温度采集系统

合集下载

多路温度采集系统

多路温度采集系统

绪论1.课题的意义单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可实现对数字信息的处理和控制。

单片机由于其微小的体积和极低的成本,而广泛的应用于家用电器、工业控制等领域中。

多路温度采集系统是利用温度传感器DS18B20检测温度,并由单片机处理显示。

本设计利用AT89C51单片机为处理器,结合温度采集电路、键盘电路、显示电路、报警电路等实现对多路温度的实时检测与显示。

通过设计实物并调试,对系统存在的问题进行了分析和总结,并提出了改进措施。

2.课题的目的多路温度采集报警系统设计,要求具有多路温度的采集、显示温度、上下限报警等功能。

课程设计目的:通过设计和实践,培养学生综合运用所学的理论知识、实践操作及独立解决实际问题的能力。

使学生牢固掌握课堂中学到的电子线路的工作原理、分析方法和设计方法。

学会电路的一般设计方法和设计流程,并应用这些方法进行一个实际的电子线路的系统设计。

3.技术要求:(1)利用温度传感器(DS18B20)测量某三路的环境温度。

(2)测量范围为0℃~+100℃,精度为±0.1℃。

(3)用液晶进行实际温度值显示。

(4)当达到报警温度后,能够自动发出报警声。

4.要解决的问题:(1)精确的测量温度,提高上下限报警的范围。

(2)当LCD液晶显示器接收到来自AT89C51单片机传送来的温度信息后,分别显示了当前的温度。

一、实验方案的拟定根据系统的设计要求,当温度传感器DS18B20把所测得的温度发送到AT89C51单片机上,经AT89C51处理,将把温度在显示电路上显示。

当开机后,显示屏和计时器进行初始化设置。

同时,本系统能够设置报警温度,在到达报警时间后能够通过LED 发光二极管以及发音器提示报警。

利用AT89C51芯片控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度。

系统框图如图1:图1 系统框图选择DS18B20作为本系统的温度传感器,选择单片机AT89C51为测控系统的核心来完成数据采集、处理、显示、报警等功能。

温度采集系统

温度采集系统

方案设计与分析1温度控制系统方案测温系统采用集成温度传感器AD590测量温度,AD590具有线性优良、性能稳定、灵敏度高、无需补偿、热容量小、抗干扰能力强、可远距离测温且使用方便等优点。

可广泛应用于各种冰箱、空调器、粮仓、冰库、工业仪器配套和各种温度的测量和控制等领域。

将AD590测得的温度信号经转换电路转换为电压量输出,再经AD转换后,将数据送入单片机处理,最后由显示电路显示所测温度,此外还设有键盘,用来设置温度,将测得温度与设置温度比较后,由指示灯指示系统所处的工作状态。

2硬件资源简介2.1 89C51简介89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—F alsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。

89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。

单片机的可擦除只读存储器可以反复擦除100次。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,89 C2051是它的一种精简版本。

89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

2.3三端稳压器LM7805简介三端稳压集成电路lm7805电子产品中,常见的三端稳压集成电路有正电压输出的lm78 ××系列和负电压输出的lm79××系列。

顾名思义,三端IC是指这种稳压用的集成电路,只有三条引脚输出,分别是输入端、接地端和输出端。

它的样子象是普通的三极管,TO- 220 的标准封装,也有lm9013样子的TO-92封装。

用lm78/lm79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。

DS18B20温度数据采集系统

DS18B20温度数据采集系统

目录摘要 (2)一、绪论 (3)二、系统方案实现 (3)2.1.设计要求 (3)2.2.设计方案论证 (3)2.3.总体设计框图 (4)三、主要硬件介绍 (4)3. 1.DS18B20 (4)3.1.1 DS18B20的主要特性 (4)3.1.2 DS18B20的外形和内部结构 (5)3.1.3 DS18B20工作原理 (6)3.1.4 高速暂存存储器 (7)3.2 AT89C51 (8)四、软件介绍 (9)4.1 功能概述 (9)4.2 系统软件流程图 (9)4.2.1程序 (9)4.2.2读出温度子程序 (10)4.2.3温度转换命令子程序 (11)4.3具体程序 (11)五、总结 (17)六、设计体会及今后的改进意见 (17)参考文献 (18)摘要本文基于DS18B20设计了一种温度数据采集系统,系统主要由AT89C51单片机,一个DS18B20 数字温度传感器以及一个液晶数码管构成。

软件方面,我们采用keil。

软件对程序进行编写以及调试,硬件方面,我们通过Proteus软件对硬件电路进行仿真以及测试,该系统结构简单,功耗较低,测温范围为- 50℃~ + 255℃。

现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量。

该系统硬件分为3部分:DS18B20 温度测量模块、单片机模块、显示模块。

关键词:DS18B20、7SEG-MPX4液晶数码管、AT89C51一、绪论在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

其中,温度控制也越来越重要。

在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。

采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而大大提高产品的质量和数量。

因此,单片机对温度的控制问题是工业生产中经常会遇到的控制问题。

基于STM32的多点温度采集系统设计

基于STM32的多点温度采集系统设计

基于STM32的多点温度采集系统设计摘要:本文介绍了一种基于STM32的多点温度采集系统设计,该系统实现了对多个测点的温度采集,可广泛应用于物联网、环境监测、科学实验等领域。

文章首先介绍了该系统的硬件组成和软件设计,然后详细说明了各个模块的实现方法和细节,最后进行了测试和分析。

实验结果表明,该系统稳定可靠,具有较高的测量精度和较低的功耗,具有良好的应用前景。

关键词:STM32;温度采集;多点采集;物联网;环境监测一、概述随着物联网和环境监测技术的迅速发展,温度传感器越来越广泛地应用于各个领域。

温度采集系统可以帮助人们获取物理环境中的温度数据,从而提高环境安全性和生产效率,对于科学实验和工业制造行业尤其重要。

本文介绍了一种基于STM32的多点温度采集系统设计,该系统能够同时实时监测多个测点的温度数据,具有较高的精度和较低的功耗,可广泛应用于物联网、环境监测、科学实验等领域。

二、系统硬件设计该系统主要由STM32微控制器、多个DS18B20温度传感器、LCD显示屏、蜂鸣器、SD卡模块和电源模块等组成,如图1所示。

其中,STM32作为控制中心,与多个DS18B20温度传感器进行通信,获取温度数据,并将数据显示在LCD屏幕上。

电源模块采用锂电池供电,通过电源管理模块和充电管理模块对系统电源进行管理,以确保系统运行的稳定性和可靠性。

该系统的软件设计包括底层驱动程序和上层应用程序。

底层驱动程序主要实现与DS18B20温度传感器的通信,包括初始化DS18B20传感器、发送指令、读取温度数据等操作。

上层应用程序主要实现数据采集、处理、显示和存储等功能,包括读取传感器数据、计算温度值、显示温度值、存储温度数据等操作。

四、系统功能模块实现4.1 DS18B20传感器驱动程序DS18B20是一个数字式温度传感器,使用1-Wire总线方式进行通信,具有精度高、响应快、体积小等特点。

该系统采用STM32的GPIO接口模拟1-Wire总线方式与DS18B20传感器进行通信。

无线室温采集系统

无线室温采集系统

MHT室内温度采集系统简介及数据表公司简介沈阳中科博微科技股份有限公司是由中国科学院沈阳自动化研究所发起创建的一家高新技术企业,主要从事网络化控制系统、工业通信及仪表、开发、生产和应用。

中科博微承担了多个国家科技重大专项、国家高技术研究发展计划(863计划)、智能制造装备发展专项等国家科技计划项目,是国家网络化控制系统工程研究中心建设依托单位。

中科博微成功地开发了国内第一个通过国际认证的现场总线协议主栈、第一个通过国家认证的现场总线仪表、国内第一个通过德国TüV认证的安全仪表,与其它单位共同主持了制定国内第一个工业以太网协议标准EPA、第一个工业无线通信协议标准WIA-PA,并成为IEC国际标准。

中科博微的产品和技术曾荣获国家科技进步二等奖两项、国家科技发明奖一项、中国科学院科技进步一等奖一项、辽宁省科技进步一等奖一项,产品出口欧美等发达国家,美国Emerson、英国Rotork、英国Bifold等业内顶尖企业都在其产品中采用了博微的关键技术或关键部件,成功完成了200多项大型自动化工程项目。

中科博微是FCG组织成员;是Profibus用户组织(PNO)成员。

中科博微成功通过了ISO9001:2008质量管理体系认证和汽车行业的ISO/TS16949质量体系认证。

优秀的研发团队,丰富的自动化工程设计与实施经验,业界领先的产品,庞大的市场网络,优秀的企业文化,都为公司的创业和持续发展奠定了坚实基础。

承载员工理想,创造客户价值,促进企业发展。

承载员工理想,创造客户价值,促进企业发展。

第1章概述为了实现供暖单位对用户室内温度的采集与记录、管理者随时查看用户室温的变化趋势,辅助管理者分析与决策,对室温超标的用户及时采取措施,减少供热用户投诉,实现最少热能为最大供暖面积提供合格的供暖效果。

我公司自主研制开发出MHT室内温度采集系统,实现了对用户室内温度的不间断监测,让供暖单位通过监控中心可以直观看到温度实时变化,代替过去由人工来完成的温度数据采集任务;同时监控中心对无线温度采集器传输来的温度数据进行存储和查询统计。

无线温度采集的可行性分析

无线温度采集的可行性分析

无线温度采集的可行性分析引言在许多领域中,如环境监测、医疗健康、工业控制等,温度的准确测量是至关重要的。

传统的温度采集系统通常使用有线传感器,这对于一些特殊环境或需要远程监测的场景来说并不便利。

而无线温度采集系统的出现,能够解决这些问题,提供更加便捷和灵活的温度监测方案。

无线温度采集系统的原理无线温度采集系统由无线传感器节点和接收器组成。

传感器节点通过感知环境中的温度,并将数据通过无线信号发送给接收器,接收器再将数据传输给数据处理设备进行分析和存储。

传感器节点传感器节点是无线温度采集系统中的关键部分,它负责感知环境中的温度,并将采集到的数据进行处理和发送。

传感器节点通常由温度传感器、微控制器、通信模块和能量供应模块等组成。

当温度传感器感知到环境温度时,微控制器会将采集到的数据进行处理,并通过通信模块将数据发送给接收器。

接收器接收器是无线温度采集系统中的数据接收和处理部分,它接收传感器节点发送过来的数据,并进行进一步的处理和分析。

接收器通常由无线模块、微控制器和数据处理模块组成。

无线模块负责接收传感器节点发送的数据,微控制器将接收到的数据进行处理,并将处理结果传给数据处理模块进行存储和分析。

无线温度采集系统的优势相比于传统的有线温度采集系统,无线温度采集系统具有以下优势:灵活性和便捷性由于无线温度传感器节点不需要与接收器进行有线连接,因此可以更加灵活地布置在需要监测的区域。

这使得无线温度采集系统可以应用于一些传统系统无法满足的场景,如需要在高温环境下进行温度监测或需要在远程地点进行温度监测等。

高效的数据传输无线温度传感器节点通过无线信号将数据发送给接收器,相比于传统的有线数据传输方式,无线传输可以更加高效地进行数据传输。

这使得数据的获取和处理更加迅速,准确率也更高。

低功耗设计由于无线温度传感器节点是通过无线信号进行数据传输,相比于传统有线传输方式,无线传输能够减少能量消耗,延长传感器节点的使用寿命。

160路PT100采集温度系统

160路PT100采集温度系统

远程无线多路温度系统使用说明一、概述该系统利用中国移动GPRS无线网络,远程采集各种信号,将测量值采集到中央控制室。

由160路隔离温度采集仪、现场显示记录仪、GPRS模块组成。

二、主要技术指标:基本误差:0.2%FS,14位A/D转换器(最大18位A/D转换器,订货时注明)。

输入信号:RS485显示:双排四位LED数码管显示。

记录数据:共2400条。

记录天数=2400×记录间隔/(24×60),间隔30分钟记录30天。

报警输出:继电器触点输出,控制测量仪的电源供电。

通讯输出:GPRS电源:DC12V/4A功耗:160路温度仪功耗6W(12V/0.5A) 记录仪功耗2.5W环境温度:0~50℃相对湿度:≤85% 无凝露避免在带有腐蚀性和易燃易爆气体中使用尺寸:三、现场显示记录仪操作说明(一)面板说明:指示灯:J1-电源指示灯。

仪表工作是J1灯亮。

J2~J4备用。

OUT-温度采集指示灯,OUT灯亮时,馈电DC12V输出给采集仪使采集仪工作,采集仪工作约10秒后才开始读取采集仪的各路温度。

COM-通讯指示灯,收到命令后COM灯闪亮一下。

上排数码管-测量值下排数码管-通道号。

格式01.01,03.08分别表示第一组第1路,第三组第8号的温度。

(二)按键功能●—手动启动温度采集仪工作。

■—设定状态时,按一下该键返回上一次参数设置,长按则退出设置状态。

工作显示状态下作定检/巡检切换键,巡检状态下,按下此键后,则停在某一通道上定检, 按▲或▼键可改变定检通道,再按此键又进入自动巡检。

巡检时下排显示-X.XX。

En—参数设定键,在设定状态时,用于存贮参数的新设定值并进入下一个设定参数。

▲—设定值增加键,在设定状态时,用于增加数值。

▼—设定值增加键,在设定状态时,用于减少数值。

(三)上电自检按仪表的端子接线图连接好仪表的接线,正确无误后方可打开电源。

仪表自检后,如果显示―HH―表示没有采集到接信号或输入信号超量程或设置输入信号类型错误。

温度采集原理

温度采集原理

温度采集原理温度采集是指利用各种传感器和仪器设备对物体的温度进行测量和采集的过程。

温度是描述物体热状态的物理量,对于许多工业生产和科学研究领域来说,准确地采集和监测温度是非常重要的。

本文将介绍温度采集的原理及相关知识。

一、温度传感器。

温度传感器是温度采集的核心部件,它能够将温度转化为电信号输出,常见的温度传感器有热电偶、热敏电阻、半导体温度传感器等。

热电偶是利用两种不同金属导线焊接成回路,当焊点温度发生变化时,产生的热电动势可测出温度变化;热敏电阻则是利用材料的电阻随温度变化而变化的特性来测量温度;而半导体温度传感器则是利用半导体材料的特性来测量温度。

这些传感器各有优缺点,可根据实际需求选择合适的温度传感器。

二、温度采集原理。

温度采集的原理是利用温度传感器将物体的温度转化为电信号,再经过放大、转换、处理等环节,最终得到我们需要的温度数值。

在温度采集系统中,通常会有模拟信号处理和数字信号处理两种方式。

模拟信号处理是将传感器输出的模拟电信号进行放大、滤波、线性化等处理,然后转换为标准的电压或电流信号;而数字信号处理则是将模拟信号经过A/D转换器转换为数字信号,再经过微处理器或单片机进行数字滤波、数据处理和通信输出。

三、温度采集系统。

温度采集系统是由传感器、信号调理模块、数据采集模块、数据处理模块和显示输出模块等部分组成的。

传感器负责将温度转化为电信号,信号调理模块负责对传感器输出的信号进行放大、滤波、线性化等处理,数据采集模块负责将模拟信号转换为数字信号,然后进行数据处理和存储,最后通过显示输出模块将结果展示出来。

整个系统需要保证采集的温度数据准确、稳定、可靠,以满足不同领域的需求。

四、温度采集应用。

温度采集在工业自动化、环境监测、医疗仪器、农业生产等领域有着广泛的应用。

在工业自动化中,温度采集系统可以用于监测生产过程中的温度变化,保证产品质量和生产安全;在环境监测中,可以用于大气温度、水温、土壤温度等的监测,为环境保护和资源管理提供数据支持;在医疗仪器中,可以用于体温测量、病房温度监测等,保障患者的健康和安全;在农业生产中,可以用于温室大棚的温度监测,为作物生长提供合适的环境条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度传感器:DS18B20测温传感器使用二极管结电压变化的 数值来转化成温度的变化,在将随被测温度变化的电压或电流采 集过来,进行A\D转换后就可以用单片机进行数据处理,在显示 电路上,就可以将被测温度显示出来。
显示:采用传统的四位共阴数码管显示。数码管具有低压低 耗能、寿命长、对外界环境要求低等特点,而且其精度比较高。 采用BCD编码方式显示数字,程序编译简单,价格较低。
软件部分
3.2 DS18B20温度传感器运行时序
软件设计关键在于DS18B20的使用,DS18B20属于单线式 器件,它在一根数据线上实现数据的双向传输,这就需要一定 的协议,来对读写数据提出严格的时序要求,而AT89C51单 片机并不支持单线传输,因此必须采用软件的方法来模拟单线 的协议时序,操作协议为:初使化DS18B20(发复位脉冲)→ 发ROM功能命令→发存储器操作命令→处理数据。
硬件计
2.3 总体电路设计
本设计主要由单片机、温度采集器、LED数码管显示等部分组成。温度采集器 用来采集温度并将数据转换成单片机可以识别的数据,然后再四位数码管上显示出 测量到的温度。
软件部分
3.1 主程序流程图
主程序的功能是负责温度的实时显示、读出并处理DS18B20的测量的 当前温度值,温度测量每1s进行一次。这样可以在一秒之内测量一次 被测温度,其程序流程见图
软件部分
(1)初始化 单总线的所有处理均从初始化开始,初始化过程是主 机通过向作为从机的DS18B20芯片发一个有时间宽度要求的 初始化脉冲实现的。初始化后,才可以进行读写操作
(2)ROM操作命令 总线主机检测到DS18B20的存在,便可以发出 ROM操作命令之一
(3)存储器操作命令如下表
软件设计
结论
最后附上我们的实物图,也是我们 这学期的成果。
当DS18B20接收到温度转换命令后,开始启动转换,转换完 成后的温度值就以16位符号扩展的二进制补码形式存储在高速 暂存存储器的第1、2自己。单片机可以通过单线接口读出该数 据,读数据时低位在先,高位在后,数据格式以 0.0625℃/LSB表示、
当符号位S=0时,表示测得的温度值为正值,可以直接将二 进制位转换为十进制:当符号位S=1时,表示测得的温度为负 值,要先将补码变成原码,再计算十进制数值。
多路无线温度采集系统可被广泛应用于温度测量或相应的可转 换为温度量或供电故障监控的工业、农业、环保、服务业、安全 监控等工程中,例如:城市路灯故障检测和供电线路防盗监视、 城市居民小区供热检测、大型仓库温度检测、工业生产测控、农 业生产温度测控、环保工程、故障监控工程等。考虑到许多工业 环境中对多点温度进行监控,一般需要测量几十个点以上。本文 设计多路无线温度监控系统。
软件设计
写时间隙 当主机总线t0时刻从高位至低电平时,就产生写时间隙见上图,从 t0时刻开始15us之内应将所需写的位送到总线上,DS18B20在t0 后15-60us间对总线采样。若低电平,写入的位是0.见4-3图,若高 电平写入位是1见4-4图。连续写2位间的间隙应大于1us。
读时间隙 见下图,主机总线t0时刻从高拉至低电平时,总线只须保持 低电平1us,之后在t1时刻将总线拉高,产生读时间隙,读 时间隙在t1时刻后t2时刻前有效,t2距t0为15us。也就是说 t2时刻前主机必须完成读位,并在t0后的60us-120us内释 放总线,读位子程序(读得的位到C中)
是温度
软件设计
a=ReadOneChar(); b=ReadOneChar(); t=b; t<<=8; t=t|a; if(t>=2048) {t^=0xffff; dis_buf[3]=11; } tt=t*0.0625; //数值转换 t=tt*10; //放大10倍, 使显示时可显示小数点后一位 return(t); }
基于单片机的温度 采集系统的设计
导 师:王伟 专 业:电子信息工程
论文框架
1 研究背景 2 硬件设计 3 软件设计 4 结论
研究背景
随着社会的发展,科学技术的进步同时也带动了测量技 术的发展,现代控制设备不同于以前,它们在性能和结构 发生了翻天覆地的变化。我们已经进入了高速发展的信息 时代,测量技术是当今社会的主流,广泛地深入到应用工 程的各个领域。 温度采集器是可以通过温度传感器与单片机组合使用能 测试温度的仪器,该系统结构简单,抗干扰能力强,适合 恶劣环境下进行现场温度测量,有广泛的应用前景。
硬件设计
2.1 设计的基本方案
温度采集器电路设计总体方框图如图2-1所示,控制器采用单片机 STC89C52RC,温度传感器采用DS18B20,用4位LED数码管以串口传 送数据实现温度显示。
单片机复位
LED显示
主 控 制 器
时钟震荡
温度传感器
硬件设计
2.2 硬件部分的选择
单片芯片:采用STC89C52单片机。STC89C52单片机是低 功耗,高可靠的单片机,是一种高效微控制器,为很多嵌入式控 制系统提供了一种灵活性高且价廉的方案。
(4)时序 主机使用时间隙来读写DS18B20的数据位和写命令字 的位
初始化
时序见上图,主机总线to时刻发送一复位脉冲(最短为 480us的低电平信号),接着在t1时刻释放总线进入接收状 态。DS18B20在检测到总线的上升沿后等待15-60us,接 着DS18B20在t2时刻发出存在脉冲(低电平持续60240us)。如上图中虚线所示。
软件设计
DS18B20读写程序:
ReadTemperature(void) {uchar a=0; uchar b=0; ulint t=0; float tt=0; Init_DS18B20(); WriteOneChar(0xCC); // 跳过读序号列号的操作 WriteOneChar(0x44); // 启动温度转换 Init_DS18B20(); WriteOneChar(0xCC); //跳过读序号列号的操作 WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器) 前两个就
相关文档
最新文档