福建省宁德市2020届高三普通高中毕业班5月质量检查 数学(理)

合集下载

2020届宁德市普通高中毕业班第一次质量检查理科数学答案

2020届宁德市普通高中毕业班第一次质量检查理科数学答案

2020年宁德市普通高中毕业班质量检查 数学(理科)试题参考答案及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解法不同,可根据试题的主要考查内容比照评分标准指定相应的评分细则.二、对计算题,当考生的解答在某一部分解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基础知识和基本运算,每小题5分,满分60分. 1.B 2.A 3.A 4.B 5.C 6.D 7.D 8.C 9.B 10.A 11.C 12.D二、填空题:本题考查基础知识和基本运算,每小题5分,满分20分.13.5- 14.12 15.35- 16三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.17.本小题主要考查数列及数列求和等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,满分12分.17. 解:(1)由2112122(2)n n n nn n S S a S S a n ++-⎧+=⎪⎨+=≥⎪⎩两式相减,得: 1112()()(2)n n n n n n a a a a a a n ++++=+-≥,……………………………… 2分又0n a >,∴11(2)2n n a a n +-=≥,………………………………3分当1n =时,22122S S a +=且112a =, 故222210a a --=,得21a =(2102a =-<舍去),∴2111122a a -=-=,………………………………4分 ∴数列{}n a 为等差数列,公差为12,………………………………5分 所以12n a n = .………………………………6分(2)由(1)及题意可得1112()11(1)2n b n n n n ==-++⋅,………………………………8分 所以123n n T b b b b =++++11111112[(1)()()()223341n n =-+-+-++-+]………………………………10分 122(1)11n n n =-=++.………………………………12分18.本小题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.满分12分. (1)证明:取DE 中点F ,分别连结AF ,FN 又N 为BC 中点,所以1//,2FN CD FN CD =,.…………………… 1分因为矩形ABCD 中,M 为AB 的中点,所以1//,2AM CD AM CD =所以//,AM FN AM FN =,……………… 2分 所以四边形AMNF 为平行四边形,…………3分 所以//AF MN ,……………… 4分 又因为AF ⊂平面AED ,MN ⊄平面AED , 所以//MN 平面AED .………………………5分 (2)因为矩形ABCD ⊥平面EBC , 矩形ABCD 平面EBC BC =, AB BC ⊥所以AB ⊥平面EBC .………………………………6分 如图,以B 为原点建立空间直角坐标系B xyz -,则(0,0,0)B ,(0,0,1)A ,(0,2,1)D,1,0)E -,………7分 因为x 轴⊥平面ABCD ,所以1(1,0,0)=n 为平面ABCD 的一个法向量,………………………………8分 设2(,,)x y z =n 为平面AED 的法向量, 因为(0,2,0)AD =,(3,1,1)AE =--, 所以2200AD AE ⎧⋅=⎪⎨⋅=⎪⎩n n,得200y y z =⎧⎪--=,故可取2=n ,………………………………11分 则1212121cos ,2⋅<>==⋅n n n n n n ,由图可知二面角的平面角为锐角, 所以二面角E AD B --的大小为3π.………………………………12分解法二:(1)取CD 中点F ,分别连结FM ,FN . 又矩形ABCD 中,M 为AB 中点, 所以//,AM DF AM DF =, 所以四边形AMFD 为平行四边形,所以//MF AD ,…………… 1分又AD ⊂平面AED ,MF ⊄平面AED , 所以//MF 平面AED .………………… 2分 因为F 、N 分别为CD 、CE 的中点.所以//FN DE ,又DE ⊂平面AED ,FN ⊄平面AED , 所以//FN 平面AED .……………… 3分 又因为MF FN F ⋂=,所以平面//FMN 平面AED ,………………4分 又MN ⊂平面FMN ,所以//MN 平面AED .………………………………5分(2)过点E 作EG CB ⊥交CB 的延长线于G ,过G 作GH DA ⊥交DA 的延长线于H ,连结EH , 又因为平面ABCD ⊥平面EBC ,矩形ABCD 平面EBC BC = 所以EG ⊥平面ABCD .EG AH ∴⊥又EG GH G =,AH ∴⊥平面EGH , EH AH ∴⊥所以EHG ∠即为二面角E AD B --的平面角,………………………………10分 因为1AB GH ==,GE所以tan EHG ∠………………………………11分 由图可知二面角的平面角为锐角, 所以二面角E AD B --的大小为3π.……………………12分19.本小题主要考查正弦定理、余弦定理及三角恒等变换等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想等,考查应用意识.满分12分.解:(1cos c C -=⋅sin cos B C A C -……………1分 又sin sin[()]sin()B A C A C π=-+=+cos cos sin )sin cos A C A C C A C +-=…………………………………2分sin sin 0A C C -=,…………………………………3分 因为0C π<<,所以sin 0C ≠所以cos 2A =0A π<<………………………………………4分 所以4A π=.……………………………………………………5分(2)由(1)知4A π=根据题意得4022C C πππ⎧<<⎪⎪⎨⎪+>⎪⎩,,解得42C ππ<<. ……………………………………………………6分在ABC ∆中,由正弦定理得sin sin c bC B=,所以)2sin 2cos 242sin sin tan C C C b CC Aπ++===+………………………………………7分因为()42C ππ∈,,所以tan (1)A ∈+∞,所以(24)b ∈,……………………………………………………………8分 因为D 为BC 中点,所以1()2AD AC AB =+………………………………9分所以221()4AD AC AB =+21(48)4b b =++ 21(2)14b =++………………………………10分 因为(24)b ∈,所以AD的取值范围为………………………………12分解法二:(1)cos c C -=⋅2222a b c c ab+--=⋅……………………1分 整理得222b c a +-………………………………2分所以222cos 2a b c A bc +-==………………………………4分又0A π<<,所以4A π=………………………………5分(2)由(1)知4A π=,又c =2284a b b =+-.…………………………6分因为ABC ∆为锐角三角形,所以222222222a b c b c a a c b ⎧+>⎪+>⎨⎪+>⎩,即222222848884848b b b b b b b b ⎧+->⎪+>+-⎨⎪+-+>⎩………………………7分所以(24)b ∈,………………………………8分 延长AD 到点E ,使得DE AD =,连结BE ,CE . 则四边形ABEC 为平行四边形,所以344ABE πππ∠=-=,BE AC b ==. 在ABE ∆中,2222cos AE AB BE AB BE ABE =+-⋅∠,………………………………9分 即2244+8AD b b =+,所以AD =………………………………10分 因为(24)b ∈,,所以AD的取值范围为.………………………………12分 20.本题主要考查直线、椭圆、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力,满分12分. 解:(1)离心率为12c e a ==,∴2a c =,………………………………1分 2ABF ∆的周长为8,∴48a =,得2a =,………………………………3分 ∴1c =,2223b a c =-=,………………………………4分因此,椭圆C 的标准方程为22143x y +=.………………………………5分(2)设2ABF ∆的内切圆半径为r ,∴2221(||||||)2ABF S AF AB BF r ∆=++⋅,又22||||||8AF AB BF ++=,∴24ABF S r ∆=,要使2ABF ∆的内切圆面积最大,只需2ABF S ∆的值最大.………………………………6分 设11(,)A x y ,22(,)B x y ,直线:1l x my =-,联立221431x y x my ⎧+=⎪⎨⎪=-⎩消去x 得:22(34)690m y my +--=, 易得0∆>,且122634m y y m +=+,122934y y m -⋅=+,………………………………7分所以212121||||2ABF S F F y y ∆=⋅-=,………………………………8分设1t =,则2212121313ABF t S t t t∆==++,………………………………9分 设13(1)y t t t =+≥,2130y t '=->,所以13y t t =+在[1,)+∞上单调递增,……………10分所以当1t =,即0m =时,2ABF S ∆的最大值为3,………………………………11分此时34r =,所以2ABF ∆的内切圆面积最大为916π.………………………………12分 (注:若讨论直线l 斜率存在或不存在,由此求得斜率不存在时面积最大值,酌情按步给分) 21.本题主要考查导数的几何意义、导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想等.满分12分.解:(1)当0b =时,21()ax f x x eax +=-,1()(2)ax f x xe ax a +'=+-,………………………………1分由1(1)(2)2a f e a a +'=+-=,………………………………2分得1(2)(2)0a ea a ++-+=,即1(1)(2)0a ea +-+=,……………………………3分解得1a =-或2a =-.………………………………4分当1a =-时,0(1)12f e =+=,此时直线2y x =恰为切线,故舍去,……………………5分 所以2a =-.………………………………6分 (2)当2b =时,21()2ln ax f x x e x ax +=--,设21ax t x e+=,则ln 2ln 1t x ax =++,………………………………7分故函数()f x 可化为()ln 1g t t t =-+. 由11()1t g t t t-'=-=,可得 ()g t 的单调递减区间为(0,1),单调递增区间为(1,)+∞,所以()g t 的最小值为(1)1ln112g =-+=,。

2020届宁德市普通高中毕业班质量检查试卷理科数学答案

2020届宁德市普通高中毕业班质量检查试卷理科数学答案

1
2020年宁德市普通高中毕业班质量检查试卷 数学(理科)参考答案及评分标准
一、选择题:本题考查基础知识和基本运算,每小题5分,满分60分.
1.B 2.C 3.A 4.D 5.A 6.A
7.B 8.C 9.C 10.D 11.B 12.D
二、填空题:本题考查基础知识和基本运算,每小题5分,满分20分.
13.22x y = 14.16 15.-8 16.{1,3}-
三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.
17.本小题主要考查正弦定理、余弦定理、三角恒等变换
等基础知识,考查运算求解能力,考查化归与转化思想、
函数与方程思想等.满分12分.
解:(1)因为1cos 7BDC ∠=-,22sin cos 1BDC BDC ∠∠+=, 所以43sin BDC =
∠.……………………………………2分 在BDC ∆中,,3C DBC C BDC π∠∠+∠+∠=π=, 所以sin sin()DBC BDC C ∠=∠+∠…………………………………………………………3分 sin cos cos sin BDC C BDC C =∠⋅+∠⋅……………………………………………………4分 431133327=
⋅-⋅=. …………………………………………………………5分 (2)在BDC ∆中,由正弦定理得sin sin CD BD DBC C =∠,…………………………………6分 即33
3=,解得7BD =.…………………………………………………………8分 因为2ABD DBC π∠+∠=,33sin DBC ∠=, 所以cos ABD ∠33=,……………9分。

福建省宁德市2020届高三毕业班6月质量检查理科数学试卷 (含答案和评分标准)

福建省宁德市2020届高三毕业班6月质量检查理科数学试卷 (含答案和评分标准)

B. 1 4
C. 1 3
D. 1 2
5.某数学小组在国际数学日(每年 3 月 14 日)开展相关活动,其中一个活动是用随机模拟
实验的方法获得 π 的近似值.现通过计算器随机获得 500 个点的坐标 (x, y) ( 0 x 1,
0 y 1),其中有 399 个点的坐标满足 x2 y2 1,据此可估计 π 的值约为
9.某空间几何体的三视图如图所示,则该几何体的表面积为
3
1
1
正视图
2
侧视图
A. 4 7 π 2
C. 8 7 π 2
B. 4 7 π D. 8 7 π
2
俯视图
10.已知函数
f
(x)
1,
x 2,
则不等式 f (2x 1) f (4x) 的解集为
log2 x , x 2,
A. , 1 1 , 64
开始
输入 a,b,c
x=a
b>x

c>x

输出 x

x=b

x=c
结束
三、解答题:共 70 分.解答应写出文字说明、证明过程和演算步骤.第 17~21 题为必考题, 每个试题考生都必须做答.第 22、23 题为选考题,考生根据要求做答. (一)必考题:共 60 分 17.(12 分)
已知等差数列{an} 中,a1 1且 a1 ,a2 ,a7 4 成等比数列.数列{bn} 的前 n 项和为 Sn , 满足 3bn 2Sn 1 . (1)求数列{an} ,{bn} 的通项公式; (2)将数列{an} 和{bn} 的公共项 ak1 , ak2 , , akn 按原来的顺序组成新的数列,试求
A. 5 2
B. 2

2020届福建省宁德市高三下学期第二次(5月)质量检查数学(文)试题Word版含解析

2020届福建省宁德市高三下学期第二次(5月)质量检查数学(文)试题Word版含解析

2020届福建省宁德市高三下学期第二次(5月)质量检查数学(文)试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:先化简集合B,再求得解.详解:由题得,所以.故答案为:C点睛:本题主要考查集合的化简和交集,意在考查学生对这些基础知识的掌握能力.2. 复数A. B. C. D.【答案】A【解析】分析:利用复数的除法法则化简即得解.详解:由题得.故答案为:A点睛:本题主要考查复数的除法运算,意在考查学生对这些知识的掌握能力.3. 下图是具有相关关系的两个变量的一组数据的散点图和回归直线,若去掉一个点使得余下的个点所对应的数据的相关系数最大,则应当去掉的点是A. B. C. D.【答案】B【解析】分析:利用相关系数的定义性质分析得解.详解:因为相关系数的绝对值越大,越接近1,则说明两个变量的相关性越强.因为点E到直线的距离最远,所以去掉点E, 余下的个点所对应的数据的相关系数最大.点睛:本题主要考查回归直线和相关系数,相关系数的绝对值越大,越接近1,则说明两个变量的相关性越强.4. 下列曲线中,既关于原点对称,又与直线相切的曲线是A. B. C. D.【答案】D【解析】分析:先利用函数的奇偶性排除B,C,再求D选项的切线方程得解.详解:因为曲线关于原点对称,所以函数是奇函数.对于选项B,因为,所以它是偶函数,不是奇函数,故排除B.对于选项C,由于函数的定义域为,定义域不关于原点对称,所以不是奇函数,故排除C.对于选项D,,设切点为,则因为,所以或,当时,切线方程为.故答案为:D点睛:(1)本题主要考查函数的奇偶性和求曲线的切线方程,意在考查学生对这些基础知识的掌握能力. (2)与曲线的切线有关(切点未知)的问题,一般先设切点,再利用导数的几何意义求切线的斜率,再根据切点在切线和曲线上,求出切点,最后写出切线的方程.5. 若,满足约束条件则的最小值是A. B. C. D.【答案】B【解析】分析:先作出不等式组对应的平面区域,再利用数形结合分析得到的最小值.详解:不等式组对应的平面区域如图所示:因为z=4x-y,所以y=-4x-z,直线的纵截距为-z,当直线经过点C时,纵截距-z最大值时,z最小.联立方程组得C.故的最小值为.故答案为:B点睛:(1)本题主要考查线性规划问题,意在考查学生对这些基础知识的掌握能力和数形结合的能力.(2) y=-4x-z,直线的纵截距为-z,当直线经过点C时,纵截距-z最大值时,z最小.不要理解为纵截距最小,则z最小,一定看纵截距这个函数的单调性.对这一点,学生要理解掌握并灵活运用.6. 已知等差数列满足,,则A. B. C. D.【答案】C【解析】分析:先根据已知求出或,再求得解.详解:由题得,,所以或,当时,当时,故答案为:C点睛:(1)本题主要考查等差数列的基本量的计算和通项公式,意在考查学生对这些基础知识的掌握能力和基本的运算能力.(2) 等差数列中,如果,则,注意这个性质的灵活运用.7. 如下图所示,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的表面积为A. B. C. D.【答案】B【解析】分析:首先通过三视图找到几何体原图,进一步求出几何体的表面积.详解:根据三视图,该几何体是边长为2的正方体,在右前方切去一个边长为1的正方体,则表面积没有变化.故S=6•2•2=24.故答案为:B点睛:(1)本题主要考查三视图和几何体的表面积的计算,意在考查学生对这些基础知识的掌握能力和空间想象能力. (2)得到几何体原图后,逐一计算出表面积也可以,但是观察到,虽然是正方体切去了一个小正方体,但是几何体的表面积没有变,提高了解题效率,意在考查学生的空间想象能力和观察能力.8. 将周期为的函数的图象向右平移个单位后,所得的函数解析式为A. B.C. D.【答案】A【解析】分析:先化简f(x),再求出w的值,再求平移后的函数解析式得解.详解:由题得,因为函数的周期是所以所以.将函数f(x)向右平移个单位后,所得的函数解析式为,故答案为:A点睛:(1)本题主要考查三角函数解析式的求法,考查函数图像的变换,意在考查学生对这些基础知识的掌握能力.(2) 把函数的图像向右平移个单位,得到函数的图像, 把函数的图像向左平移个单位,得到函数的图像,简记为“左加右减”.9. 过抛物线的焦点作一倾斜角为的直线交抛物线于,两点(点在轴上方),则A. B. C. D.【答案】C【解析】分析:设先求出的关系,再求的值得解.详解:设由题得由题得,所以所以.故答案为:C10. 已知若函数只有一个零点,则实数的值为A. B. C. D.【答案】B【解析】分析:先求出分段函数的每一段的单调性,从而得到函数的单调性,再利用函数的单调性转化为只有一个解,最后利用二次函数的图像性质得解.详解:由题得函数在都是增函数,由于-1+1=ln(-1+2)=0,所以是单调增函数,因为函数只有一个零点,所以只有一个零点,因为是单调增函数,所以只有一个解,所以只有一个解.所以故答案为:B点睛:解答本题关键有两点,其一是分析出函数的单调性,先利用复合函数的单调性得到函数在都是增函数,再根据端点值得到函数是单调增函数,其二是将命题转化为只有一个解.对于函数的零点问题常用的是图像法.11. 将一个内角为且边长为的菱形沿着较短的对角线折成一个二面角为的空间四边形,则此空间四边形的外接球的半径为A. B. C. D.【答案】D【解析】分析: 首先把平面图形转换为空间图形,进一步利用球的中心和勾股定理的应用求出结果.详解: 如图所示:菱形ABCD的∠A=60°,沿BC折叠,得到上图,则E、F分别是△ABC和△BCD的中心,球心O为△ABC和△BCD的过中心的垂线的交点,则:OE=OF=1,EC=2,利用勾股定理得:故答案为:D点睛: (1)本题主要考查空间几何体的外接球问题,考查二面角,意在考查学生对这些基础知识的掌握能力及空间想象能力. (2)解答本题的关键是找到球心,由于E、F分别是△ABC和△BCD的中心,所以球心O 为△ABC和△BCD的过中心的垂线的交点.12. 记为数列的前项和,满足,,若对任意的恒成立,则实数的最小值为A. B. C. D.【答案】C【解析】分析:根据数列{a n}求解S n,利用不等式的性质求解.详解:由a1=,2a n+1+3S n=3(n∈N*),则2a n+3S n﹣1=3.两式相减,可得2a n+1﹣2a n+3a n=0,即.∵a1=,∴a n==3•2﹣n.那么S n==1.∴≤S n.要使对任意的n∈N*恒成立.根据勾勾函数的性质,当S n=时,取得最大值为∴实数M的最小值为.故答案为:C点睛:(1)本题考查了等差数列与等比数列的通项公式及其前n项和公式,意在考查了学生对这些基础知识的掌握能力及推理能力与计算能力.(2)解答本题的一个关键是求的范围,由于S n=1,所以奇数项都大于1,单调递减,偶数项都小于1,单调递增.所以最大,最小.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知两个单位向量,,且,则,的夹角为_______.【答案】【解析】分析:直接把两边平方,再展开即得的夹角.详解:由题得故的夹角为.故答案为:点睛:本题主要考查向量的数量积及向量的运算,考查向量的夹角,意在考查学生对这些基础知识的掌握能力及基本的运算能力.14. 已知点是以,为焦点的双曲线上的一点,且,则的周长为______.【答案】【解析】分析:根据题意,由双曲线的标准方程可得a、b的值,由双曲线的定义可得||PF1|﹣|PF2||=2a=2,又由|PF1|=3|PF2|,计算可得|PF1|=3,|PF2|=1,又由|F1F2|=2c=2,由三角形的周长公式计算可得答案.详解:根据题意,双曲线C的方程为x2﹣y2=1,则a=1,b=1,则c=,则||PF1|﹣|PF2||=2a=2,又由|PF1|=3|PF2|,则|PF1|=3,|PF2|=1,又由c=,则|F1F2|=2c=2,则△PF1F2的周长l=|PF1|+|PF2|+|F1F2|=4+2;故答案为:4+2点睛:(1)本题主要考查双曲线的简单几何性质,考查双曲线的定义,意在考查学生对这些基础知识的掌握能力. (2)在圆锥曲线种,只要看到焦半径就要联想到曲线的定义分析解答,这是一个解题技巧,学生要掌握.15. 我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在《张丘建算经》中给出一个解不定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的数量分别为,,,则鸡翁、鸡母、鸡雏的数量即为方程组的解.其解题过程可用框图表示如下图所示,则框图中正整数的值为 ______.【答案】4【解析】分析:由得y=25﹣x,结合x=4t,可得框图中正整数m的值.详解:由得:y=25﹣x,故x必为4的倍数,当x=4t时,y=25﹣7t,由y=25﹣7t>0得:t的最大值为3,故判断框应填入的是t<4?,即m=4,故答案为:4点睛: 本题考查的知识点是程序框图,根据已知分析出y与t的关系式及t的取值范围,是解答的关键.16. 已知定义在上的函数满足且,若恒成立,则实数的取值范围为______.【答案】【解析】分析:求出f(x)的解析式为f(x)=e x,结合函数图象即可得出a的范围.详解:∵>0,∴f(x)为增函数,∴f(f(x)﹣e x)=1,∴存在唯一一个常数x0,使得f(x0)=1,∴f(x)﹣e x=x0,即f(x)=e x+x0,令x=x0可得+x0=1,∴x0=0,故而f(x)=e x,∵f(x)≥ax+a恒成立,即e x≥a(x+1)恒成立.∴y=e x的函数图象在直线y=a(x+1)上方,不妨设直线y=k(x+1)与y=e x的图象相切,切点为(x0,y0),则,解得k=1.∴当0≤a≤1时,y=e x的函数图象在直线y=a(x+1)上方,即f(x)≥ax+a恒成立,:故答案为:[0,1].点睛:本题解答的关键有两个,其一是根据已知条件求出f(x)=e x,其二是数形结合分析e x≥a(x+1)恒成立.重点考查学生的分析推理能力和数形结合的能力.三、解答题:本大题共6小题,满分70分.解答须写出文字说明证明过程和演算步骤.17. 的内角,,的对边分别为,,,且.(1)求角的大小;(2)若,求边上高的长.【答案】(1);(2)【解析】分析:(1)先利用正弦定理边化角得到,求出A的大小.(2)先利用余弦定理求c,再利用直角三角函数求边上高的长.详解:(1)由正弦定理有,,,(2)由余弦定理有:,或(舍去)点睛:(1)本题主要考查正弦定理、余弦定理解三角形,意在考查学生对这些基础知识的掌握能力及分析转化能力.(2)数学的解题必须严谨,在得到后,不能简单两边同时除以sinC,必须说明,才能同时除以sinC.在有的地方容易出错.18. 为响应绿色出行,某市在推出“共享单车”后,又推出“新能源租赁汽车”.每次租车收费的标准由两部分组成:①里程计费:1元/公里;②时间计费:元/分.已知陈先生的家离上班公司公里,每天上、下班租用该款汽车各一次.一次路上开车所用的时间记为(分),现统计了50次路上开车所用时间,在各时间段内频数分布情况如下表所示将各时间段发生的频率视为概率,一次路上开车所用的时间视为用车时间,范围为分.(1)估计陈先生一次租用新能源租赁汽车所用的时间不低于分钟的概率;(2)若公司每月发放元的交通补助费用,请估计是否足够让陈先生一个月上下班租用新能源租赁汽车(每月按天计算),并说明理由.(同一时段,用该区间的中点值作代表)【答案】(1);(2)见解析【解析】分析:(1)利用对立事件的概率公式求陈先生一次租用新能源租赁汽车的时间不低于30分钟的概率.(2)比较每个月的费用和元的大小,即得解.详解:(1)设“陈先生一次租用新能源租赁汽车的时间不低于30分钟”的事件为则所求的概率为所以陈先生一次租用新能源租赁汽车的时间不低于30分钟的概率为.(2)每次开车所用的平均时间为每次租用新能源租赁汽车的平均费用为每个月的费用为,因此公车补贴够上下班租用新能源分时租赁汽车.点睛:本题主要考查对立事件的概率,考查平均值的计算等知识,意在考查学生对这些基础知识的掌握能力及分析能力.19. 如图,在四棱锥中,,,,.(1)求证:;(2)若,,为的中点.(i)过点作一直线与平行,在图中画出直线并说明理由;(ii)求平面将三棱锥分成的两部分体积的比.【答案】(1)见解析;(2)见解析,【解析】分析: (1) 取中点,连接,,先证明面,再证明.(2) (i)取中点,连接,,则,即为所作直线,证明四边形为平行四边形即得证. (ii)先分别计算出两部分的体积,再求它们的比.详解:(1)证明:(1)取中点,连接,,为中点,又,为中点,又,面又面,(2)(i)取中点,连接,,则,即为所作直线,理由如下:在中、分别为、中点,且又,且,四边形为平行四边形.(ii),,,面又在中,,,又,面,.:(1)本题主要考查空间平行垂直位置关系的证明,考查空间几何体体积的计算,意在考查学生对这些基础知识的掌握能力和空间想象转化能力.(2)对于空间平行垂直位置关系的证明有几何法和向量法两种方法,空间几何体体积的计算有公式法、割补法和体积变换法三种方法.20. 已知椭圆的离心率为,四个顶点所围成的四边形的面积为.(1)求椭圆的方程;(2)已知点,斜率为的直线交椭圆于,两点,求面积的最大值,并求此时直线的方程.【答案】(1);(2)或【解析】分析:(1)根据已知列出方程组解方程组即得椭圆的方程.(2) 设直线的方程为,,再求面积的最大值得到t的值,即得直线的方程.详解:(1),,又,联立①②得.椭圆方程为.(2)由(1)得椭圆方程为,依题意,设直线的方程为,,点到直线的距离为,联立可得,显然,,当且仅当时,即时取等号,,此时直线的方程为或.点睛:(1)本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,意在考查学生对这些基础知识的掌握能力及分析推理能力和计算能力. (2)解答本题的关键是得到后如何求函数的最大值,本题是利用基本不等式求的最大值,简洁明了,解题效率高.21. 已知函数.(1)讨论的单调性;(2)若函数有三个零点,证明:当时,.【答案】(1)见解析;(2)见解析【解析】分析:(1)先求导,再对a分类讨论得到的单调性.(2)先转化函数有三个零点得到,再利用分析法和导数证明.详解:(1)令,则或,当时,,在上是增函数;当时,令,得,,所以在,上是增函数;令,得,所以在上是减函数当时,令,得,,所以在,上是增函数;令,得,所以在上是减函数综上所述:当时,在上是增函数;当时,在,上是增函数,在上是减函数.当时,在,上是增函数,在上是减函数.(2)由(1)可知:当时,在上是增函数,函数不可能有三个零点;当时,在,上是增函数,在上是减函数.的极小值为,函数不可能有三个零点当时,,要满足有三个零点,则需,即当时,要证明:等价于要证明即要证:由于,故等价于证明:,证明如下:构造函数令,函数在单调递增,函数在单调递增,∴.22. 在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的参数方程为(为参数).(1)求曲线的直角坐标方程和曲线的极坐标方程;(2)当变化时设的交点的轨迹为,若过原点,倾斜角为的直线与曲线交于点,求的值.【答案】(1),;(2)1【解析】分析:(1)直接代极坐标公式化极坐标为直角坐标,利用三角恒等式消参得到的直角坐标方程,再化为极坐标方程.(2)利用直线参数方程t的几何意义求求的值.详解:(1)由:,得,即,曲线化为一般方程为:,即,化为极坐标方程为:.(2)由及,消去,得曲线的直角坐标方程为.设直线的参数方程为(为参数),与联立得,即,故,,∴.点睛:(1)本题主要考查直角坐标、极坐标和参数方程的互化,考查直线参数方程t的几何意义,意在考查学生对这些基础知识的掌握能力及运算能力. (2) 直线参数方程中参数的几何意义是这样的:如果点在定点的上方,则点对应的参数就表示点到点的距离,即.如果点在定点的下方,则点对应的参数就表示点到点的距离的相反数,即.(2)由直线参数方程中参数的几何意义得:如果求直线上两点间的距离,不管两点在哪里,总有.23. 已知实数x, y满足.(1)解关于x的不等式;(2)若,证明:【答案】(1);(2)9【解析】分析:(1)先消去y,再利用零点分类讨论法解绝对值不等式.(2)利用基本不等式证明.详解:(1),当时,原不等式化为,解得,∴;当时,原不等式化为,∴;当时,原不等式化为,解得,∴;综上,不等式的解集为.(2)且,.当且仅当时,取“=”.点睛:(1)本题主要考查零点讨论法解绝对值不等式,考查不等式的证明,意在考查学生对这些基础知识的掌握能力和分类讨论能力.(2)第(2)的关键是常量代换,,常量代换之后才方便利用基本不等式证明.。

福建省宁德市普通高中2023届高三质量检测数学试题(含答案解析)

福建省宁德市普通高中2023届高三质量检测数学试题(含答案解析)

福建省宁德市普通高中2023届高三质量检测数学试题(含答案解析)福建省宁德市普通高中2023届高三质量检测数学试题(含答案解析)【注意】本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1 至10题为选择题,每小题2分,共20分;第Ⅱ卷为非选择题,共80分。

考试时间120分钟。

第Ⅰ卷(选择题,共20分)一、选择题(本大题共10小题,每小题2分,共20分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 将函数$f(x)= \sin(x-\frac{\pi}{6})+2x$ 的图像上对称的两个点P和Q分别对应于$f(x)=7$ 和$f(x)=-1$,则点P和Q的坐标分别是()A. $\left(\frac{5\pi}{6}, 7\right), \left(\frac{11\pi}{6}, -1\right)$B. $\left(\frac{5\pi}{6}, -1\right), \left(\frac{7\pi}{6}, 7\right)$C. $\left(\frac{5\pi}{6}, 7\right), \left(\frac{7\pi}{6}, -1\right)$D. $\left(\frac{7\pi}{6}, -1\right), \left(\frac{11\pi}{6}, 7\right)$【解析】根据函数图像对称性和点过该函数能确定两个点,即可得到答案为C。

2. 若$\frac{(x+2)^2-1}{x+1}>0$,则实数x的取值范围是()A. $x>2$ 或 $-1<x<-2$B. $x>2$ 或 $-1<x<-2$ 或 $x<-3$C. $x<-3$ 或 $-2<x<-1$D. $x>-3$ 或 $x<-1$ 或 $x<-2$【解析】根据不等式性质和解析式展开,结合一元二次不等式求解可得答案为B。

2020年5月福建省宁德市普通高中2020届高三毕业班质量检查数学(理)试题及答案

2020年5月福建省宁德市普通高中2020届高三毕业班质量检查数学(理)试题及答案

1绝密★启用前福建省宁德市普通高中2020届高三毕业班下学期5月质量检查数学(理)试题2020年5月4日本试卷共23题,共150分,共6页. 注意事项:1.答题前,考生务必将自己的姓名、准考号填写在答题卡上.考生要认真核对答题卡上粘贴的“姓名、准考证号、考试科目”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷和答题卡一并交回 .一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|ln 0}A x x =<,{|1}B x x =≤-,则A B R I ð=A .{|11}x x -<< B. {|01}x x << C. {|11}x x -≤< D. {|1}x x ≥ 2.设等差数列{}n a 的前n 项和为n S ,若33a =,713a =,则9S =A .36B .70C .72D .1443.干支是天干(甲、乙、…、癸)和地支(子、丑、…、亥)的合 称,“干支纪年法”是我国传统的纪年法.如图是查找公历某年所 对应干支的程序框图.例如公元1988年,即输入1988N =,执行 该程序框图,运行相应的程序,输出5x =,从干支表中查出对应 的干支为戊辰.我国古代杰出数学家祖冲之出生于公元429年,2则该年所对应的干支为 A. 己巳 B. 庚午 C. 壬戌 D. 癸亥4. ()5112x x ⎛⎫+- ⎪⎝⎭的展开式中,3x 的系数是A .50-B .30-C .50D .305.某几何体的三视图如图所示,则该几何体的体积为A .3πB .9πC .12πD .36π 6.已知,02θπ⎡⎫∈-⎪⎢⎣⎭,2cos21θθ=+,则cos θ=A .0B .12CD .07.在复平面内O 为坐标原点,复数1i)z =,2z =对应的点分别为1Z ,2Z ,则12Z OZ ∠的大小为 A .512π B .12π C .712π D .1112π 8.函数()ln 0f x ax x =-≥ ()a ÎR 恒成立的一个充分不必要条件是A .1,e a ⎡⎫∈+∞⎪⎢⎣⎭B .[)0,a ∈+∞C .[)1,a ∈+∞D .(,e]a ∈-∞9.已知O 为坐标原点,AB 是:C e 22(3)(4)1x y -+-=的直径.若点Q 满足2OQ u u u v=,则QA QB ⋅u u u v u u u v的最小值为A .2B .3C .8D .15 10.方程()22:2(1)(3)e e x x x x y ----=+的曲线有下列说法:六十干支表(部分)正视图侧视图俯视图。

2020届福建省宁德市高三普通高中毕业班5月质量检查文科数学试题(PDF版)

2020届福建省宁德市高三普通高中毕业班5月质量检查文科数学试题(PDF版)
础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.满分 12 分. 解法一:(1)证明:取 ED 中点 H ,连接 AH , NH ……………………………………1 分
3.考试结束,考生必须将试题卷和答题卡一并交回.
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符
合题目要求的.
1.已知集合 A x 2x 1 3 , B x x2 x 2 0 ,则 A I B =
A. (2,1)
B. (1, 2)
2
2
(1)求抛物线 C 的方程及 t 的值;
(2)若过点 M (0,t) 的直线 l 与 C 相交于 A, B 两点, N 为 AB 的中点, O 是坐标原点,且 SDAOB = 3SDMON ,
-3-
求直线 l 的方程.
21. (12 分) 已知函数 f (x) = ax2ex - 1(a 0) . (1)求函数 f (x) 的单调区间;
ΔABC 的内角 A, B,C 的对边分别为 a,b,c ,已知 2a b 2ccos B , c 3 . (1)求角 C;
-2-
(2)延长线段 AC 到点 D,使 CD CB ,求 ABD 周长的取值范围.
18.(12 分) 如图,矩形 ABCD ^ 平面 BCE , AB = 1, BC = BE = 2 且 ? EBC
宁德市 2020 届普通高中毕业班第一次质量检查试卷
文科数学
本试卷共 5 页,满分 150 分. 注意事项:
1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题 卡上粘贴的“准考证号、姓名”与考生本人准考证号、姓名是否一致.

2020届宁德市普通高中毕业班5月质量检查试卷-文科数学

2020届宁德市普通高中毕业班5月质量检查试卷-文科数学

2020届宁德市普通高中毕业班质量检查试卷(5.4)文 科 数 学本试卷共 5 页。

满分 150 分。

注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在 答题卡上。

写在本试卷上无效。

3.考试结束,考生必须将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,(){}lg 1B x y x ==-,则AB =A .{}13x x <≤B .{}2x x ≥-C .{}1,2,3D .{}2,3 2.已知i 是虚数单位,复数3iiz +=,则z 的共轭复数z = A .13i - B .13i + C .13i -- D .13i -+ 3.已知向量,a b 的夹角为60︒,2=a ,1=b ,则2-=a bA .3B .2C .5D .4 4.设x ,y 满足约束条件10,240,0,0,x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩则2z x y =-的最大值为A .1-B .0C .4D .65.如图,网格纸上小正方形的边长为1,粗线画出的是 某几何体的三视图,则该几何体的表面积为A .30πB .24πC .15πD .9π{}23A x x =∈-≤≤Z6.已知(0,)θ∈π,2sin2cos21θθ=-,则cos θ=A .255B .55C .255-D .55-7.干支是天干(甲、乙、…、癸)和地支(子、丑、…、亥)的合 称,“干支纪年法”是我国传统的纪年法.如图是查找公历某年所 对应干支的程序框图.例如公元1988年,即输入1988N =,执行该程序框图,运行相应的程序,输出5x =,从干支表中查出对应 的干支为戊辰.我国古代杰出数学家祖冲之出生于公元429年, 则该年所对应的干支为 A. 己巳 B. 庚午 C. 壬戌 D. 癸亥8.在四面体ABC S -中,ABC SA 平面⊥,2,3====SA BC AC AB ,则该四面体的外 接球的半径为A .1B .3C .2D .4 9.已知函数||()e x f x =,13(log 2)a f =,(2)b f =,2(log 3)c f =,则A .c a b <<B .c b a <<C .a b c <<D .a c b << 10.已知函数π()sin()(0,)2f x ωx φωφ的最小正周期为π,且图象向右平移π12个单位后得到的函数为偶函数,则()f x 的图象 A .关于点5π(,0)12对称 B .关于直线π6x 对称 C .在单调递增 D .在π7π[,]1212单调递减 11.已知可导函数()f x 的定义域为R ,且满足(4)()f x f x +=-,(2)()0x f x '-<,则对任意的12x x <,“12()()f x f x <”是“124x x +<”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[,]1212π5π-开始输入N 是否输出x结束5 6 7 戊辰 己巳 庚午 58 59 60 辛酉壬戌癸亥12.已知双曲线C 的两个顶点分别为12,A A ,若C 的渐近线上存在点P ,使得12|||PA PA =,则C 的离心率的取值范围是A .(]1,3B .[)3,+∞C .(]1,2D .[)2,+∞二、填空题:本大题共4小题,每小题5分,共20分.13.若抛物线经过点11,2⎛⎫- ⎪⎝⎭,(2,2),则该抛物线的标准方程为_________.14.甲、乙两位同学玩“锤子、剪刀、布”游戏,两人各随机出锤子、剪刀、布中的一种.若 出相同则为平局;若出不同,则锤子胜剪刀、剪刀胜布、布胜锤子.玩一次该游戏,甲同学不输的概率为_________.15.在平面四边形ABCD 中,BC CD ⊥,135B ︒∠=,5AB AC CD ===,则AD =_________.16.已知函数22log ,0,()21,,x x a f x x x x a <<⎧⎪=⎨-+≥⎪⎩若存在实数m ,使得方程()0f x m -=有两个不相等的实数根,则a 的取值范围是_________.三、解答题:共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届宁德市普通高中毕业班质量检查试卷(5.4)
理 科 数 学
本试卷共23题,共150分,共6页. 注意事项:
1.答题前,考生务必将自己的姓名、准考号填写在答题卡上.考生要认真核对答题卡上粘贴的“姓名、准考证号、考试科目”与考生本人准考证号、姓名是否一致.
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.
3.考试结束,监考员将试题卷和答题卡一并交回 .
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要
求的.
1.设集合{|ln 0}A x x =<,{|1}B x x =≤-,则A B R I ð=
A .{|11}x x -<< B. {|01}x x << C. {|11}x x -≤< D. {|1}x x ≥ 2.设等差数列{}n a 的前n 项和为n S ,若33a =,713a =,则9S =
A .36
B .70
C .72
D .144
3.干支是天干(甲、乙、…、癸)和地支(子、丑、…、亥)的合 称,“干支纪年法”是我国传统的纪年法.如图是查找公历某年所 对应干支的程序框图.例如公元1988年,即输入1988N =,执行 该程序框图,运行相应的程序,输出5x =,从干支表中查出对应 的干支为戊辰.我国古代杰出数学家祖冲之出生于公元429年, 则该年所对应的干支为 A. 己巳 B. 庚午 C. 壬戌 D. 癸亥
4. ()5112x x ⎛⎫
+- ⎪⎝⎭
的展开式中,3x 的系数是
A .50-
B .30-
C .50
D .30
5.某几何体的三视图如图所示,则该几何体的体积为
A .3π
B .9π
C .12π
D .36π
六十干支表(部分)
正视图 侧视图
6.已知,02θ
π⎡⎫
∈-⎪⎢⎣⎭
2cos21θθ=+,则cos θ=
A .0
B .
1
2
C
D .0
7.在复平面内O 为坐标原点,复数
1i)z =,2z =对应的
点分别为1Z ,2Z ,则12Z OZ ∠的大小为
A .
512π B .12π C .712π D .1112
π 8.函数()ln 0f x ax x =-≥ ()a ÎR 恒成立的一个充分不必要条件是
A .1,e a ⎡⎫
∈+∞⎪⎢⎣⎭
B .[)0,a ∈+∞
C .[)1,a ∈+∞
D .(,e]a ∈-∞
9.已知O 为坐标原点,AB 是:C e 2
2
(3)(4)1x y -+-=的直径.若点Q 满足2OQ u u u v =,则QA QB ⋅u u u v u u u v

最小值为
A .2
B .3
C .8
D .15 10.方程()
22:2(1)(3)e e x x x x y ----=+的曲线有下列说法:
①该曲线关于2x =对称; ②该曲线关于点(2,1)-对称;
③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数. 其中正确的是
A .②③
B .①④
C .②④
D .①③
11.如图,四边形ABCD 为正方形,四边形EFBD 为矩形,
且平面ABCD 与平面EFBD 互相垂直.若多面体ABCDEF 的体积为
16
3
,则该多面体外接球表面积的最小值为 A .16π B .12π C .8π D .6π
12.双曲线22
22:1(0,0)x y C a b a b
-=>>的左、右焦点分别为1F ,2F ,O 为坐标原点.P 为
曲线C 右支上的点,点M 在12F PF ∠外角平分线上,且20F M PM ⋅=uuuu v uuu v
.若
2OF M ∆恰为顶角为120o
的等腰三角形,则该双曲线的离心率为 A .
B C .
2 D 二、填空题:本大题共4小题,每小题5分.
13.若抛物线经过点11,2⎛⎫
- ⎪⎝
⎭,(2,2),则该抛物线的标准方程为___________.
14.记n S 为正项数列{}n a 的前n 项和,212n n n a a a ++=⋅.若11a =,37S =,则5a =___________.
15.宁德市中学生篮球比赛中,右图为某球队8场比赛得分的茎叶
E
D
C
B
A F。

相关文档
最新文档