动量守恒板块模型习题课
高三物理选修3-5第十六章动量守恒定律第四节碰撞板块模型专题专项训练习题集 无答案

高三物理动量守恒定律第四节碰撞板块模型专题专项训练习题集【典题强化】1.如图所示,一大小可忽略不计、质量为m1的小物体放在质量为m2的长木板的左端,长木板放在光滑的水平面上。
现让m1获得向右的速度v0,若小物体最终没有从长木板上滑落,两者间的动摩擦因数为μ。
求:(1)长木板最终的速度(2)上述过程中长木板在水平面上滑行的距离(3)上述过程经历的时间多长(4)长木板的长度至少是多少2.如图所示,质量为M=8kg的木板,放在水平地面上,木板向右运动的速度v0=5m/s时,在木板前端轻放一个大小不计,质量为m=2kg的小物块。
木板与地面、物块与木板间的动摩擦因数均为μ=0.2,g=10m/s2,求:(1)物块及木板的加速度大小(2)经多长时间两者速度相等(3)要使物块不滑离木板,木板至少多长3.如图所示,长2m,质量为2kg的木板静止在光滑水平面上,一木块质量为1kg(可视为质点),与木板之间的动摩擦因数为0.2。
要使木块在木板上从左端滑向右端而不至滑落,试求:(1)木块初速度的最大值为多少(2)若原来木块静止木板向左运动,则木板运动的最大初速度4.如图所示,图(a)表示光滑平台上,物体A以初速度v0滑到上表面粗糙的水平小车上,车与水平面间的动摩擦因数不计,图(b)为物体A与小车B的v-t图像,由此可以求得的物理量是()A.小车上表面长度B.物体A与小车B的质量之比C.A与小车B上表面的动摩擦因数D.小车B获得的动能5.如图甲所示,质量为M的木板静止在光滑水平面上,一个质量为m的小滑块以初速度v0从木板的左端向右滑上木板。
滑块和木板速度随时间变化的图象如图乙所示,某同学根据图象作出如下一些判断,正确的是()A.滑块与木板间始终存在相对运动B.滑块始终未离开木板C.滑块的质量大于木板的质量D.在t1时刻滑块从木板上滑出6.如图所示,平板车的质量为M,物块的质量为m。
它们的速度分别为V1、V2且V2>V1,V1与V2都是相对于地面的速度。
物理 性必修第一册第1章 动量守恒定律专题课:“子弹打木块”模型和“滑块—木板”模型导学案含答案

2023-2024(上)全品学练考高中物理选择性必修第一册第1章动量守恒定律专题课:“子弹打木块”模型和“滑块—木板”模型学习任务一“子弹打木块”模型[模型建构]模型图示模型特点(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两种情景(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒:mv0=(m+M)v能量守恒:Q=F f·x=12m v02-12(M+m)v2(2)子弹穿透木块动量守恒:mv0=mv1+Mv2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)例1一质量为M的木块放在光滑的水平面上,一质量为m的子弹以初速度v0水平打进木块并留在其中.设子弹与木块之间的相互作用力大小为F f.(1)子弹、木块相对静止时的速度为多大?(2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中,子弹、木块发生的位移以及子弹打进木块的深度分别为多少?(4)系统损失的机械能、系统增加的内能分别为多少?(5)要使子弹不射出木块,木块至少为多长?变式1如图所示,木块静止在光滑水平面上,两颗不同的子弹A、B从木块两侧同时射入木块,最终都停在木块内,这一过程中木块始终保持静止.若子弹A射入的深度大于子弹B射入的深度,则()A .子弹A 的质量一定比子弹B 的质量大B .入射过程中子弹A 受到的阻力比子弹B 受到的阻力大C .子弹A 在木块中运动的时间比子弹B 在木块中运动的时间长D .子弹A 射入木块时的初动能一定比子弹B 射入木块时的初动能大变式2 如图所示,A 、B 两个木块用弹簧连接,它们静止在光滑水平面上,A 和B 的质量分别为99m 和100m.一颗质量为m 的子弹以速度v 0水平射入木块A 内没有穿出,则在之后的运动过程中弹簧的最大弹性势能为多少?学习任务二 “滑块—木板”模型[模型建构]模型 图示模型 特点(1)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能.(2)若滑块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大. 求解 方法 (1)求速度:根据动量守恒定律求解,研究对象为一个系统;(2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q=F f Δx 或Q=E 初-E 末,研究对象为一个系统.例2 如图所示,质量m=4 kg 的物体,以水平速度v 0=5 m/s 滑上静止在光滑水平面上的平板小车,小车质量M=6 kg,物体与小车车面之间的动摩擦因数μ=0.3,g 取10 m/s 2,设小车足够长,求:(1)小车和物体的共同速度; (2)物体在小车上滑行的时间;(3)在物体相对小车滑动的过程中,系统产生的摩擦热.变式3 如图所示,在光滑水平地面上固定足够高的挡板,距离挡板s=3 m 处静止放置质量M=1 kg 、长L=4 m 的小车,一质量m=2 kg 的滑块(可视为质点)以v 0=6 m/s的初速度滑上小车左端,带动小车向右运动,小车与挡板碰撞时被粘住不动,已知滑块与小车表面间的动摩擦因数μ=0.2,g取10 m/s2.(1)求滑块与小车的共同速度大小;(2)当滑块与小车共速时,小车与挡板的距离和滑块与小车右端的距离分别为多少?(3)若滑块与挡板碰撞时为弹性碰撞,求全过程中滑块克服摩擦力做的功.例3 (多选)[2022·浙江学军中学月考] 如图所示,质量为8m,长度一定的长木板放在光滑的水平面上,质量为m,可视为质点的物块放在长木板的最左端,质量为m的子弹以水平向右的速度v0射入物块且未穿出(该过程的作用时间极短可忽略不计),经时间t0物块以v0的速度离开5长木板的最右端,重力加速度为g,则下列说法正确的是()A.长木板最终的速度大小为v010B.长木板的长度为5v0t016m v02C.子弹射入物块的过程中损失的机械能为920D.物块与长木板间的动摩擦因数为3v010gt01.(子弹打木块模型)(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v水平射向滑块,若射击下层,子弹刚好不射出.若射击上层,则子弹刚好能射进一半厚度,如图所示,上述两种情况相比较()A.子弹损失的动能一样多B.子弹射击上层时,从射入到共速所经历时间较长C.系统产生的热量一样多D.子弹与上层摩擦力较大2.(滑块—木板模型)(多选)[2022·厦门双十中学月考] 如图甲所示,一长木板静止于光滑水平桌面上,t=0时,小物块以速度v0滑到长木板上,图乙为物块与木板运动的v-t图像,图中t1、v0、v1已知,重力加速度大小为g,由此可求得()A.木板的长度B.物块与木板的质量之比C.物块与木板之间的动摩擦因数D.从t=0开始到t1时刻,木板获得的动能3.(动量综合应用)如图所示,一质量m1=0.45 kg的平顶小车静止在光滑的水平轨道上.质量m2=0.5 kg的小物块(可视为质点)静止在车顶的右端.一质量为m0=0.05 kg的子弹、以水平速度v0=100 m/s射中小车左端并留在车中,最终小物块相对地面以2 m/s的速度滑离小车.已知子弹与车的作用时间极短,物块与车顶面的动摩擦因数μ=0.8,认为最大静摩擦力等于滑动摩擦力.g取10 m/s2,求:(1)子弹相对小车静止时小车速度的大小;(2)小车的长度L.[反思感悟]专题课:“子弹打木块”模型和“滑块—木板”模型例1(1)mM+m v0(2)Mmv0F f(M+m)(3)Mm(M+2m)v022F f(M+m)2Mm2v022F f(M+m)2Mmv022F f(M+m)(4)Mmv022(M+m)Mmv022(M+m)(5)Mmv022F f(M+m)[解析] (1)设子弹、木块相对静止时的速度为v,以子弹初速度的方向为正方向,由动量守恒定律得mv0=(M+m)v解得v=mM+mv0(2)设子弹在木块内运动的时间为t,对木块,由动量定理得F f t=Mv-0解得t=Mmv0F f(M+m)(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示.对子弹,由动能定理得-F f x 1=12mv 2-12m v 02解得x 1=Mm (M+2m )v 022F f (M+m )2对木块,由动能定理得F f x 2=12Mv 2 解得x 2=Mm 2v 022F f (M+m )2子弹打进木块的深度等于相对位移的大小,即x 相=x 1-x 2=Mmv 022F f(M+m ) (4)系统损失的机械能为E损=12m v 02-12(M+m )v 2=Mmv 022(M+m )系统增加的内能为Q=F f ·x 相=Mmv 022(M+m )系统增加的内能等于系统损失的机械能(5)假设子弹恰好不射出木块,有F f L=12m v 02-12(M+m )v 2解得L=Mmv 022F f(M+m )因此木块的长度至少为Mmv 022F f(M+m )变式1 D [解析] 由于木块始终保持静止状态,则两子弹对木块的推力大小相等,即两子弹所受的阻力大小相等,设为F f ,根据动能定理得,对子弹A 有-F f d A =0-E k A ,得E k A =F f d A ,对子弹B 有-F f d B =0-E k B ,得E k B =F f d B ,由于d A >d B ,则有子弹射入时的初动能E k A >E k B ,故B 错误,D 正确.两子弹和木块组成的系统动量守恒,则有√2m A E kA =√2m B E kB ,而E k A >E k B ,则m A <m B ,故A 错误.子弹A 、B 从木块两侧同时射入木块,木块始终保持静止,分析得知,两子弹在木块中运动的时间必定相等,否则木块就会运动,故C 错误. 变式21400m v 02[解析] 子弹射入木块A 的极短时间内,弹簧未发生形变(实际上是形变很小,忽略不计),设子弹和木块A 获得共同速度v ,由动量守恒定律得mv 0=(m+99m )v之后木块A (含子弹)开始压缩弹簧推动B 前进,当A 、B 速度相等时,弹簧的压缩量最大,设此时弹簧的弹性势能为E p ,A 、B 的共同速度为v 1,对A (含子弹)、B 组成的系统,由动量守恒定律得(m+99m )v=(m+99m+100m )v 1由机械能守恒定律得12(m+99m )v 2=12(m+99m+100m )v 12+E p联立解得E p =1400m v 02.例2 (1)2 m/s (2)1 s (3)30 J[解析] (1)小车和物体组成的系统动量守恒,规定向右为正方向,则mv 0=(m+M )v解得v=mv 0m+M =4×54+6 m/s =2 m/s(2)物体在小车上做匀减速直线运动 根据牛顿第二定律可知-μmg=ma 解得a=-μg=-3 m/s 2则物体在小车上滑行的时间为t=v -v 0a=2-5-3s =1 s(3)根据能量守恒定律,系统产生的摩擦热为ΔQ=12m v 02-12(m+M )v 2=12×4×52 J -12×(4+6)×22 J =30 J变式3 (1)4 m/s (2)1 m 1 m (3)36 J[解析] (1)设滑块与小车的共同速度为v 1,二者相对运动过程中根据动量守恒定律,有mv 0=(M+m )v 1 解得v 1=4 m/s(2)设达到共速时小车移动的距离为s 1,对小车,根据动能定理有μmgs 1=12M v 12-0代入数据解得s 1=2 m小车与挡板的距离s 2=s-s 1=1 m设滑块与小车的相对位移为L 1,对系统,根据能量守恒定律,有μmgL 1=12m v 02-12(m+M )v 12代入数据解得L 1=3 m滑块与小车右端的距离L 2=L-L 1=1 m 其位置情况如图乙所示(3)共速后小车未碰撞挡板时小车与滑块间的摩擦力消失而没有做功,如图丙所示.直到小车碰撞挡板被粘住静止,滑块又开始在小车上继续向右做初速度v 1=4 m/s 的匀减速直线运动,由于与挡板发生弹性碰撞,滑块速度大小不变,设返回的路程为L 3,由动能定理,有-μmg (L 2+L 3)=0-12m v 12解得L 3=3 m,说明滑块不会从车左端掉下 全过程中滑块克服摩擦力做的功 W=μmg (L+s 1-L 2)+μmg (L 2+L 3)=36 J .例3 BD [解析] 子弹、物块、木板整个系统,整个过程根据动量守恒定律,有mv 0=2m ·v 05+8m ·v ,求得长木板最终的速度大小为v=340v 0,故A 错误;子弹射入物块的过程中,时间极短.子弹及物块根据动量守恒定律有mv 0=2m ·v',求得v'=v02,该过程系统损失的机械能为ΔE=12m v 02-12·2mv'2,联立两式可求得ΔE=14m v 02,故C 错误;子弹射入物块后到从长木板滑离时,运动的位移大小为x 1=v t 0=v '+25v 02=(v 02+v 05)2t 0=720v 0t 0,长木板滑动位移大小为x 2=v2t 0=340v 02t 0=380v 0t 0,则长木板的长度为L=x 1-x 2=516v 0t 0,故B 正确;对长木板,整个过程根据动量定理有μ·2mgt 0=8mv ,可求得物块与长木板间的动摩擦因数为μ=3v10gt 0,故D 正确.随堂巩固1.ACD [解析] 子弹射入滑块的过程中,将子弹和滑块看成一个整体,合外力为0,动量守恒,所以两种情况下子弹和滑块的最终速度相同,所以末动能相同,故系统损失的动能一样多,产生的热量一样多,A 、C 正确;子弹射击滑块上层能射进一半厚度,射击滑块下层刚好不射出,说明在上层所受的摩擦力比下层大,根据动量定理可知,两种情况下滑块对子弹的冲量相同,子弹射击上层所受摩擦力大,所以从入射到共速经历的时间短,B 错误,D 正确.2.BC [解析] 木板在光滑水平桌面上,物块滑上木板后,系统动量守恒,由图像可知,最终物块与木板以共同速度v 1运动,有mv 0=(M+m )v 1,-μmg Δx=12(M+m )v 12-12m v 02,Δx=(v 0+v 12-v 12)t 1,可求出物块与木板的质量之比及物块与木板之间的动摩擦因数,但求不出木板的长度,A 错误,B 、C 正确;由于木板质量未知,故不能求出木板获得的动能,D 错误. 3.(1)10 m/s (2)2 m[解析] (1)子弹进入小车的过程中,子弹与小车组成的系统动量守恒,由动量守恒定律得 m 0v 0=(m 0+m 1)v 1 解得v 1=10 m/s .(2)三物体组成的系统动量守恒,由动量守恒定律得 (m 0+m 1)v 1=(m 0+m 1)v 2+m 2v 3 解得v 2=8 m/s由能量守恒可得12(m 0+m 1)v 12=μm 2gL+12(m 0+m 1)v 22+12m 2v 32解得L=2 m .专题课:“子弹打木块”模型和“滑块—木板”模型建议用时:40分钟1.(多选)[2022·北京西城区期中] 如图,一表面光滑的平板小车放在光滑水平面上,木块和轻弹簧置于小车表面,轻弹簧一端与固定在小车上的挡板连接,整个装置静止.一颗子弹以一定速度水平射入木块,留在木块中并与木块一起向前滑行,与弹簧接触后压缩弹簧.不计挡板与弹簧质量,弹簧始终在弹性限度内.下列说法正确的是 ( )A .子弹射入木块过程中,子弹与木块组成的系统动量及机械能均守恒B .子弹和木块一起压缩弹簧过程中,子弹、木块、小车组成的系统动量及机械能均守恒C .整个过程,子弹、木块、小车组成的系统所损失的机械能等于子弹与木块摩擦产生的热量及弹簧的弹性势能之和D .其他条件不变时,若增大小车的质量,弹簧的最大压缩量增大2.(多选)如图所示,小车在光滑的水平面上向左运动,木块水平向右在小车的水平车板上运动,且未滑出小车.下列说法中正确的是 ( )A .若小车的初动量大于木块的初动量,则木块先减速运动再加速运动后匀速运动B .若小车的初动量大于木块的初动量,则小车先减速运动再加速运动后匀速运动C .若小车的初动量小于木块的初动量,则木块先减速运动后匀速运动D .若小车的初动量小于木块的初动量,则小车先减速运动后匀速运动 3.(多选)[2022·湖南常德期中] 质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.重力加速度为g ,设碰撞都是弹性的,则整个过程中,系统损失的动能为 ( )A .12mv 2B .12·mMm+Mv 2C .12NμmgLD .NμmgL4.如图所示,质量为2 kg 的小车以2.5 m/s 的速度沿光滑的水平面向右运动,现在小车上表面上方1.25 m 高度处将一质量为0.5 kg 的可视为质点的物块由静止释放,经过一段时间物块落在小车上,最终两者一起水平向右匀速运动.重力加速度g 取10 m/s 2,忽略空气阻力,下列说法正确的是 ( )A .物块释放0.3 s 后落到小车上B .若只增大物块的释放高度,则物块与小车的共同速度变小C .物块与小车相互作用的过程中,物块和小车的动量守恒D.物块与小车相互作用的过程中,系统损失的能量为7.5 J5.长木板A放在光滑的水平面上,质量为m=2 kg的另一物体B以水平速度v0=2 m/s滑上原来静止的长木板A的上表面,由于A、B间存在摩擦,之后A、B速度随时间变化情况如图所示,重力加速度g取10 m/s2.则下列说法正确的是()A.木板获得的动能为2 JB.系统损失的机械能为4 JC.木板A的最小长度为2 mD.A、B间的动摩擦因数为0.16.[2022·江苏镇江期中] 质量为m的子弹以某一初速度v0击中静止在水平地面上质量为M的木块,并陷入木块一定深度后与木块相对静止,甲、乙两图表示了这一过程开始和结束时子弹和木块可能的相对位置,设地面粗糙程度均匀,木块对子弹的阻力大小恒定,则下列说法中正确的是()A.无论m、M、v0的大小和地面粗糙程度如何,都只可能是甲图所示的情形B.若M较大,则可能是甲图所示情形;若M较小,则可能是乙图所示情形C.若v0较小,则可能是甲图所示情形;若v0较大,则可能是乙图所示情形D.若地面较粗糙,则可能是甲图所示情形;若地面较光滑,则可能是乙图所示情形7.[2022·石家庄二中月考] 如图所示,一轻质弹簧两端分别连着质量均为m的滑块A和的子弹以水平速度v0射入A中不再穿出B,两滑块都置于光滑的水平面上.今有质量为m4(时间极短),则弹簧在什么状态下滑块B具有最大动能?其值是多少?8.[2022·杭二中月考] 如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4.质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),重力加速度g取10 m/s2.子弹射入后,求:(1)子弹和物块一起向右滑行的最大速度v1;(2)木板向右滑行的最大速度v2;(3)物块在木板上滑行的时间t.专题课:“子弹打木块”模型和“滑块—木板”模型建议用时:40分钟1.(多选)[2022·北京西城区期中] 如图,一表面光滑的平板小车放在光滑水平面上,木块和轻弹簧置于小车表面,轻弹簧一端与固定在小车上的挡板连接,整个装置静止.一颗子弹以一定速度水平射入木块,留在木块中并与木块一起向前滑行,与弹簧接触后压缩弹簧.不计挡板与弹簧质量,弹簧始终在弹性限度内.下列说法正确的是()A.子弹射入木块过程中,子弹与木块组成的系统动量及机械能均守恒B.子弹和木块一起压缩弹簧过程中,子弹、木块、小车组成的系统动量及机械能均守恒C.整个过程,子弹、木块、小车组成的系统所损失的机械能等于子弹与木块摩擦产生的热量及弹簧的弹性势能之和D.其他条件不变时,若增大小车的质量,弹簧的最大压缩量增大2.(多选)如图所示,小车在光滑的水平面上向左运动,木块水平向右在小车的水平车板上运动,且未滑出小车.下列说法中正确的是()A.若小车的初动量大于木块的初动量,则木块先减速运动再加速运动后匀速运动B.若小车的初动量大于木块的初动量,则小车先减速运动再加速运动后匀速运动C.若小车的初动量小于木块的初动量,则木块先减速运动后匀速运动D .若小车的初动量小于木块的初动量,则小车先减速运动后匀速运动 3.(多选)[2022·湖南常德期中] 质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.重力加速度为g ,设碰撞都是弹性的,则整个过程中,系统损失的动能为 ( )A .12mv 2B .12·mMm+Mv 2C .12NμmgLD .NμmgL4.如图所示,质量为2 kg 的小车以2.5 m/s 的速度沿光滑的水平面向右运动,现在小车上表面上方1.25 m 高度处将一质量为0.5 kg 的可视为质点的物块由静止释放,经过一段时间物块落在小车上,最终两者一起水平向右匀速运动.重力加速度g 取10 m/s 2,忽略空气阻力,下列说法正确的是 ( )A .物块释放0.3 s 后落到小车上B .若只增大物块的释放高度,则物块与小车的共同速度变小C .物块与小车相互作用的过程中,物块和小车的动量守恒D .物块与小车相互作用的过程中,系统损失的能量为7.5 J5.长木板A 放在光滑的水平面上,质量为m=2 kg 的另一物体B 以水平速度v 0=2 m/s 滑上原来静止的长木板A 的上表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图所示,重力加速度g 取10 m/s 2.则下列说法正确的是( )A .木板获得的动能为2 JB .系统损失的机械能为4 JC .木板A 的最小长度为2 mD.A、B间的动摩擦因数为0.16.[2022·江苏镇江期中] 质量为m的子弹以某一初速度v0击中静止在水平地面上质量为M的木块,并陷入木块一定深度后与木块相对静止,甲、乙两图表示了这一过程开始和结束时子弹和木块可能的相对位置,设地面粗糙程度均匀,木块对子弹的阻力大小恒定,则下列说法中正确的是()A.无论m、M、v0的大小和地面粗糙程度如何,都只可能是甲图所示的情形B.若M较大,则可能是甲图所示情形;若M较小,则可能是乙图所示情形C.若v0较小,则可能是甲图所示情形;若v0较大,则可能是乙图所示情形D.若地面较粗糙,则可能是甲图所示情形;若地面较光滑,则可能是乙图所示情形7.[2022·石家庄二中月考] 如图所示,一轻质弹簧两端分别连着质量均为m的滑块A和的子弹以水平速度v0射入A中不再穿出B,两滑块都置于光滑的水平面上.今有质量为m4(时间极短),则弹簧在什么状态下滑块B具有最大动能?其值是多少?8.[2022·杭二中月考] 如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4.质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),重力加速度g取10 m/s2.子弹射入后,求:(1)子弹和物块一起向右滑行的最大速度v1;(2)木板向右滑行的最大速度v2;(3)物块在木板上滑行的时间t.专题课:“子弹打木块”模型和“滑块—木板”模型1.CD [解析] 子弹射入木块并留在木块中,子弹与木块组成的系统受合外力等于零,因此动量守恒,因子弹与木块是完全非弹性碰撞,机械能减少最多,即机械能不守恒,A 错误;子弹和木块一起压缩弹簧过程中,子弹、木块、小车组成的系统受合外力等于零,动量守恒,由于压缩弹簧,即对弹簧做功,弹簧的弹性势能增加,子弹、木块、小车组成的系统机械能减少,机械能不守恒,B 错误;由能量守恒定律可知,整个过程,子弹、木块、小车组成的系统所损失的机械能等于子弹与木块摩擦产生的热量及弹簧的弹性势能之和,C 正确;设子弹的质量为m 1,速度为v 0,木块的质量为m ,小车的质量为M ,子弹射入木块后速度为v 1,向右为正方向,由动量守恒定律可得m 1v 0=(m 1+m )v 1,解得v 1=m 1vm 1+m ,此后对子弹、木块、小车组成的系统,规定向右为正方向,由动量守恒定律可得(m 1+m )v 1=(m 1+m+M )v 2,由机械能守恒定律可得12(m 1+m )v 12-12(m 1+m+m )v 22=E pm ,联立解得弹簧的弹性势能为E pm =m 12v 022(m 1+mM+1)(m 1+m ),由此可见其他条件不变时,若增大小车的质量,弹簧的弹性势能增大,弹簧的最大压缩量增大,D 正确.2.AC [解析] 小车和木块组成的系统在水平方向上不受外力,系统在水平方向上动量守恒,若小车的初动量大于木块的初动量,则最后相对静止时整体的动量方向向左,木块先减速运动再反向加速运动后匀速运动,小车先减速运动再匀速运动,故A 正确,B 错误;同理若小车的初动量小于木块的初动量,则最后相对静止时整体的动量方向向右,则木块先减速运动后匀速运动,小车先减速运动再加速运动后匀速运动,C 正确,D 错误.3.BD [解析] 设物块与箱子相对静止时共同速度为v 1,则由动量守恒定律得mv=(M+m )v 1,得v 1=mvM+m ,系统损失的动能为ΔE k 系=12mv 2-12(M+m )v 12=Mmv 22(M+m ),A错误,B 正确.根据能量守恒定律得知,系统产生的内能等于系统损失的动能,根据功能关系得知,系统产生的内能等于系统克服摩擦力做的功,则有Q=ΔE k 系=NμmgL.C 错误,D 正确. 4.D [解析] 物块下落的时间为t=√2ℎg =√2×1.2510s=0.5 s,A 错误;物块与小车相互作用的过程中,物块与小车组成的系统在水平方向的动量守恒,在竖直方向的动量不守恒,由水平方向动量守恒得Mv 0=(M+m )v ,可知,释放高度变大,水平方向的共同速度不变,B 、C 错误;在整个过程中,由能量守恒定律得系统损失的机械能ΔE=mgh+12M v 02-12(M+m )v 2,代入数据可得ΔE=7.5 J,D 正确.5.D [解析] 由题图可知,最终木板获得的速度为v=1 m/s,A 、B 组成的系统动量守恒,以B 的初速度方向为正方向,由动量守恒定律得mv 0=(M+m )v ,解得M=2 kg,则木板获得的动能为E k =12Mv 2=12×2×12 J =1 J,故A 错误;系统损失的机械能ΔE=12m v 02-12(m+M )v 2,代入数据解得ΔE=2 J,故B 错误;v-t 图像中图线与t 轴所围的面积表示位移,由题图得到0~1 s 内B 的位移为x B =12×(2+1)×1 m =1.5 m,A 的位移为x A =12×1×1 m =0.5 m,则木板A 的最小长度为L=x B -x A =1 m,故C 错误;由题图可知,B 的加速度a=Δv Δt=1-21m/s 2=-1 m/s 2,负号表示加速度的方向,由牛顿第二定律得-μmg=ma ,解得μ=0.1,故D 正确.6.A [解析] 在子弹射入木块的瞬间,子弹与木块间的摩擦力远远大于木块与地面间的摩擦力,故地面光滑与粗糙效果相同,子弹和木块构成一系统,在水平方向上合外力为零,在水平方向上动量守恒,规定向右为正方向,设子弹与木块的共同速度为v ,根据动量守恒定律有mv 0=(m+M )v ,木块在水平面上滑行的距离为s ,子弹射入并穿出木块的过程中对木块运用动能定理得F f s=12Mv 2=Mm 2v 022(m+M )2,根据能量守恒定律得Q=F f d=12m v 02-12(m+M )v 2=Mmv 022(M+m ),则d>s ,不论速度、质量大小关系和地面粗糙程度如何,都只可能是甲图所示的情形,故选A . 7.当弹簧第一次恢复原长时281m v 02[解析] 子弹射入A 中时,因时间极短,且A 与B 用弹簧相连,故可认为B 未参与此过程,则子弹与A 组成的系统动量守恒.设子弹与A 的共同速度为v A ,则有m4v 0=(m +m4)v A 解得v A =v05此后,弹簧被压缩,B 加速,当弹簧再次恢复原长时,弹簧的弹性势能为零,B 有最大速度v B m ,即有最大动能E km .此过程相当于以速度v A 运动的滑块A (内含子弹)与静止滑块B 发生弹性碰撞,应用弹性正碰的结论,有v B m =2(m+m4)m+m+m 4·v05=29v 0 E km =12m (29v 0)2=281m v 02.8.(1)6 m/s (2)2 m/s (3)1 s[解析] (1)子弹射入物块后和物块一起向右滑行的初速度即最大速度,由动量守恒定律得m 0v 0=(m 0+m )v 1, 解得v 1=6 m/s .(2)当子弹、物块、木板三者共速时,木板的速度最大,由动量守恒定律得(m 0+m )v 1=(m 0+m+M )v 2, 解得v 2=2 m/s .(3)对物块和子弹组成的系统,由动量定理得-μ(m 0+m )gt=(m 0+m )v 2-(m 0+m )v 1, 解得t=1 s .。
动量守恒定律在板块模型中的应用

动量守恒定律在板块模型中的应用【题型1】如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:(1)物块在车面上滑行的时间t ;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v 0′不超过多少. 【答案】(1)0.24 s (2)5 m/s【解析】(1)设物块与小车共同速度为v ,以水平向右为正方向,根据动量守恒定律有:m 2v 0=(m 1+m 2)v设物块与车面间的滑动摩擦力大小为f ,对物块应用牛顿运动定律有:f =m 2·v 0-v t ,又f =μm 2g ,解得t =m 1v 0μm 1+m 2g, 代入数据得t =0.24 s.(2)要使物块恰好不从车面滑出,须使物块到达车面最右端时与小车有共同的速度,设其为v ′,则m 2v 0′=(m 1+m 2)v ′,由功能关系有:12m 2v 0′2=12(m 1+m 2)v ′2+μm 2gL代入数据解得v 0′=5 m/s ,故要使物块不从车右端滑出,物块滑上小车左端的速度v 0′不超过5 m/s.【题型2】如图所示,一质量为M 、长为l 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A ,m <M .现以地面为参考系,给A 和B 以大小相等、方向相反的初速度,使A 开始向左运动、B 开始向右运动,但最后A 刚好没有滑离B 板.若已知A 和B 的初速度大小为v 0.求:(1)它们最后的速度的大小和方向; (2)木块与木板间的动摩擦因数μ.【答案】(1)M -m M +m v 0,水平向右 (2)2Mv 02M +m gL【解析】(1)系统水平方向动量守恒,取水平向右为正方向.木块A 不滑离B 板的条件是二者最终处于相对静止,设此时共同速度为v .由动量守恒定律得:Mv 0-mv 0=(M +m )v 可得:v =M -mM +m v 0因为M >m ,故v 方向水平向右.(2)木块和木板损失的机械能转化为内能,根据能量守恒定律,有μmgl =12mv 02+12Mv 02-12(M+m )v 2解得:μ=2Mv 02M +m gl【题型3】如图所示,甲车的质量是2 kg ,静止在光滑水平面上,上表面光滑,右端放一个质量为1 kg 的小物体,乙车质量为4 kg ,以5 m/s 的速度向左运动,与甲车碰撞以后甲车获得8 m/s 的速度,物体滑到乙车上,若乙车足够长,上表面与物体的动摩擦因数为0.2,则物体在乙车上表面滑行多长时间相对乙车静止?(g 取10 m/s 2)【题型3】【答案】0.4 s 【解析】乙与甲碰撞动量守恒 m 乙v 乙=m 乙v 乙′+m 甲v 甲′ 得v 乙′=1 m/s小物体在乙上滑动至有共同速度v ,对小物体与乙车运用动量守恒定律得 m 乙v 乙′=(m +m 乙)v 得v =0.8 m/s对小物体应用牛顿第二定律得 a =μg =2 m/s 2 所以t =v μg代入数据得t =0.4 s.【题型4】如图所示,在光滑水平面上有一辆质量M =8 kg 的平板小车,车上有一个质量m =1.9 kg 的木块,木块距小车左端6 m(木块可视为质点),车与木块一起以v =1 m/s 的速度水平向右匀速行驶,一颗质量m 0=0.1 kg 的子弹以v 0=179 m/s 的初速度水平向左飞来,瞬间击中木块并留在其中,如果木块刚好不从车上掉下来,求木块与平板小车之间的动摩擦因数μ.(g =10 m/s 2,不计空气阻力)【题型4】【答案】0.54【解析】设子弹射入木块后两者的共同速度为v 1,以水平向左为正方向,则由动量守恒有: m 0v 0-mv =(m +m 0)v 1 解得v 1=8 m/s由它们恰好不从平板小车上掉下来可知,它们相对平板小车滑行距离x =6 m 时它们跟小车具有相同速度v 2,则由动量守恒有(m +m 0)v 1-Mv =(m +m 0+M )v 2 解得v 2=0.8 m/s由能量守恒有μ(m 0+m )gx =12(m +m 0)v 21+12Mv 2-12(m 0+m +M )v 22代入数据解得μ=0.54.【题型5】如图所示,光滑水平面上放置质量均为M =2 kg 的甲、乙两辆小车,两车之间通过一感应开关相连(当滑块滑过感应开关时,两车自动分离).其中甲车上表面光滑,乙车上表面与滑块P 之间的动摩擦因数μ=0.5.一根通过细线(细线未画出)拴着而被压缩的轻质弹簧固定在甲车的左端,质量为m =1 kg 的滑块P (可视为质点)与弹簧的右端接触但不相连,此时弹簧储存的弹性势能E 0=10 J ,弹簧原长小于甲车长度,整个系统处于静止.现剪断细线,求:(g =10 m/s 2)(1)滑块P 滑上乙车前瞬间速度的大小;(2)要使滑块P 恰好不滑离小车乙,则小车乙的长度至少为多少? 【题型5】【答案】(1)4 m/s (2)53m【解析】(1)设滑块P 滑上乙车前的速度为v 0,小车的速度为v ,选甲、乙和P 为系统,对从滑块P 开始运动(初状态)到滑上乙车前(末状态)的过程,应用动量守恒有 mv 0-2Mv =0在这个过程中系统的机械能守恒,有 E 0=12mv 20+12×2Mv 2联立两式解得:v 0=4 m/s 同时可得v =1 m/s(2)设滑块P 到达小车乙另一端时与小车恰好有共同速度v ′,选滑块的初速度方向为正方向,根据动量守恒定律有mv 0-Mv =(m +M )v ′解得:v ′=23m/s对滑块P 和小车乙组成的系统, 由能量守恒定律得12mv 20+12Mv 2-12(m +M )v ′2=μmgL 联立各式,代入数据求得:L =53 m.针对训练1.如图所示,在光滑水平面上,有一质量M =3 kg 的薄板,板上有质量m =1 kg 的物块,两者以v 0=4 m/s 的初速度朝相反方向运动.它们之间有摩擦,薄板足够长,求:(1)最后二者的速度多大?方向如何? (2)求全过程机械能转化的内能为多少. 【答案】(1)2 m/s ,方向水平向右 (2)24 J【解析】(1)由于水平面光滑,则物块与长薄板组成的系统动量守恒.由于板足够长,故最后二者将达到共同速度.根据动量守恒定律 Mv 0-mv 0=(M +m )v 得:v =2 m/s方向与薄板方向相同(水平向右) (2)根据能量守恒定律ΔE =12Mv 20+12mv 20-12(M +m )v 2代入数据得:ΔE =24 J.2.如图所示,在光滑的水平面上有一质量为M 的长木板,以速度v 0向右做匀速直线运动,将质量为m 的小铁块轻轻放在木板上的A 点,这时小铁块相对地面速度为零,小铁块相对木板向左滑动.由于小铁块和木板间有摩擦,最后它们之间相对静止,已知它们之间的动摩擦因数为μ,问:(1)小铁块跟木板相对静止时,它们的共同速度多大? (2)它们相对静止时,小铁块与木板上的A 点距离多远? (3)在全过程中有多少机械能转化为内能?【答案】(1)Mv 0M +m (2)Mv 202μg M +m (3)Mmv 202M +m【解析】(1)木板与小铁块组成的系统动量守恒.以v 0的方向为正方向,由动量守恒定律得, Mv 0=(M +m )v ′,则v ′=Mv 0M +m. (2)由功能关系可得,摩擦力在相对位移上所做的功等于系统动能的减少量,μmgx 相=12Mv 20-12(M +m )v ′2. 解得x 相=Mv 202μg M +m.(3)方法一:由能量守恒定律可得, Q =12Mv 20-12(M +m )v ′2 =Mmv 202M +m方法二:根据功能关系,转化成的内能等于系统克服摩擦力做的功,即ΔE =Q =μmg ·x 相=Mmv 202M +m.3.如图所示,光滑水平面上有A 、B 两小车,质量分别为m A =20 kg ,m B =25 kg.A 车以初速度v 0=3 m/s 向右运动,B 车静止,且B 车右端放着物块C ,C 的质量为m C =15 kg.A 、B 相撞且在极短时间内连接在一起,不再分开.已知C 与B 上表面间动摩擦因数为μ=0.2,B 车足够长,求C 沿B 上表面滑行的长度.(g =10 m/s 2)3.【答案】13m【解析】A 、B 相撞:m A v 0=(m A +m B )v 1,解得v 1=43m/s.由于在极短时间内摩擦力对C 的冲量可以忽略,故A 、B 刚连接为一体时,C 的速度为零.此后,C 沿B 上表面滑行,直至相对于B 静止为止.这一过程中,系统动量守恒,系统的动能损失等于滑动摩擦力与C 在B 上的滑行距离之积;由动量守恒得: (m A +m B )v 1=(m A +m B +m C )v 由能量守恒得:12(m A +m B )v 21-12(m A +m B +m C )v 2=μm C gL 解得L =13m.4.如图所示,光滑水平轨道上放置长木板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg.开始时C 静止.A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 发生碰撞.求A 与C 碰撞后瞬间A 的速度大小.4.【答案】2 m/s【解析】因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量守恒定律得m A v 0=m A v A +m C v C①A 与B 在摩擦力作用下达到共同速度,设共同速度为v AB ,由动量守恒定律得 m A v A +m B v 0=(m A +m B )v AB① A 与B 达到共同速度后恰好不再与C 碰撞,应满足v AB =v C①联立①①①式,代入数据得v A =2 m/s.5.如图所示,在光滑的水平面上有两个并排放置的木块A 和B ,已知m A =0.5 kg ,m B =0.3 kg ,有一质量为m =80 g 的小铜块C 以v C =25 m/s 的水平初速度开始在A 表面上滑动,由于C 与A 、B 间有摩擦,最后停在B 上,B 和C 以v =2.5 m/s 的速度共同前进,求:(1)木块A 最终的速度;(2)小铜块C 在刚离开A 时的速度. 5.【答案】(1)2.1 m/s (2)4 m/s【解析】(1)以A 、B 、C 三个物体组成的系统为研究对象,系统受到的合外力为零,所以动量守恒.C 刚滑上A 时,系统的总动量就是C 所具有的动量p =mv C .作用后,B 、C 一起运动时,设这时A 的速度为v A ,那么系统的总动量 p ′=m A v A +(m B +m )v根据动量守恒定律有mv C =m A v A +(m B +m )v 所以v A =mv C -m B +m v m A=0.08×25-0.3+0.08×2.50.5m/s =2.1 m/s(2)以A 、B 、C 三个物体组成的系统为研究对象,以C 刚滑上A 时为初时刻,C 刚滑上B 前瞬间为末时刻,则系统的初动量p =mv C ,设刚离开A 时C 的速度为v C ′,则系统的末动量p ″=mv C ′+(m A +m B )v A .根据动量守恒定律有mv C =mv C ′+(m A +m B )v A得v C ′=mv C -m A +m B v A m =v C -m A +m B m v A =(25-0.5+0.30.08×2.1) m/s =4 m/s6.如图所示,质量为M =2 kg 的小平板车静止在光滑水平面上,车的一端静止放着质量为m A =2 kg 的物体A (可视为质点),如图7所示.一颗质量为m B =20 g 的子弹以600 m/s 的水平速度射穿A 后,速度变为100 m/s ,最后物体A 仍静止在小平板车上,取g =10 m/s 2.求平板车最后的速度大小.6.【答案】2.5 m/s【解析】三者组成的系统在整个过程中所受合外力为零,因此这一系统动量守恒;对子弹和物体A ,由动量守恒定律得m B v 0=m B v 1+m A v A 对物体A 与小平板车有m A v A =(m A +M )v 联立解得v =2.5 m/s.7.如图所示,质量为m 1=0.01 kg 的子弹以v 1=500 m/s 的速度水平击中质量为m 2=0.49 kg 的木块并留在其中.木块最初静止于质量为m 3=1.5 kg 的木板上,木板静止在光滑水平面上并且足够长.木块与木板间的动摩擦因数为μ=0.1,求:(g =10 m/s 2)(1)子弹进入木块过程中产生的内能ΔE 1; (2)木块在木板上滑动过程中产生的内能ΔE 2; (3)木块在木板上滑行的距离x .7.【答案】(1)1 225 J (2)18.75 J (3)37.5 m解析 (1)当子弹射入木块时,由于作用时间极短,则木板的运动状态可认为不变,设子弹射入木块后,它们的共同速度为v 2,对m 1、m 2组成的系统由动量守恒定律有 m 1v 1=(m 1+m 2)v 2又由能量守恒有ΔE 1=12m 1v 21-12(m 1+m 2)v 22 联立以上两式并代入数据得子弹进入木块过程中产生的内能ΔE 1= 1 225 J(2)设木块与木板相对静止时的共同速度为v 3,对m 1、m 2、m 3组成的系统由动量守恒定律有 (m 1+m 2)v 2=(m 1+m 2+m 3)v 3 又由能量守恒有ΔE 2=12(m 1+m 2)v 22-12(m 1+m 2+m 3)v 23联立以上两式并代入数据得木块在木板上滑行过程中产生的内能ΔE 2=18.75 J (3)对m 1、m 2、m 3组成的系统由功能关系有μ(m1+m2)gx=ΔE2解得x=37.5 m.。
动量守恒定律--习题课:动量守恒定律的应用 课件

②
由以上两式联立解得 vC′=4.2 m/s,vA=2.6 m/s.
答案 (1)不守恒 守恒
(2)守恒 4.2 m/s
三、动量守恒定律应用中的临界问题分析 在动量守恒定律的应用中,常常会遇到相互作用的两物体相 距最近、避免相碰和物体开始反向运动等临界问题.分析临 界问题的关键是寻找临界状态,临界状态的出现是有条件 的,这个条件就是临界条件.临界条件往往表现为某个(或某 些)物理量的特定取值.在与动量相关的临界问题中,临界条 件常常表现为两物体的相对速度关系与相对位移关系,这些 特定关系的判断是求解这类问题的关键.
联立②④⑤三式,并代入数据得
v≥5.2 m/s.
答案
(1)
M+mv0-mv M
(2)mmv-+MMv0
(3)v1≤v2 5.2 m/s
【例 4】 如图 4 所示,甲、乙两小孩各乘一辆冰车在水平冰 面上游戏.甲和他的冰车总质量共为 M=30 kg,乙和他的冰 车总质量也是 30 kg.游戏时,甲推着一个质量为 m=15 kg 的箱子和他一起以 v0=2 m/s 的速度滑行,乙以同样大小的 速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙, 箱子滑到乙处,乙迅速抓住.若不计冰面摩擦.
解析 M 和 m 碰撞时间极短,在极短的时间内弹簧形变极小, 可忽略不计,因而 m0 在水平方向上没有受到外力作用,动量 不变(速度不变),可以认为碰撞过程中 m0 没有参与,只涉及 M 和 m,由于水平面光滑,弹簧形变极小,所以 M 和 m 组成 的系统水平方向动量守恒,两者碰撞后可能具有共同速度, 也可能分开,所以只有 B、C 正确.
答案 BC
学案4 【例 2】 如图 2 所示,一辆砂车的总质量为 M,静止于光滑
的水平面上.一个质量为 m 的物体 A 以速度 v 落入砂车中, v 与水平方向成 θ 角,求物体落入砂车后车的速度 v′.
动量守恒模型练习题

动量守恒模型练习题动量守恒是一个在物理学中非常重要的原理。
它指出,在一个孤立系统中,总动量始终保持不变。
根据动量守恒原理,我们可以解决一系列与动量相关的问题。
为了更好地理解和运用动量守恒模型,我们将通过以下练习题来进行实践。
题一:碰撞问题假设有一个质量为m1的小球以速度v1沿着直线运动,与一个质量为m2的小球以速度v2相向而行,在碰撞后,它们的速度发生了改变。
请问碰撞后两个小球的速度分别是多少?解答:根据动量守恒原理,碰撞前后的总动量保持不变。
我们可以根据以下公式求解:m1 * v1 + m2 * v2 = m1 * v1' + m2 * v2'其中,v1'和v2'分别表示碰撞后两个小球的速度。
由于碰撞前后两个小球的质量不发生改变,可以得到以下表达式:m1 * v1 + m2 * v2 = m1 * v1' + m2 * v2' (1)另外,由于两个小球是相向而行碰撞,可以推导出以下关系:v1' = (m1 - m2)/(m1 + m2) * v1 + 2 * m2 / (m1 + m2) * v2 (2)v2' = 2 * m1 / (m1 + m2) * v1 + (m2 - m1)/(m1 + m2) * v2 (3)将公式(2)和(3)代入公式(1),即可求解碰撞后两个小球的速度。
题二:弹性碰撞问题现在考虑一个弹性碰撞的情况,即碰撞后两个小球的动能也保持不变。
假设有两个质量分别为m1和m2的小球,在碰撞之前它们的速度分别为v1和v2,碰撞后的速度分别为v1'和v2'。
请问碰撞后两个小球的速度分别是多少?解答:在弹性碰撞中,碰撞前后的动能保持不变。
根据动能守恒原理,我们可以得到以下等式:1/2 * m1 * v1^2 + 1/2 * m2 * v2^2 = 1/2 * m1 * v1'^2 + 1/2 * m2 *v2'^2 (4)同样地,由于动量守恒,我们可以得到以下等式:m1 * v1 + m2 * v2 = m1 * v1' + m2 * v2' (5)利用公式(5)求解出v1'和v2',然后将其带入公式(4)即可解得碰撞后两个小球的速度。
专题提升12 动量守恒在子弹打木块模型和板块模型中的应用--2025版高考总复习物理

[基础落实练]1.(多选)如图所示,木块静止在光滑的水平面上,子弹A、B分别从木块左、右两侧同时水平射入木块,且均停在木块内,木块始终保持静止。
下列说法正确的是()A.摩擦力对两子弹的冲量大小一定相等B.摩擦力对两子弹做的功一定相等C.子弹与木块组成的系统动量守恒D.子弹与木块组成的系统机械能守恒解析:木块在光滑的水平面上始终保持静止,由动量定理可知两子弹对木块的摩擦力的冲量大小相等,方向相反;由牛顿第三定律可知子弹对木块的摩擦力与木块对子弹的摩擦力大小相等,所以摩擦力对两子弹的冲量大小一定相等,故A正确;以子弹A、B和木块组成的系统为研究对象,系统的合外力为零,则系统的动量守恒,取水平向右为正方向,由动量守恒定律得m A v A-m B v B=0,得m A v A=m B v B,对子弹由动能定理得W=0-E k,由E k=p2 2m可知,摩擦力对两子弹做的功W=-p22m,由于两子弹的质量不一定相等,故摩擦力对两子弹做的功不一定相等,故B错误,C正确;子弹与木块间因有摩擦力产生热,所以子弹与木块组成的系统机械能不守恒,故D错误。
答案:AC2.(多选)如图所示,足够长的木板Q放在光滑水平面上,在其左端有一可视为质点的物块P,P、Q间接触面粗糙。
现给P向右的速率v P,给Q向左的速率v Q,取向右为速度的正方向,不计空气阻力,则运动过程P、Q速度随时间变化的图像可能正确的是()解析:开始时,木板和物块均在摩擦力作用下做匀减速运动,两者最终达到共同速度,以向右为正方向,P 、Q 系统动量守恒,根据动量守恒定律得m P v P -m Q v Q =(m P +m Q )v 。
若m P v P =m Q v Q ,则v =0,图像如图A 所示;若m P v P >m Q v Q ,则v >0,图像如图B 所示;若m P v P <m Q v Q ,则v <0,图像如图C 所示。
故A 、B 、C 正确,D 错误。
2022届高考物理考前专练:动量守恒与板块模型

2022年高考物理考前专练——动量守恒与板块模型1.如甲所示,长木板A 放在光滑的水平面上,质量为2kg m =的另一物体B 以水平速度03m/s v =滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,则下列说法正确的是( )A .木板获得的动能为1JB .系统损失的机械能为4JC .木板A 的最小长度为1.5mD .A 、B 间的动摩擦因数为0.12.如图所示,光滑的水平面上放置质量为M 的长木板,质量为m 的物体放在长木板上表面,已知M =2m ,t =0时刻给长木板和物体等大反向的速度v =6m/s 。
使二者开始运动,经过一段时间长木板和物体共速,物体始终没有离开长木板。
则在该过程中,下列说法正确的是( )A .物体的最小速度为2m/sB .当长木板的速度为3m/s 时,物体的速度为-3m/sC .当长木板的速度为3.5m/s 时,物体在加速运动D .当长木板的速度为2.5m/s 时,物体在加速运动3.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m L =,现有质量20.2kg m =可视为质点的物块,以水平向右的速度0 2.0m /s v =从左端滑上小车,最后在车面上某处与小车保持相对静止,物块与车面的动摩擦因数0.5μ=,取2g 10m /s =则( )A .物块与小车共同速度大小是0.6m/sB .物块在车面上滑行的时间0.24s t =C .小车运动的位移大小0.06m x =D .要使物块不从小车右端滑出,物块滑上小车左端的速度v 不超过5m/s4.如题图所示,形状相同且足够长的木板A 、B 静止在光滑水平面上,物块C 静止在B 的右侧。
某时刻木板A 以水平向右的速度v 与木板B 发生弹性碰撞,碰撞时间极短可不计。
若A 、B 、C 的质量分别为km 、m 、1m k,其中0k >,B 、C 之间粗糙,不计空气阻力,则( )A .A 、B 碰撞后A 将水平向左运动B .A 、B 、C 构成的系统在整个过程中动量守恒,机械能不守恒 C .A 、B 碰撞后一定不会发生第二次碰撞D .A 、B 碰撞后仍可能会再次发生碰撞5.如图所示一平板车A 质量为2m ,静止于光滑水平面上,其右端与竖直固定挡板相距为L 。
动量守恒板块模型习题课

动量守恒定律———板块模型专题训练一1、如图所示;一质量M=的长方形木板B放在光滑水平地面上;在其右端放一个质量m=的小木块A..现以地面为参照系;给A和B以大小均为s;方向相反的初速度;使A 开始向左运动;B开始向右运动;但最后A并没有滑离B板..站在地面的观察者看到在一段时间内小木块A正在做加速运动;则在这段时间内的某时刻木板对地面的速度大小可能是2、质量为2kg、长度为2.5m的长木板B在光滑的水平地面上以4m/s的速度向右运动;将一可视为质点的物体A轻放在B的右端;若A与B之间的动摩擦因数为;A的质量为m=1kg.. 2mg 求:10s/1说明此后A、B的运动性质2分别求出A、B的加速度3经过多少时间A从B上滑下4A滑离B时;A、B的速度分别为多大A、B的位移分别为多大5若木板B足够长;最后A、B的共同速度6当木板B为多长时;A恰好没从B上滑下木板B至少为多长;A才不会从B上滑下3、质量为mB=m的长木板B静止在光滑水平面上;现有质量为mA=2m的可视为质点的物块;以水平向右的速度大小v0从左端滑上长木板;物块和长木板间的动摩擦因数为μ..求:v 1要使物块不从长木板右端滑出;长木板的长度L 至少为多少至少用两种方法求解 2若开始时长木板向左运动;速度大小也为v0;其它条件不变;再求第1问中的L.. 4、如图所示;在光滑水平面上放有质量为2m 的木板;木板左端放一质量为m 的可视为质点的木块..两者间的动摩擦因数为μ;现让两者以V0的速度一起向竖直墙向右运动;木板和墙的碰撞不损失机械能;碰后两者最终一起运动..求碰后:1木块相对木板运动的距离s2木块相对地面向右运动的最大距离L动量守恒定律———板块模型专题训练二1、如图所示;一个长为L 、质量为M 的长方形木块;静止在光滑水平面上;一个质量为m 的物块可视为质点;以水平初速度0v 从木块的左端滑向右端;设物块与木块间的动摩擦因数为 ;当物块与木块达到相对静止时;物块仍在长木块上;求系统机械能转化成内能的量Q..2、如图所示;光滑水平面上质量为m 1=2kg 的物块以v 0=2m/s 的初速冲向质量为m 2=6kg 静 止的光滑圆弧面斜劈体..求:1物块m 1滑到最高点位置时;二者的速度;2物块m 1从圆弧面滑下后;二者速度;v3若m 1= m 2物块m 1从圆弧面滑下后;二者速度3、一质量为m 、两端有挡板的小车静止在光滑水平面上;两挡板间距离为1.1m;在小车正中放一质量为m 、长度为0.1m 的物块;物块与小车间动摩擦因数μ=..如图示..现给物块一个水平向右的瞬时冲量;使物块获得v 0 =6m/s 的水平初速度..物块与挡板碰撞时间极短且无能量损失..求:⑴小车获得的最终速度;⑵物块相对小车滑行的路程;⑶物块与两挡板最多碰撞了多少次;⑷物块最终停在小车上的位置..4、如图所示;质量为M 的木块固定在光滑的水平面上;有一质量为m 的子弹以初速度v0水平射向木块;并能射穿;设木块的厚度为d;木块给子弹的平均阻力恒为f.若木块可以在光滑的水平面上自由滑动;子弹以同样的初速度水平射向静止的木块;假设木块给子弹的阻力与前一情况一样;试问在此情况下要射穿该木块;子弹的初动能应满足什么条件5、如图;小车平板距地高 h;小车质量为 M;水平地面光滑;小车左端有一质量为 M/6的小木块;它与平板间有摩擦;当小车与木块一起沿水平地面以速度V 运动时;有一颗子弹水平射入并嵌在木块中;子弹质量为 M/ 18 ;速度为100V;当木块从车右端滑出时;小车的速度减为 V / 2 ;求:①木块滑出车右端时的速度;②木块落地时;v 0 2 1木块距车右端多远动量定理牛顿运动定律———板块模型专题训练三1、如图;在光滑水平面上有一质量为m1的足够长的木板;其上叠放一质量为m2的木块..假定木块和木板之间的最大静摩擦力和滑动摩擦力相等..现给木块施加一随时间t增大的水平力F=ktk是常数;木板和木块加速度的大小分别为a1和a2;下列反映a1和a2变化的图线中正确的是2、如图所示;质量M=4kg的木板长L=1.4m;静止在光滑的水平地面上;其水平顶面右端静置一个质量m=1kg的小滑块可视为质点;小滑块与板间的动摩擦因数μ=g取10m/s2今用水平力F=28N向右拉木板;小滑块将与长木板发生相对滑动..求:1小滑块与长木板发生相对滑动时;它们的加速度各为多少2经过多长时间小滑块从长木板上掉下3小滑块从长木板上掉下时;小滑块和长木板的位移各为多少3、如图1所示;光滑水平面上放置质量分别为m、2m的物块A和木板B;A、B间的最大静摩擦力为μmg;现用水平拉力F拉B;使A、B以同一加速度运动;求拉力F 的最大值..4、如图所示;有一块木板静止在光滑且足够长的水平面上;木板质量M=4kg;长L=1.4m;木板右端放着一个小滑块.小滑块质量为m=1kg;其尺寸远小于L.小滑块与木板间的动摩擦因数μ=;g=10m/s2.1现用恒力F作用于木板M上;为使m能从M上滑落;F的大小范围是多少2其他条件不变;若恒力F=且始终作用于M上;最终使m能从M上滑落;m在M上滑动的时间是多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律———板块模型专题训练一1、如图所示,一质量M=3.0kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m=1.0kg的小木块A。
现以地面为参照系,给A和B以大小均为4.0m/s,方向相反的初速度,使A开始向左运动,B开始向右运动,但最后A并没有滑离B板。
站在地面的观察者看到在一段时间内小木块A正在做加速运动,则在这段时间内的某时刻木板对地面的速度大小可能是()
2、质量为2kg、长度为2.5m的长木板B在光滑的水平地面上以4m/s的速度向右运动,将一可视为质点的物体A轻放在B的右端,若A与B之间的动摩擦因数为0.2,A的质量为m=1kg。
2
m
g 求:
10s
/
(1)说明此后A、B的运动性质
(2)分别求出A、B的加速度
(3)经过多少时间A从B上滑下
(4)A滑离B时,A、B的速度分别为多大?A、B的位移分别为多大?
(5)若木板B足够长,最后A、B的共同速度
(6)当木板B为多长时,A恰好没从B上滑下(木板B至少为多长,A才不会从B上滑下?)
3、质量为mB=m的长木板B静止在光滑水平面上,现有质量为mA=2m的可视为质点的物块,以水平向右的速度大小v0从左端滑上长木板,物块和长木板间的动摩擦因数为μ。
v 求:
(1)要使物块不从长木板右端滑出,长木板的长度L 至少为多少?(至少用两种方法求解)
(2)若开始时长木板向左运动,速度大小也为v0,其它条件不变,再求第(1)问中的L 。
4、如图所示,在光滑水平面上放有质量为2m 的木板,木板左端
放一质量为m 的可视为质点的木块。
两者间的动摩擦因数为μ,现让两者以V0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。
求碰后:
(1)木块相对木板运动的距离s
(2)木块相对地面向右运动的最大距离L
动量守恒定律———板块模型专题训练二
1、如图所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为 ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
2、如图所示,光滑水平面上质量为m 1=2kg 的物块以v 0=2m/s 的初速冲向质量为m 2=6kg 静 止的光滑圆弧面斜劈体。
求:
(1)物块m 1滑到最高点位置时,二者的速度;
(2)物块m 1从圆弧面滑下后,二者速度;
v
(3)若m 1= m 2物块m 1从圆弧面滑下后,二者速度
3、一质量为m 、两端有挡板的小车静止在光滑水平面上,两挡板间距离为1.1m ,在小车正中放一质量为m 、长度为0.1m 的物块,物块与小车间动摩擦因数μ=0.15。
如图示。
现给物块一个水平向右的瞬时冲量,使物块获得v 0 =6m/s 的水平初速度。
物块与挡板碰撞时间极短且无能量损失。
求:
⑴小车获得的最终速度;
⑵物块相对小车滑行的路程;
⑶物块与两挡板最多碰撞了多少次;
⑷物块最终停在小车上的位置。
4、如图所示,质量为M 的木块固定在光滑的
水平面上,有一质量为m 的子弹以初速度v0水平射向木
块,并能射穿,设木块的厚度为d ,木块给子弹的平均阻
力恒为f.若木块可以在光滑的水平面上自由滑动,子弹以同样的初速度水平射向静止的木块,假设木块给子弹的阻力与前一情况一样,试问在此情况下要射穿该木块,子弹的初动能应满足什么条件?
5、如图,小车平板距地高 h ,小车质量为 M ,水平地面光滑,小车左端有一质量为 M/6的小木块,它与平板间有摩擦,当小车与木块一起沿水平地面以速度V 运动时,有一颗子弹水平射入并嵌在木块中,子弹质量为 M/ 18 ,速度为100V,当木块从车右端滑出时,小车的速度减为 V / 2 ,求:①木块滑出车右端时的速度;②木块落地时,木块距车右端
v 0 2 1
多远?
动量定理(牛顿运动定律)———板块模型专题训练三
1、如图,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2,下列反映a1和a2变化的图线中正确的是()
2、如图所示,质量M=4kg的木板长L=1.4m,静止在光滑的水平地面上,其水平顶面右端静置一个质量m=1kg的小滑块(可视为质点),小滑块与板间的动摩擦因数μ=0.4(g取10m/s2)今用水平力F=28N向右拉木板,小滑块将与长木板发生相对滑动。
求:
(1)小滑块与长木板发生相对滑动时,它们的加速度各为多少?
(2)经过多长时间小滑块从长木板上掉下?
(3)小滑块从长木板上掉下时,小滑块和长木板的位移各为多少?
3、如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
4、如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量M=4kg,长L=1.4m,木板右端放着一个小滑块.小滑块质量为m=1kg,其尺寸远小于L.小滑块与木板间的动摩擦因数μ=0.4,g=10m/s2.
(1)现用恒力F作用于木板M上,为使m能从M上滑落,F的大小范围是多少?
(2)其他条件不变,若恒力F=22.8N且始终作用于M上,最终使m能从M上滑落,m在M 上滑动的时间是多少?。