06JSIdentification of Typical Wine Aromas by Means of an Electronic Nose

合集下载

国外葡萄酒酒标内容详释

国外葡萄酒酒标内容详释

国外葡萄酒酒标内容详释时间:2007-12-01 来源:印刷英才网作者:向问天个别而言,一瓶葡萄酒的内容是很复杂的。

光是由栽种品种同化、酿制、陈年,无一不是学问。

要从头至尾的做一个全盘体味绝非短时辰可以办到。

以产葡萄酒世界之大,举凡酒庄之美,产物种类之多样,品种之特点,地形与天气之影响,在掌控了酒之质感,我们可以其葡萄酒瓶上所贴的标签——内容有酒厂名、酒庄名称、葡萄品种、制作商、产区名称、口胃、酒精浓度及容量等等,来窥其堂奥,虽不能说可以很深切的了然,却也是一种了了的指标。

下有列国分歧酒标的内容,以供您参考对照:西班牙酒标1.酒厂名;2.酒名;3.葡萄品种;4.酒厂自行生产装瓶;5.生产者的名称及地址;6.酒精浓度;7.酒产区名称;8.容量;9.酿酒葡萄采收的年份;10.暗示已经过一年橡木桶两年瓶中储存德国酒标1.葡萄酒产区名称;2.酿酒葡萄采收的年份;3.葡萄品种(最少操作85%的Riesling品种);4.采用晚播种葡萄酿的酒;5.半乾口胃;6.葡萄来自的庄园;7.属特级良质酒,简称Qmp,比Qba等第高;8.政府检定的号码;9.装上;10.葡萄酒庄;11.酒精浓度;12.酒精浓度;13.容量;14.装瓶者及其地址匈牙利酒标1.德文的匈牙利;2.酿酒葡萄采收的年份;3.是酒名也是产区名;4.正常的采收期;5.德文的甜味;6.酒精浓度;7.容量;8.英文的甜味美国酒标1.酒厂名;2.酿酒葡萄采收的年份;3.葡萄品种;4.产地名称;5.酒精浓度葡萄牙酒标1.绿酒之意,是一种酸度高、平平、微带汽泡的白酒,因酒质年轻时会带一点绿色反光,所以称绿酒凡是酒精度不高;2.酿酒葡萄采收的年份;3.白酒;4.酒庄名称;5.暗示酒庄装瓶的酒;6.经销者;7.产区名,位于葡萄牙西北部MINHO省;8.容量;9.葡萄牙生产;10.酒精浓度奥地利酒标1.酒名;2.酒庄名称;3.葡萄品种名;4.酿酒葡萄采收的年份;5.酒产区名称;6.酒的分级制,与德国事一样的;7.国家的检定号码;8.酒精浓度;9.是“乾”型的口胃;10.装瓶者及其地址;11.奥地利的德文写法;12.容量澳洲酒标1.MAGILCELLARS酒庄名;2.葡萄品种,澳洲酒凡是是单一品种酿酒,若是操作两种以上的葡萄酿酒,则把操作最高的品种写在前,再写少的,以此类推;3.酿酒葡萄采收的年份;4.容量意大利酒标1.生产者的名称;2.酿酒葡萄采收的年份;3.是酒名也是产区名;4.即D.O.C.G.暗示此酒经试饮管制委员会保障其品德更佳,超出D.O.C.;5.暗示由BaroneRicasoli装瓶;6.酒精浓度;7.容量智利酒标1.最好品德年份酒;2.酒庄名称;3.1880年设立此酒庄;4.酿酒葡萄采收的年份;5.葡萄品种;6.位于智利的梅波谷地(MAIPOValley)酒区,是智利最小也最驰名的酒产区;7.容量;8.申明此酒完整由酒装自行生产,装瓶及外销;9.酒精浓度南非酒标1.酒产区是Stellenbosch;2.酒庄的标识表记标帜;3.私人酒庄的名称;4.酿酒葡萄采收的年份;5.葡萄品种;6.私人酒庄生产的酒;7.Bergkelder公司的标识表记标帜;8.由南非生产及装瓶;9.申明该瓶酒由Meerlus私人酒庄生产及酿造却是由Stellenbosch酒区Bergkelder公司储存、装瓶、发卖;10.容量;11.酒精浓度法国香槟区酒标1.表以特级葡萄园在好年份时制作的;2.法国香槟区产的葡萄酒;3.酒商名称;4.产区名称;5.容量;6.“乾”型口胃;7.酒精浓度;8.生产者名称地址及答应号码法国波尔多酒标1.产区名称;2.该瓶酒属夜之丘区;3.采用老葡萄树生产的葡萄来酿制该瓶酒;4.特等葡萄园;5.生产者的Bachelet自力酒厂;6.生产者的地址;7.生产者装瓶;8.外销酒规定表明“法国生产”字样;9.容量;10.酒精浓度法国布根地酒标1.产区名称;2.该瓶酒属夜之丘区;3.采用老葡萄树生产的葡萄来酿制该瓶酒;4.特等葡萄园;5.生产者的Bachelet自力酒厂;6.生产者的地址;7.生产者装瓶;8.外销酒规定表明“法国生产”字样;9.容量;10.酒精浓度。

财政部酒品认证标志评审基准-葡萄酿造酒解析

财政部酒品认证标志评审基准-葡萄酿造酒解析

財政部酒品認證標誌評審基準-葡萄釀造酒1 目的本基準係為了辦理財政部酒品認證標誌而制訂,其目的在於規範葡萄釀造酒製造業之製造、包裝及儲運等過程中,有關人員、建築、設施、設備之設置以及衛生、製程及品質等管理作業,均能符合良好衛生規範,以防範在不衛生條件、可能引起污染或品質劣化之環境下作業,並減少作業錯誤之發生及建立健全的自主管理體系,以確保葡萄釀造酒產品之安全衛生及穩定品質。

2 適用範圍本基準適用於經財政部核准設立之酒製造業者自行發酵、產製並經完整包裝之葡萄釀造酒產品。

3 專門用詞定義3.1 酒類:係指含酒精成分以容量計算超過0.5%之飲料、其他可供製造或調製上述飲料之食用酒精及其他製品。

3.1.1 酒品:指包含酒類原料、半成品暨成品。

3.1.2葡萄釀造酒:採用葡萄或葡萄汁為主原料(糖度需達12o Brix以上),經酒精發酵釀製而成者,且不得使用或添加食用酒精。

3.2 酒醪:自發酵起至發酵完成之物料。

3.3 熟成:葡萄釀造酒貯存在特定的容器中,或以人工熟成的方法,進行物理與化學變化,達到使酒質醇熟、酒味柔和適口的過程。

3.4 勾兌:把不同批次、不同等級或不同品種的同一類型的酒,按不同比例勾兌調配而達到符合同一規格,保持成品酒一定風格的釀酒專門技術。

3.5 原材料:指原料及包裝材料。

3.5.1 原料:係指構成成品可食部分之原料,包括主原料、副原料及食品添加物。

3.5.1.1 主原料:係指構成成品之主要原料,在此以葡萄或葡萄汁為主。

3.5.1.2 副原料:係指主原料和食品添加物以外之構成成品的次要原料,如糖類。

3.5.1.3 食品添加物:係指食品在製造、加工、調配、包裝、運送、貯存等過程中,用以著色、調味、防腐、漂白、乳化、增加香味、安定品質、促進發酵、增加稠度(甚至凝固)、增加營養、防止氧化或其他用途而添加或接觸於食品之物質。

其中可用於酒品者,須符合法規規定之使用範圍及限量標準。

3.6.2 包裝材料:包括內包裝材料及外包裝材料。

葡萄酒中文标签制作要求示范

葡萄酒中文标签制作要求示范
CHATEAU BEHERE

பைடு நூலகம்
理由或依据:将产品类型放在品 名中,企业需承担符合性检测不 合格更改品名的风险。 注意事项:外文与中文同时使用 时外文字体不大于相应的中文。 避免使用注册商标。
二、原料与辅料(必标):葡萄汁, 二氧化硫 修改:无 理由或依据:《卫生部办公厅关 于预包装饮料酒标签标识有关问 题的复函》(卫办监督函 〔2012〕851号):2013年8月 1日前可标示为二氧化硫或微量 二氧化硫 ;2013年8月1日以后 生产、进口的使用食品添加剂二 氧化硫的葡萄酒,应当标示为二 氧化硫,或标示为微量二氧化硫 及具体添加量。 注意事项:不要写成原料与配料。
七、酒精度(必标) :13% vol 修改:无 理由或依据:GB2758-2012: 酒精度单位需标示为% vol (小写字母,中间不要空格) (强制实施日期为20130801) 注意事项:% VOL × (不允许字母大写) % V/V ×
八、灌装日期(必标):2012年05月 26日 修改:无 。 理由或依据:《卫生部办公厅关 于预包装饮料酒生产日期标注问 题的复函》(卫办监督函〔2012〕 470号)预包装饮料酒标签生产日 期可以标示为生产日期、包装日 期、灌装日期或包装(灌装)日 期。日期格式参照GB7718-2011 附录。 注意事项:保质期标示,酒精度 在10%vol以上饮料酒豁免标示。
十三、净含量(必标) :750ml 修改:无 理由和依据:净含量标示参 照GB 7718-2011 注意项:1、字体高度≥4毫米 2、净含量计量单位的标示方式:
计量方 式 净含量(Q)的范围 计量单位
体积
Q < 1000 mL
Q ≥ 1000 mL Q < 1000 g

商标审查标准 英文

商标审查标准 英文

商标审查标准英文Trademark Examination Standards。

In the field of intellectual property, trademarks play a crucial role in distinguishing the goods or services of one company from those of others. As such, the examination of trademark applications is a critical step in the process of protecting the rights of trademark holders. In this document, we will explore the standards and criteria used in the examination of trademarks, focusing on the key factors that examiners consider when evaluating trademark applications.Distinctiveness。

One of the primary considerations in the examination of a trademark is its distinctiveness. A trademark must be capable of distinguishing the goods or services of one company from those of others. In general, trademarks that are inherently distinctive, such as coined words or arbitrary terms, are more likely to be approved than descriptive or generic marks. Examiners will assess the degree of distinctiveness of a trademark to determine its eligibility for registration.Likelihood of Confusion。

酒标上的英语

酒标上的英语

酒标上的英语品种(Variety) 酿造葡萄酒所使用的葡萄的种类。

年标(Vintage)葡萄采摘和酿制葡萄酒的年份。

Tannins - 单宁单宁主要源于葡萄皮和葡萄籽轻微的苦涩味。

单宁不会总被品尝出来,但却在舌间展示了为葡萄酒建立着结构。

例如,柔软。

单宁之所以赋予葡萄酒的结构是因为他们具有天然抗氧化防腐作用,对酒的陈年作用具有着决定性。

oxidized - 氧化葡萄酒充分与空气(氧气)接触,因此改变葡萄酒香气及味道。

当小部分氧气接触是有好处的(Decanting - 特意氧化),接触的太多就是不利的。

被氧化的葡萄酒缺乏果味,有些微苦味道。

Malolactic Fermentation 〈马洛拉克梯克〉发酵再二次发酵,酸的味道,经过转变苹果酸而变柔和,乳酸味。

它也会由于酿酒师而改变。

herbaceous - 香料味的味道如绿色香料。

多数葡萄品种的酒有香料味被认为是不好的。

无论,一些像苏维翁这样的葡萄品种一般展示一些特有的被认同的香料味道。

Finish - 余味见Afterntaste - 回味Fermentation - 发酵当葡萄汁转变为葡萄酒的过程。

酵母稀释了葡萄糖份和产生的二氧化碳。

酿酒师对温度的控制影响着发酵速度。

发酵速度慢对白葡萄酒的水果味道十分重要。

enology - 葡萄酒酿造学酿造葡萄酒的学问Decanting - 特意氧化轻轻把红葡萄酒从酒瓶倒入一个专门氧化酒的玻璃壶(Decanter)中的过程。

一个Decanter有一点像一个花瓶在下面比较宽。

倒入有两个用途,尽量把沉淀物留到最后能分出来。

其二在Decanter里葡萄酒跟空气接触的面积比较大,酒会稍微氧化一点。

特别是成熟的、存过橡木桶里的葡萄酒这样才会完全展示她们的果味。

D.O.C. / D.O.C.G.- 保证及控制来源命名D.O.C的意思是Denominazioned’Origine Controllata.是意大利体系取缔了大约250个葡萄酒区,规定严密的地理区域,允许葡萄在区域生长,等等.D.O.C.G.是Denominazione di Origine Controllata e Garantita是在一些高品质区域的更严密的体系。

葡萄酒果酒通用分析方法

葡萄酒果酒通用分析方法

葡萄酒果酒通用分析方法前言本规范是对GB/T 15038-1994«葡萄酒、果酒通用实验方法»的修订。

本规范替代GB/T 15038-1994。

本规范与原规范GB/T 15038-1994的主要变化如下:——将酒精度剖析方法中的密度瓶法调整为第一法;气相色谱法改为第二法;酒精计法仍为第三法;——添加了柠檬酸、甲醇的剖析方法;——增补了防腐剂的剖析方法;——去掉了总糖测定中的液相色谱法;——总酸测定中电位滴定法滴定终点pH=9.0改为pH=8.2;——挥发酸测定中修正方法做了适当修正;——将〝葡萄酒中的糖分和无机酸的测定〔HPLC法〕〞作为资料性附录放在附录D中;——将〝葡萄酒中白藜芦醇的测定〞作为资料性附录放在附录E中;——将〝葡萄酒、山葡萄酒感官评分细那么规范用语〞作为资料性附录放在附录F中。

本规范的附录A、附录B、附录C为规范性附录,附录D、附录E、附录F为资料性附录。

本规范由中国轻工业结合会提出。

本规范由全国食品工业规范化技术委员会酿酒分技术委员会归口。

本规范起草单位:中国食品发酵工业研讨院、烟台张裕葡萄酿酒、中法合营王朝葡萄酿酒、中国长城葡萄酒、国度葡萄酒质量监视检验中心、新天国际葡萄酒业股份。

本规范主要起草人:郭新光、马佩选、任一平、王晓红、张春娅、王焕香、黄百芬。

葡萄酒、果酒通用剖析方法1范围本规范规则了葡萄酒、果酒产品检验的基本原那么和剖析方法。

本规范适用于葡萄酒、果酒产品的剖析。

2规范性援用文件以下文件中的条款经过本规范的援用而成为本规范的条款。

凡是注日期的援用文件,其随后一切的修正单〔不包括修订的内容〕或修订版均不适用于本规范,但是,鼓舞依据本规范达成协议的各方研讨能否可运用这些文件的最新版本。

凡是不注日期的援用文件,其最新版本适用于本规范。

GB/T 601 化学试剂滴定剖析〔容量剖析〕用规范溶液的制备GB/T 602 化学试剂杂质测定用规范溶液的制备GB/T 603 化学试剂实验方法中所用制剂及制品的制备3感官剖析3.1 原理感官剖析系指评价员经过用口、眼、鼻等觉得器官反省产品的感官特性,即对葡萄酒、果酒产品的色泽、香气、滋味及典型性等感官特性停止反省与剖析评定。

葡萄酒标识规定协议(中文版)

葡萄酒标识规定协议(中文版)

世界葡萄酒贸易集团葡萄酒标识规定协议堪培拉,2007年1月23日本协议缔约方:根据2001年12月18日在多伦多签署并于2002年12月1日生效的酿酒工艺互认协议(以下称作:互认协议)之第6款第2条(内容),互认协议各方同意通过谈判订立关于标识方面的协议:根据(葡萄酒)行业于2000年10月5日在加州索诺玛针对《葡萄酒标签规定》达成的《声明原则》;各缔约方承认在拥有权力的同时,也承担着规范葡萄酒标示的国际义务,尤其是在预防使用欺骗性标示和保护消费者健康安全方面更承担着责任;(缔约方)承诺在葡萄酒标签内容中向消费者提供充分(准确)信息;各缔约方承认各方的本国法律都有其正常的管理规定;也意识到有关葡萄酒标识中存在的不同管理规定,增加了葡萄酒国际贸易的复杂性和成本;希望根据1994年4月15日世贸组织《马拉喀什协议》(以下简称世贸协议)重申各自的权力和义务,并根据这些权力和义务规定,在葡萄酒贸易中避免不必要的障碍;并希望通过采纳葡萄酒标识通用规定,促进葡萄酒国际贸易;达成如下协议:第一部分总则第1款定义下列定义将适用于本协议中:(a)“通用强制性标识信息”指第11款中指出的:原产国、产品名称、净含量、及实际酒精含量;(b)达到“一致通过”,指根据理事会规定程序通知要求,没有任何(缔约)方在会议过程中对所提出决议、建议、或认识正式提出反对意见,及在会议完成之日起45天内向理事会主席就相关决议、建议、或认识备案提出反对意见的情况;(c)“理事会”,指根据本协议第14款内容,(由缔约相关方)建立的缔约方理事会;(d)“标签”,指任何写在、印刷在、喷刷、标示在、拷花在、铭刻在葡萄酒容器上,或固定在葡萄酒容器上的品牌、标示、标记、图案或其他描述性事物;(e)“国家强制性标识信息”,指由进口方强制要求的常用强制信息之外的标识性息;(f)“视线范围”指不包括底部和瓶盖在内、无需转动葡萄酒容器可以看到的葡萄酒容器上的视线范围;(g) “葡萄酒”指按照出口方的规范机制所许可的酿造工艺,仅采用鲜葡萄、葡萄汁、或其他鲜葡萄制成品作为原料进行部分或完全的酒精发酵而产生的饮品,其酒精体积百分比含量在7%至24%之间;(h)“WWTG”指世界葡萄酒贸易集团。

信息价值度与酒类产品介绍英译

信息价值度与酒类产品介绍英译

信息价值度与酒类产品介绍英译作者:洪秀琴来源:《科教导刊》2009年第15期摘要本文对照英语国家酒类产品介绍的特点,通过案例剖析,对中文酒类产品介绍的英译文从信息价值度方面作尝试性的探讨。

文章指出酒类产品介绍英译应以目的语读者对该文体的心理期待为导向,对原文信息和文化因素进行取舍、编辑等处理。

关键词信息信息价值酒类产品介绍目的语读者中图分类号:H315.9文献标识码:A1 信息类型与信息价值英国当代翻译理论家纽马克(Newmark)把文本分为了三种类型: 表达型(expressive)、信息型(informative)和诱导型(vocative),同时他主张不同的文体文本翻译应该采取不同的翻译策略。

根据这个分类,酒类产品介绍属于信息型和诱导型文本,主要以目的语文化为归属,注重读者的理解和反应,因此在表达方式、格式措辞等方面要尽可能地符合该文体在目的语文化中的使用习惯(Newmark, 1988:50-51)。

曾利沙(2005)区分了事实性信息、描述性信息、评价性信息、文化信息、召唤性信息、美学信息、风格信息、提示性信息等八种信息类型。

酒类产品介绍翻译属于对外宣传翻译的范畴,具有很强的目的性。

曾利沙(2006)认为,对外宣传翻译应根据不同海外受众群体的特殊需求、兴趣和接受心理,对不同类型宣传材料中具有关联性的信息文字进行有理据的操作性调节,予以相应的突出,使关联性信息的价值度较高,非关联性信息被弱化或虚化。

2 英语酒类产品介绍的特点细心的消费者不难发现近年来很多国内的酒类产品都配有英文的产品介绍文字,同时在各厂家的网站上也有对应的英文版,成为开辟海外市场的一个有利工具。

但是仔细阅读这些产品介绍英译文,读者会发现其中存在着各种问题,其作用可能适得其反。

笔者搜集、总结了二十篇英语酒类产品介绍之后,发现其主要是事实性信息和呼唤性信息,篇幅相对简短,口语化的语言简洁易懂,使读者读来有一种如生活中与人对话的感觉,这样的产品介绍无形中拉近了与潜在消费者的心理距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Identification of Typical Wine Aromas by Means of an Electronic NoseJesús Lozano,JoséPedro Santos,Manuel Aleixandre,Isabel Sayago,Javier Gutiérrez,and Maria Carmen HorrilloAbstract—In the field of electronic noses (e-noses),it is not very usual to find many applications to wine detection.Most of them are related to the discrimination of wines in order to prevent their illegal adulteration and detection of off-odors,but their objective is not the identification of wine aromas.In this paper,an appli-cation of an e-nose for the identification of typical aromatic com-pounds present in white and red wines is shown.The descriptors of these compounds are fruity,floral,herbaceous,vegetative,spicy,smoky,and microbiological,and they are responsible for the usual aromas in wines;concentrations differ from2–8the threshold concentration humans can smell.Some of the measured aromas are pear,apple,peach,coconut,rose,geranium,cut green grass,mint,vanilla,clove,almond,toast,wood,and butter.Principal compo-nent analysis and linear discriminant analysis show that datasets of these groups of compounds are clearly separated,and a com-parison among several types of artificial neural networks has been also performed.The results confirm that the system has good per-formance in the classification of typical red and white wine aromas.Index Terms—Aromatic compounds,pattern recognition tech-niques,thin film gas sensors,wine.I.I NTRODUCTIONTHE detection of aroma and the quality control of food-stuffs and beverages can be assessed by different analyt-ical methods for the identification of the organoleptic properties of the products.In fact,the classical methods of chemical anal-ysis,such as gas and liquid chromatography,mass spectrometry,nuclear magnetic resonance,and spectrophotometry,are highly reliable and suitable for these purposes,but these analytical techniques are of high cost,long processability,and low in situ and online measurableness.Although the human nose is very complex,several attempts to develop new electronic instrumen-tation capable of mimicking its remarkable ability have been performed successfully.In this way,several electronic noses (e-noses)have been used to assess the smell of various indus-trial products,such as ham [1],fish [2],olive oil [3],cheese [4],milk [5],fruit [6],beer [7],vinegar [8],coffee [9],etc.A design of a multisensor array combined with pattern recognition tech-niques has been proposed to identify and classify the chemical compounds or aromas added to the wine samples.Manuscript received November 26,2004;revised February 10,2005.This work was supported by the Spanish Science and Technology Ministry under the project TIC2002-04588-C02-01.The associate editor coordinating the review of this paper and approving it for publication was Prof.Krishna Persaud.The authors are with the Laboratorio de Sensores,Instituto de Física Aplicada,Consejo Superior de Investigaciones Científicas (IFA-CSIC),28006Madrid,Spain (e-mail:jesloz@ifa.cetef.csic.es;josepe@ifa.cetef.csic.es;manuel@ifa.cetef.csic.es;sayago@ifa.cetef.csic.es;javiergutierrez@ifa.cetef.csic.es;carmenhorrillo@ifa.cetef.csic.es).Digital Object Identifier 10.1109/JSEN.2005.854598TABLE IC HEMICAL C OMPOUNDS AND A ROMAS A DDED TO THE W HITE WINETABLE IIC HEMICAL C OMPOUNDS AND A ROMAS A DDED TO THE R ED WINEThe multivariate response of the sensors with broad and par-tially overlapping selectivities can be utilized as an “electronic fingerprint”to characterize a wide range of odors or volatile compounds by means of pattern-recognition techniques.During the last few years,e-noses have been developed as an alternative method to perform this aromatic analysis [10]–[12].II.E XPERIMENTALA.Wine SamplesA total of 16aromas have been analyzed:eight in white wine and eight in red wine.The measured aromas are the most common ones in white and red wines.The chemical compounds responsible of these aromas are dissolved in the same wine at concentrations from2–8the threshold concentration that humans can smell [13],[14].In Tables I and II,the chemical compounds and aromas added to white and red wines measured with the e-nose are shown.The white base wine comes from Malvar grapes and the red base wine comes from Tempranillo variety.Both white and red wines have been elaborated in the Instituto Madrileño de Investigaciones Agroalimentarias (IMIA),Madrid,Spain,with1530-437X/$20.00©2005IEEEFig.1.Measurement setup.1:Nitrogen bottle.2:Massflowmeter controller.3:Electrovalves.4:Dreschell bottle with sample in a thermostatic bath.5:Sensors cell.6:PC.7:DMM with multiplexer.grapes from the Madrid region.All compounds were of analyt-ical quality and were provided by Merck and Sigma-Aldrich.B.Electronic NoseAn e-nose based on a tin oxide–array has been used for mea-suring wine samples using headspace analysis.The e-nose usedhas been home fabricated and home developed for wine aromapurposes[15].The sensor array was prepared by RF sputteringonto alumina substrate.The array was formed by16thinfilmsensors with thicknesses between200and800nm.Some sen-sors were doped with chromium and indium either as surface orintermediate layer.The operating temperature of the sensors iscontrolled at250C with a PID regulator.The array was placedin a stainless-steel cell with a heater and a thermocouple.The main components of the measurement setup are shownin Fig.1.The carrier gas used had99.998%nitrogen purity.Gas line tubes were of stainless steel covered with fused silicain order to minimize gas adsorption in the line.The samplingmethod employed was static headspace followed by a dynamicinjection.Ten milliliters of solution are kept in a50-ml Dreschelbottle at30C for30min.Then,the electrovalves are switchedand nitrogenfluxes for20min carrying the volatile compoundsto the sensor cell.Then,the electrovalves are switched again toallow the sensors to recover the baseline.This procedure is re-peated several times for each compound.Sensors are calibratedonce a week with a blank solution[12%(v/v)ethanol in deion-ized water]in order to reduce the drift of the sensors[16].Mea-surements are carried out at a total gasflow of200ml/min.The resistance of the sensors was measured with a Keithley270071/2digits digital multimeter(DMM)with a40-channelmultiplexer connected to the personal computer through a GPIBinterface.The measurement system was fully automated andcontrolled with a program developed at Testpoint.Responses of the individual sensors are defined relative tothe minimum resistance to12%(v/v)of ethanol for all themeasurementswhere is the minimum resistance of the sensor in the mea-surement of wineand is the minimum resistance ofthe sensor in a solution of12%of ethanol.The data collected were analyzed by means of patternrecognition techniques using a commercial software package(Matlab6.1)for linear methods,such as principal componentanalysis(PCA)and linear discriminant analysis(LDA),and fornonlinear methods based on artificial neural networks(ANNs),such as perceptron,backpropagation,and probabilistic neuralnetworks.There are many possible linear techniques for the analysis ofdata:PCA and LDA are two commonly used linear techniquesfor dimensionality reduction and visualization of datasets.Theprime difference between LDA and PCA is where PCA seeksdirections that are efficient for representation,LDA seeks direc-tions that are efficient for discrimination.In PCA,the shape andlocation of the original datasets change when transformed to adifferent space and LDA tries to provide major class separabilityand draw a decision region between the given classes.PCA is a signal representation technique that applies a lineartransformation to the data and results in a new space of variablescalled principal components.PCA reduces the dimensionalityof feature space by restricting attention to those directions alongwhich the scatter of the cloud datapoints is greatest[17].Usu-ally,thefirst two components carry most of the information ofthe old variables.LDA is a signal-classification technique that directly maxi-mizes class separatibility,generating projections where the ex-amples of each class form compact clusters and the differentclusters are far from each other.These projections are alterna-tively defined by thefirst eigenvectors of thematrix,whereand are the within-class and between-class co-variance matrices,respectively[17].LDA maximizes the ratio of between-class variance to thewithin-class variance in any particular dataset,thereby guaran-teeing maximal separability.The discrimination of the tested wines belonging to thesame class has been tackled with a pattern recognizer based onANN providing nonlinearity in the multivariate classificationperformance.Three types of neural networks have been testedfor the classification of the wine aroma.Perceptron network,LOZANO et al.:IDENTIFICATION OF TYPICAL WINE AROMAS BY MEANS OF AN ELECTRONIC NOSE175Fig.2.Typical time responses of four of the 16sensors to white wine.feedforward fully connected network using the backpropaga-tion learning algorithm,and probabilistic networks based on radial basis transfer functions have been used to determine the best classi fication.The perceptron network consists of a single layer of nine per-ceptron neurons connected to the inputs through a set of weights.The perceptron learning rule is capable of training only a single layer.This restriction imposes limitations on the computation a perceptron can perform.The weights of the neurons can be adapted on an iteration-by-iteration basis.For the adaptation,we used an error-correction rule known as the perceptron con-vergence algorithm [18].The backpropagation network architecture is formed by three layers:the input layer has 16neurons corresponding to the 16sensors,a variable number in the hidden layer,and nine neurons in the output layer,the same number of existing classes.A probabilistic neural network PNN composed of three layers,with radial basis transfer functions in the hidden layer and a competitive one in the output [16],was used for classi fi-cation purposes.Leave-one-out (LOO)cross validation was applied to check the performance of the network [19].LOO consists oftraining distinct nets (in thiscase,is number of measurements)byusing training vectors,while the validation of the trained network is carried out by using the remaining vector,excluded from the training set.This procedure isrepeated times until all vectors are validated [20].III.R ESULTS AND D ISCUSSIONFig.2shows the typical transient responses of four chemor-resistive sensors,operating at 250C exposed to an aroma of the white wine.The array was cyclically exposed to 20-min pulses of the tested wine flavor followed by 40-min nitrogen purges.The measurements were repeated at least eight times for each tested wine sample.As it can be noticed,the electrical resistance (sensor signal)of each sensor downshifts upon exposure of the examined wine samples and returns to baseline level when ni-trogen is switched again into sensor test cells to recover them.The sensor responses are fast and reproducible with acceptablenoise.Fig.3.Polar plot of multisensor response to typical white winearomas.Fig.4.Polar plot of multisensor response to typical red wine.A feature extraction is performed on the data stored on the hard disk.The minimum value of the resistance when sensors are exposed to the wine sample is divided by the resistance of the sensors to a 12%sample of ethanol in order to obtain the vectors of each aromatic compound.A polar plot of the average signals of the sensors for eight aromatic compounds in white and red wines is shown in Figs.3and 4,respectively,in terms of relative resistance changes.The contour of these polar plots differs from one sample to another,illustrating the discrimination capabilities of the array.A.Principal Component AnalysisThe PCA for the aromatic compounds in white and red wines is shown in Figs.5and 6,respectively.The percentage of vari-ance explained by each principal component is in brackets.As is shown in Fig.5,all clusters are well separated.The cluster corresponding to white wine is clearly separated among the other aromatic compounds.In the case of red wine,all clusters are well separated.In this case,the base wine is more separated than the case of the white wine,but some of the other clusters are closer.This measuring system permits us to classify the signals in separate clusters and to discriminate one set from the others.176IEEE SENSORS JOURNAL,VOL.6,NO.1,FEBRUARY2006Fig.5.PCA plot of multisensor response to typical white winearomas.Fig.6.PCA plot of multisensor response to typical red wine aromas.B.Linear Discriminant AnalysisThe LDA plot for the aromatic compounds in white and red wines is shown in Figs.7and 8,respectively.The clusters of datasets are separated.C.Neural Networks AnalysisPCA results are con firmed with a more powerful pattern-recognition method:ANN.To classify the measurements we have used three types of neural networks:perceptron,backprop-agation,and probabilistic networks.1)Perceptron Networks:The results of the classi fication made with the perceptron network are shown in Tables III and IV .The classi fication success for the aromas is 98%for white wine and 90%for red wine.2)Backpropagation Networks:In the training of feed-for-ward networks,several number of neurons in the hiddenlayerFig.7.LDA of multisensor response to typical white winearomas.Fig.8.LDA of multisensor response to typical red wine aromas.have been tested.The optimal number turned out to be 14neu-rons.The results of the classi fication made with the multilayer perceptron network using the backpropagation learning algo-rithm and 14neurons in the hidden layer are shown in Tables III and IV .The classi fication success is 100%for the aromas in white and red wine.3)Probabilistic Networks:Probabilistic neural network analysis shows an overall 100%classi fication success for the aromas in white wine and 98%success for the aromas in red wine;the confusion matrix for those measurements is shown in Tables III and IV .In this application,the use of more complicated and powerful feature extraction methods that consider the dynamic informa-tion of the curve is not necessary because good results in the classi fication have been obtained (almost 100%with different neural networks)by using a simpler feature extraction method,but it could be very useful in far more complicated applications.LOZANO et al.:IDENTIFICATION OF TYPICAL WINE AROMAS BY MEANS OF AN ELECTRONIC NOSE 177TABLE IIIC ONFUSION M ATRIX OF THE P ERCEPTRON (P),B ACKPROPAGATION (BP),AND P ROBABILISTIC (PR)N ETWORKS FOR T YPICAL A ROMATIC C OMPOUNDS IN W HITE WINETABLE IVC ONFUSION M ATRIX OF THE P ERCEPTRON (P),B ACKPROPAGATION (BP),AND P ROBABILISTIC (PR)N ETWORKS FOR T YPICAL A ROMATIC C OMPOUNDS IN R ED WINEIV .C ONCLUSIONAn e-nose has been realized for purposes of recognition of typical aromas in white and red wines.The headspace technique has been used for extracting the aromatic compounds dissolved in wine.The signals recorded from the multisensor array ex-posed to the aroma of the wine samples have been used for dis-criminating the main aroma of the wine through PCA as linear explorative techniques and dimensionality reduction.In addition,a comparison between several neural networks has been performed.A nonlinear pattern-recognition system based on perceptron,backpropagation,and radial-basis neural networks has been trained for the identi fication of aromatic compounds added to wine.The best classi fication was obtained by backpropagation with 100%classi fication success followed by probabilistic neural networks with 99%,although the time of training is much lower than in that of the probabilistic network.The lower success obtained by the perceptron network is due to the limitation of being a one-layer network.In conclusion,this study successfully demonstrates the fea-sibility of an e-nose as an analytical tool for the recognition of aromatic compounds added to white and red wines by using a nonlinear pattern recognition system based on ANNs.A CKNOWLEDGMENTThe authors would like to thank the Instituto Madrile ño de Investigaciones Agroalimentarias for the wine samples.R EFERENCES[1]M.Garc ía,M.C.Horrillo,J.P.Santos,M.Aleixandre,I.Sayago,M.J.Fern ández,L.Ar és,and J.Guti érrez,“Arti ficial olfactory system for the classi fication of Iberian hams,”Sens.Actuators B ,vol.96,pp.621–629,2003.[2]G.Olafsdottir et al.,“Multisensor for fish quality determination,”TrendsFood Sci.Technol.,vol.15,pp.86–93,2004.[3] A.Taurino,S.Capone,C.Distante,M.Epifani,R.Rella,and P.Sicil-iano,“Recognition of olive oils by means of an integrated sol-gel SnO electronic nose,”Thin Solid Films ,vol.418,pp.59–65,2002.[4]J.Bargon et al.,“Determination of the ripening state of emmentalcheese via quartz microbalances,”Sens.Actuators B ,vol.95,pp.6–19,2003.[5]K.Brudzewski,S.Osowski,and T.Markiewitcz,“Classi fication of milkby means of an electronic nose and SVM neural network,”Sens.Actua-tors B ,vol.98,pp.291–298,2004.[6]S.Saevels,mmertyn,A.Berna,E.Veraverbeke,C.Di Natale,andB.M.Nicola ï,“An electronic nose and a mass spectrometry-based elec-tronic nose for assessing apple quality during shelf life,”Postharvest Biol.Technol.,vol.31,pp.9–19,2004.[7] magna,S.Reich,D.Rodriguez,and N.N.Scoccola,“Performanceof an e-nose in hops classi fication,”Sens.Actuators B ,vol.102,pp.278–283,2004.[8] E.Anklam,M.Lipp,B.Radovic,E.Chiavaro,and G.Palla,“Character-ization of Italian vinegar by pyrolysis-mass spectrometry and a sensor device (‘electronic nose ’),”Food Chem.,vol.61,pp.243–248,1998.[9]M.Pardo,G.Niederjaufner,G.Benussi,ini,G.Faglia,G.Sberveglieri,M.Holmberg,and I.Lundstrom,“Data preprocessing enhances the classi fication of different brands of espresso coffee with an electronic nose,”Sens.Actuators B ,vol.69,pp.397–403,2000.[10] A.Guadarrama,J.A.Fern ández,M.I ñiguez,J.Souto,and J.A.de Saja,“Array of conducting polymer sensors for the characterization of wines,”Anal.Chim.Acta ,vol.411,pp.193–200,2000.178IEEE SENSORS JOURNAL,VOL.6,NO.1,FEBRUARY 2006[11]M.Penza and G.Cassano,“Chemometric characterization of Italianwines by thin-film multisensors array and arti ficial neural networks,”Food Chem.,vol.86,pp.283–296,2004.[12]J.P.Santos,T.Arroyo,M.Aleixandre,J.Lozano,I.Sayago,M.Garc ía,M.J.Fern ández,L.Ar és,J.Guti érrez,J.M.Cabellos,M.Gil,and M.C.Horrillo,“A comparative study of sensor array and GC-MS:applica-tion to Madrid wines characterization,”Sens.Actuators B ,vol.102,pp.299–307,2004.[13]V .Ferreira,R.Lopez,and J.F.Cacho,“Quantitative-determination ofthe odorants of young red wines from different grape varieties,”J.Sci.Food Agric.,vol.80,pp.1659–1667,2000.[14]P.X.Etievant,Volatile Compounds in Food ,H.Maarse,Ed.New York:Marcel-Dekker,1991,p.483.[15]J.P.Santos,J.Lozano,M.Aleixandre,I.Sayago,M.J.Fern ández,L.Ar és,J.Guti érrez,and M.C.Horrillo,“Discrimination of different aro-matic compounds in water,ethanol and wine with a thin film sensor array,”Sens.Actuators B ,vol.103,pp.98–103,2004.[16]R.Gutierrez-Osuna,“Pattern analysis for machine olfaction:a review,”IEEE Sensors J.,vol.2,no.3,pp.189–202,Jun.2002.[17]R.O.Duda,P.E.Hart,and D.G.Stork,Pattern Classification .NewYork:Wiley,2001,pp.115–120.[18]S.Haykin,Neural Networks:A Comprehensive Foundation .UpperSaddle River,NJ:Prentice-Hall,1999,pp.135–143.[19] B.G.M.Vandeginste,D.L.Massart,L.M.C.Buydens,S.de Jong,P.J.Lewi,and J.Smeyers-Verbeke,Handbook of Chemometrics and Qualimetrics:Part B .New York:Elsevier,1998,pp.238–239.[20] C.M.Bishop,Neural Networks for Pattern Recognition .Oxford,U.K.:Oxford Univ.Press,1999.Jes ús Lozano received the B.Sc.degree in electronic engineering from the Universidad Complutense de Madrid,Madrid,Spain,in 2001.He is currently pursuing the Ph.D.degree in e-noses for analysis of wines at the Laboratorio de Sensores,Consejo Superior de Investigaciones Cient íficas (CSIC),Madrid.His research interests include arti ficial olfactory systems,pattern recognition techniques,aroma extraction techniques applied to e-noses,instru-mentation and measurement systems,and chemicalsensors.Jos éPedro Santos received the B.Sc.and Ph.D.de-grees in physics from the Universidad Complutense de Madrid,Madrid,Spain,in 1987and 1995,respec-tively.He was with the University of Milan,Milan,Italy,at the Institute of Advanced Materials of the European Commission ’s Joint Research Centre,Ispra,Italy,and with the Electronics Department of the Universidad Complutense de Madrid.Currently,he is with the Instituto de Fisica Aplicada of the Consejo Superior de Investigaciones Cienti ficas(IFA-CSIC),Madrid,where he works on several projects related to the devel-opment of sensors for volatile compound and pollutantdetection.Manuel Aleixandre received the B.Sc.degree in physics from the Universidad Autonoma of Madrid,Madrid,Spain,in 1999.He is currently pursuing the Ph.D.degree at the Instituto de Fisica Aplicada of the Consejo Superior de Investigaciones Cienti ficas (IFA-CSIC),Madrid.His research interests include neural networks,sta-tistics,multivariate data analysis,and characteriza-tion of surfaces with AFM.At present,his main field of research is the development of fiber-opticsensors.Isabel Sayago received the Ph.D.degree from the Universidad Complutense de Madrid,Madrid,Spain,in 1993.Currently,she works on chemical sensors at the Laboratorio de Sensores,Instituto de Fisica Aplicada of the Consejo Superior de Investigaciones Cienti ficas (IFA-CSIC),Madrid.She has worked on microsensors at the CNR-LAMEL Institute,Bologna,Italy.Her main research interests are in the preparation and characterization of gas sensors (chemoresistive,SAW,andcantilevers).Javier Guti érrez received the Ph.D.degree in physics from the Universidad Complutense de Madrid,Madrid,Spain,in 1977.At present,he is the Director of the Instituto de Fisica Aplicada of the Consejo Superior de Inves-tigaciones Cienti ficas (IFA-CSIC),Madrid.His re-search interest is in chemical sensors,including semi-conductor sensors,gravimetric sensors and optoelec-tronic devices applied to arti ficial olfactometrics for environmental monitoring,consumer protection,and the safety ofaliments.Maria Carmen Horrillo received the Ph.D.degree in chemistry from the Universidad Complutense de Madrid,Madrid,Spain,in 1992.From 1993to 1995,she was with the Institute for Advanced Materials of the European Commission ’s Joint Research Centre,Ispra,Italy.Since then,she has been with the Instituto de Fisica Aplicada of the Consejo Superior de Investigaciones Cienti ficas (IFA-CSIC),Madrid,where she works on I +D of chemical microsensors and e-noses for environ-mental protection and the quality control of foods.Since 1999,she has been the Head of the Department of Tecnolog ía de Gases y Super ficies.。

相关文档
最新文档