材20m2.问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:板房型号甲种板材乙种板材安置人数A型板房54m226m2 5B型板房78m241m28问:这400间板房最多能安置多少灾民?全章测试(一)一、填空题:1.用“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3);23______13--yy (4)a <b <0,则a 2______b 2;(5)若23yx -<-,则2x ______3y . 2.若使3233->-yy 成立,则y ______. 3.不等式x >-4.8的负整数解是______. 二、选择题:4.x 的一半与y 的平方的和大于2,用不等式表示为( ).(A)2212>+y x (B)2212>++y x (C)222>+y x(D)221>+y x 5.因为-5<-2,所以( ). (A)-5x <-2x (B)-5x >-2x (C)-5x =-2x (D)三种情况都可能 6.若a ≠0,则下列不等式成立的是( ). (A)-2a <2a (B)-2a <2(-a )(C)-2-a <2-a(D)aa 22<-7.下列不等式中,对任何有理数都成立的是( ). (A)x -3>0 (B)|x +1|>0 (C)(x +5)2>0 (D)-(x -5)2≤0 8.若a <0,则关于x 的不等式|a |x <a 的解集是( ). (A)x <1 (B)x >1 (C)x <-1(D)x >-1三、解不等式(组),并把解集在数轴上表示出来:9..11252476312-+≥---x x x 10.⎪⎩⎪⎨⎧<+-+--≤+.121331),3(410)8(2x x x x四、解答题:11.x 取何整数时,式子729+x 与2143-x 的差大于6但不大于8.12.当k 为何值时,方程1)(5332+-=-k x k x 的解是(1)正数;(2)负数;(3)零.13.已知方程组⎩⎨⎧-=+=-k y x k y x 513,2的解x 与y 的和为负数.求k 的取值范围.14.不等式m m x ->-2)(31的解集为x >2.求m 的值.15.某车间经过技术改造,每天生产的汽车零件比原来多10个,因而8天生产的配件超过200个.第二次技术改造后,每天又比第一次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第一次改造后8天所做配件的个数.求这个车间原来每天生产配件多少个?16.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少?全章测试(二)一、填空题1.当m ______时,方程5(x -m )=-2有小于-2的根. 2.满足5(x -1)≤4x +8<5x 的整数x 为______.3.若11|1|=--xx ,则x 的取值范围是______. 4.已知b <0<a ,且a +b <0,则按从小到大的顺序排列a 、-b 、-|a |、-|-b |四个数为______.二、选择题5.若0<a <b <1,则下列不等式中,正确的是( ).,11;11;1;1ba b a b a b a <><>④③②①(A)①、③ (B)②、③ (C)①、④ (D)②、④ 6.下列命题结论正确的是( ).(1)若a >b ,则-a >-b ;(2)若a >b ,则3-2a >3-2b ;(3)8|a |>5|a |. (A)(1)、(2)、(3) (B)(2)、(3) (C)(3) (D)没有一个正确 7.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 8.已知x <-3,那么|2+|3+x ||的值是( ). (A)-x -1 (B)-x +1 (C)x +1 (D)x -1 9.如下图,对a 、b 、c 三种物体的重量判断正确的是( ).(A)a <c(B)a <b(C)a >c(D)b <c三、解不等式(组):10.3(x +2)-9≥-2(x -1). 11..57321<+<-x12.⎪⎪⎩⎪⎪⎨⎧>--+<-.0415221131x x x x13.求⎪⎩⎪⎨⎧≤-->032,134x x x 的整数解.14.如果关于x 的方程3(x +4)-4=2a +1的解大于方程3)43(414-=+x a x a 的解, 求a 的取值范围.15.某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费。

相关文档
最新文档