2018中考数学分类汇编考点25 矩形

合集下载

中考数学 考点系统复习 第五章 四边形 第二节 矩 形

中考数学 考点系统复习 第五章 四边形 第二节 矩 形

叠,使点 D 落在 BC 边上的点 F 处.若 AB=3,BC=5,则 tan∠DAE 的值

( D)
A.12 B.290 C.25 D.13
5.(2020·菏泽)如果顺次连接四边形的各边中点得到的四边形是矩形,
那么原来四边形的对角线一定满足的条件是
( C)
A.互相平分 B.相等
C.互相垂直 D.互相垂直平分
第二节 矩 形
1.如图,在矩形 ABCD 中,对角线 AC 与 BD 相交于点 O,AE⊥BD,垂足为
E,ED=3BE,则∠AOB 的度数为
( A)
A.60° B.50° C.55° D.40°
2.如图,矩形 ABCD 中,AD=4,对角线 AC 与 BD 交于点 O,OE⊥AC 交 BC
于点 E,CE=3,则矩形 ABCD 的面积为
8.★(2021·湖州)如图,已知在矩形 ABCD 中,AB=1,BC
= 3﹐点 P 是 AD 边上的一个动点,连接 BP,点 C 关于直
线 BP 的对称点为 C1,当点 P 运动时,点 C1 也随之运动.若点 P 从点 A 运
动到点 D,则线段 CC1 扫过的区343 C.323 D.2π
( B)
A.4 2 B.8 2 C.12 D.32
3.(2018·毕节)如图,在矩形 ABCD 中,AD=3,M 是 CD 上的一点,将△ADM 沿直线 AM 对折得到△ANM,若 AN 平分∠MAB,则折痕 AM 的长为 ( B ) A.3 B.2 3 C.3 2 D.6
4.(2020·烟台)如图,在矩形 ABCD 中,点 E 在 DC 上,将矩形沿 AE 折
6.(2021·绍兴)图①是一种矩形时钟,图②是时钟示意图,时钟数字 2 的刻度在矩形 ABCD 的对角线 BD 上,时钟中心在矩形 ABCD 对角线的交点 O 处.若 AB=30 cm,则 BC 长为 30 3 0cm(结果保留根号).

浙江省宁波市五年(2018-2022)中考数学真题分层分类汇编-03填空题知识点分类

浙江省宁波市五年(2018-2022)中考数学真题分层分类汇编-03填空题知识点分类

浙江省宁波市五年(2018-2022)中考数学真题分层分类汇编-03填空题知识点分类一.绝对值(共2小题)1.(2021•宁波)﹣5的绝对值是 .2.(2018•宁波)计算:|﹣2018|= .二.立方根(共1小题)3.(2020•宁波)实数8的立方根是 .三.估算无理数的大小(共2小题)4.(2022•宁波)请写出一个大于2的无理数: .5.(2019•宁波)请写出一个小于4的无理数: .四.因式分解-提公因式法(共2小题)6.(2021•宁波)分解因式:x2﹣3x= .7.(2019•宁波)分解因式:x2+xy= .五.因式分解-运用公式法(共1小题)8.(2022•宁波)分解因式:x2﹣2x+1= .六.提公因式法与公式法的综合运用(共1小题)9.(2020•宁波)分解因式:2a2﹣18= .七.分式有意义的条件(共1小题)10.(2018•宁波)要使分式有意义,x的取值应满足 .八.二元一次方程组的解(共1小题)11.(2018•宁波)已知x,y满足方程组,则x2﹣4y2的值为 .九.解分式方程(共1小题)12.(2022•宁波)定义一种新运算:对于任意的非零实数a,b,a⊗b=+.若(x+1)⊗x =,则x的值为 .一十.反比例函数系数k的几何意义(共1小题)13.(2021•宁波)在平面直角坐标系中,对于不在坐标轴上的任意一点A(x,y),我们把点B(,)称为点A的“倒数点”.如图,矩形OCDE的顶点C为(3,0),顶点E在y轴上,函数y=(x>0)的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则△OBC的面积为 .一十一.反比例函数图象上点的坐标特征(共1小题)14.(2022•宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为9时,的值为 ,点F的坐标为 .一十二.反比例函数与一次函数的交点问题(共2小题)15.(2020•宁波)如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D 两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为 ,的值为 .16.(2019•宁波)如图,过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连接AC交反比例函数图象于点D.AE为∠BAC 的平分线,过点B作AE的垂线,垂足为E,连接DE.若AC=3DC,△ADE的面积为8,则k的值为 .一十三.菱形的性质(共1小题)17.(2018•宁波)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB 的中点,连接MD,ME.若∠EMD=90°,则cos B的值为 .一十四.矩形的性质(共1小题)18.(2021•宁波)如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC 对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N 两点.若BM=BE,MG=1,则BN的长为 ,sin∠AFE的值为 .一十五.切线的性质(共4小题)19.(2022•宁波)如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为 .20.(2021•宁波)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC,BD分别与⊙O相切于点C,D,延长AC,BD交于点P.若∠P=120°,⊙O的半径为6cm,则图中的长为 cm.(结果保留π)21.(2020•宁波)如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B 作⊙O的切线BC,BC=OA,连接OC,AC.当△OAC是直角三角形时,其斜边长为 .22.(2018•宁波)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP 的长为 .一十六.切线的判定与性质(共1小题)23.(2019•宁波)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD =13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为 .一十七.弧长的计算(共1小题)24.(2020•宁波)如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为 cm(结果保留π).一十八.解直角三角形的应用-仰角俯角问题(共1小题)25.(2018•宁波)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为 米(结果保留根号).一十九.解直角三角形的应用-方向角问题(共1小题)26.(2019•宁波)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为 米.(精确到1米,参考数据:≈1.414,≈1.732)二十.方差(共1小题)27.(2020•宁波)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如表所示:甲乙丙454542s2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是 .二十一.概率公式(共3小题)28.(2022•宁波)一个不透明的袋子里装有5个红球和6个白球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为 .29.(2021•宁波)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为 .30.(2019•宁波)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为 .参考答案与试题解析一.绝对值(共2小题)1.(2021•宁波)﹣5的绝对值是 5 .【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.2.(2018•宁波)计算:|﹣2018|= 2018 .【解答】解:|﹣2018|=2018.故答案为:2018.二.立方根(共1小题)3.(2020•宁波)实数8的立方根是 2 .【解答】解:∵23=8,∴8的立方根是2.故答案为:2.三.估算无理数的大小(共2小题)4.(2022•宁波)请写出一个大于2的无理数: 如(答案不唯一) .【解答】解:大于2的无理数有:须使被开方数大于4即可,如(答案不唯一).5.(2019•宁波)请写出一个小于4的无理数: .【解答】解:∵15<16,∴<4,即为小于4的无理数.故答案为.四.因式分解-提公因式法(共2小题)6.(2021•宁波)分解因式:x2﹣3x= x(x﹣3) .【解答】解:原式=x(x﹣3),故答案为:x(x﹣3)7.(2019•宁波)分解因式:x2+xy= x(x+y) .【解答】解:x2+xy=x(x+y).五.因式分解-运用公式法(共1小题)8.(2022•宁波)分解因式:x2﹣2x+1= (x﹣1)2 .【解答】解:x2﹣2x+1=(x﹣1)2.六.提公因式法与公式法的综合运用(共1小题)9.(2020•宁波)分解因式:2a2﹣18= 2(a+3)(a﹣3) .【解答】解:2a2﹣18=2(a2﹣9)=2(a+3)(a﹣3).故答案为:2(a+3)(a﹣3).七.分式有意义的条件(共1小题)10.(2018•宁波)要使分式有意义,x的取值应满足 x≠1 .【解答】解:要使分式有意义,则:x﹣1≠0.解得:x≠1,故x的取值应满足:x≠1.故答案为:x≠1.八.二元一次方程组的解(共1小题)11.(2018•宁波)已知x,y满足方程组,则x2﹣4y2的值为 ﹣15 .【解答】解:原式=(x+2y)(x﹣2y)=﹣3×5=﹣15故答案为:﹣15九.解分式方程(共1小题)12.(2022•宁波)定义一种新运算:对于任意的非零实数a,b,a⊗b=+.若(x+1)⊗x =,则x的值为 ﹣ .【解答】解:根据题意得:+=,化为整式方程得:x+x+1=(2x+1)(x+1),解得:x=﹣,检验:当x=﹣时,x(x+1)≠0,∴原方程的解为:x=﹣.故答案为:﹣.一十.反比例函数系数k的几何意义(共1小题)13.(2021•宁波)在平面直角坐标系中,对于不在坐标轴上的任意一点A(x,y),我们把点B(,)称为点A的“倒数点”.如图,矩形OCDE的顶点C为(3,0),顶点E 在y轴上,函数y=(x>0)的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则△OBC的面积为 或 .【解答】解:设点A的坐标为(m,),∵点B是点A的“倒数点”,∴点B坐标为(,),∵点B的横纵坐标满足=,∴点B在某个反比例函数上,∴点B不可能在OE,OC上,分两种情况:①点B在ED上,由ED∥x轴,∴点B、点A的纵坐标相等,即=,∴m=±2(﹣2舍去),∴点B纵坐标为1,此时,S△OBC=×3×1=;②点B在DC上,∴点B横坐标为3,即=3,∴点B纵坐标为:=,此时,S△OBC=×3×=;故答案为:或.一十一.反比例函数图象上点的坐标特征(共1小题)14.(2022•宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为9时,的值为 ,点F的坐标为 (,0) .【解答】解:如图,作DG⊥x轴于G,连接OD,设BC和OD交于I,设点B(b,),D(a,),由对称性可得:△BOD≌△BOA≌△OBC,∴∠OBC=∠BOD,BC=OD,∴OI=BI,∴DI=CI,∴=,∵∠CID=∠BIO,∴△CDI∽△BOI,∴∠CDI=∠BOI,∴CD∥OB,∴S△BOD=S△AOB=S矩形AOCB=,∵S△BOE=S△DOG==3,S四边形BOGD=S△BOD+S△DOG=S梯形BEGD+S△BOE,∴S梯形BEGD=S△BOD=,∴•(a﹣b)=,∴2a2﹣3ab﹣2b2=0,∴(a﹣2b)•(2a+b)=0,∴a=2b,a=﹣(舍去),∴D(2b,),即:(2b,),在Rt△BOD中,由勾股定理得,OD2+BD2=OB2,∴[(2b)2+()2]+[(2b﹣b)2+(﹣)2]=b2+()2,∴b=,∴B(,2),D(2,),∵直线OB的解析式为:y=2x,∴直线DF的解析式为:y=2x﹣3,当y=0时,2﹣3=0,∴x=,∴F(,0),∵OE=,OF=,∴EF=OF﹣OE=,∴=,故答案为:,(,0).一十二.反比例函数与一次函数的交点问题(共2小题)15.(2020•宁波)如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D 两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为 24 ,的值为 ﹣ .【解答】解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x 轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,∴S△AOE=S△DEO=12,∴a﹣b=12,∴a﹣b=24,∵S△AOC=S△AOB=12,∴BC∥AD,∴=,∵S△ACB=32﹣24=8,∴S△ADC:S△ABC=24:8=3:1,∴BC:AD=1:3,∴TB:TA=1:3,设BT=m,则AT=3m,AK=TK=1.5m,BK=0.5m,∴AK:BK=3:1,∴==3,∴=﹣3,即=﹣,解法二:设A(m,),B(m,),则E(,),D(﹣m,﹣),C(﹣,﹣),由题意,a﹣b=24,2a﹣(m+)(+)×=32,化简可得,=﹣.故答案为24,﹣.16.(2019•宁波)如图,过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连接AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连接DE.若AC=3DC,△ADE的面积为8,则k的值为 6 .【解答】解:连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,∵过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,∴A与B关于原点对称,∴O是AB的中点,∵BE⊥AE,∴OE=OA,∴∠OAE=∠AEO,∵AE为∠BAC的平分线,∴∠DAE=∠AEO,∴AD∥OE,∴S△ACE=S△AOC,∵AC=3DC,△ADE的面积为8,∴S△ACE=S△AOC=12,设点A(m,),∵AC=3DC,DH∥AF,∴3DH=AF,∴D(3m,),∵CH∥GD,AG∥DH,∴△DHC∽△AGD,∴S△HDC=S△ADG,∵S△AOC=S△AOF+S梯形AFHD+S△HDC=k+(DH+AF)×FH+S△HDC=k+×2m+=k++=12,∴2k=12,∴k=6;故答案为6;(另解)连接OE,由题意可知OE∥AC,∴S△OAD=S△EAD=8,易知△OAD的面积=梯形AFHD的面积,设A的纵坐标为3a,则D的纵坐标为a,∴(3a+a)(﹣)=16,解得k=6.一十三.菱形的性质(共1小题)17.(2018•宁波)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB 的中点,连接MD,ME.若∠EMD=90°,则cos B的值为 .【解答】解:延长DM交CB的延长线于点H.∵四边形ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ADM=∠H,∵AM=BM,∠AMD=∠HMB,∴△ADM≌△BHM,∴AD=HB=2,∵EM⊥DH,∴EH=ED,设BE=x,∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90°∵AE2=AB2﹣BE2=DE2﹣AD2,∴22﹣x2=(2+x)2﹣22,∴x=﹣1或﹣﹣1(舍弃),∴cos B==,故答案为.一十四.矩形的性质(共1小题)18.(2021•宁波)如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC 对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N 两点.若BM=BE,MG=1,则BN的长为 2 ,sin∠AFE的值为 ﹣1 .【解答】解:∵BM=BE,∴∠BEM=∠BME,∵AB∥CD,∴∠BEM=∠GCM,又∵∠BME=∠GMC,∴∠GCM=∠GMC,∴MG=GC=1,∵G为CD中点,∴CD=AB=2.连接BF,FM,由翻折可得∠FEM=∠BEM,BE=EF,∴BM=EF,∵∠BEM=∠BME,∴∠FEM=∠BME,∴EF∥BM,∴四边形BEFM为平行四边形,∵BM=BE,∴四边形BEFM为菱形,∵∠EBC=∠EFC=90°,EF∥BG,∴∠BNF=90°,∵BF平分∠ABN,∴FA=FN,∴Rt△ABF≌Rt△NBF(HL),∴BN=AB=2.∵FE=FM,FA=FN,∠A=∠BNF=90°,∴Rt△AEF≌Rt△NMF(HL),∴AE=NM,设AE=NM=x,则BE=FM=2﹣x,NG=MG﹣NM=1﹣x,∵FM∥GC,∴△FMN∽△CGN,∴=,即=,解得x=2+(舍)或x=2﹣,∴EF=BE=2﹣x=,∴sin∠AFE===﹣1.故答案为:2;﹣1.一十五.切线的性质(共4小题)19.(2022•宁波)如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为 或 .【解答】解:连接OA,过点A作AD⊥BC于点D,∵圆与AC相切于点A.∴OA⊥AC,由题意可知:D点位置分为两种情况,①当∠CAD为90°时,此时D点与O点重合,设圆的半径=r,∴OA=r,OC=4﹣r,∵AC=2,在Rt△AOC中,根据勾股定理可得:r2+4=(4﹣r)2,解得:r=,即AD=AO=;②当∠ADC=90°时,AD=,∵AO=,AC=2,OC=4﹣r=,∴AD=,综上所述,AD的长为或,故答案为:或.20.(2021•宁波)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC,BD分别与⊙O相切于点C,D,延长AC,BD交于点P.若∠P=120°,⊙O的半径为6cm,则图中的长为 2π cm.(结果保留π)【解答】解:如图所示,连接OC,OD,∵AC,BD分别与⊙O相切于点C,D,∴∠OCP=∠ODP=90°,由四边形内角和为360°可得,∠COD=360°﹣∠OCP﹣∠ODP﹣∠CPD=360°﹣90°﹣90°﹣120°=60°.∴的长==2π.故答案为:2π.21.(2020•宁波)如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B 作⊙O的切线BC,BC=OA,连接OC,AC.当△OAC是直角三角形时,其斜边长为 2或2 .【解答】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=OB=2,∴AC===2;②当△OAC是直角三角形时,∠OAC=90°,连接OB,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°,∵BC=OA=OB,∴△OBC是等腰直角三角形,∴,故答案为:2或2.22.(2018•宁波)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP 的长为 3或4 .【解答】解:如图1中,当⊙P与直线CD相切时,设PC=PM=x.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC 是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB==4.综上所述,BP的长为3或4.一十六.切线的判定与性质(共1小题)23.(2019•宁波)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD =13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为 6.5或3 .【解答】解:∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,∴AB==6,在Rt△ADC中,∠C=90°,AC=12,CD=5,∴AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,∵∠C=90°,∴AC⊥BC,∴PH∥AC,∴△DPH∽△DAC,∴,∴=,∴PD=6.5,∴AP=6.5;当⊙P与AB相切时,点P到AB的距离=6,过P作PG⊥AB于G,则PG=6,∵AD=BD=13,∴∠PAG=∠B,∵∠AGP=∠C=90°,∴△AGP∽△BCA,∴,∴=,∴AP=3,∵CD=5<6,∴半径为6的⊙P不与△ABC的AC边相切,综上所述,AP的长为6.5或3,故答案为:6.5或3.一十七.弧长的计算(共1小题)24.(2020•宁波)如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为 18π cm(结果保留π).【解答】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,∴的长==18π(cm),故答案为:18π.一十八.解直角三角形的应用-仰角俯角问题(共1小题)25.(2018•宁波)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为 1200(﹣1) 米(结果保留根号).【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)一十九.解直角三角形的应用-方向角问题(共1小题)26.(2019•宁波)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为 566 米.(精确到1米,参考数据:≈1.414,≈1.732)【解答】解:如图,设线段AB交y轴于C,在直角△OAC中,∠COA=∠CAO=45°,则AC=OC.∵OA=400米,∴OC=OA•cos45°=400×=200(米).∵在直角△OBC中,∠COB=60°,OC=200米,∴OB===400≈566(米)故答案是:566.二十.方差(共1小题)27.(2020•宁波)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如表所示:甲乙丙454542s2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是 甲 .【解答】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.二十一.概率公式(共3小题)28.(2022•宁波)一个不透明的袋子里装有5个红球和6个白球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为 .【解答】解:摸出红球的概率为=.故答案为:.29.(2021•宁波)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为 .【解答】解:∵一个不透明的袋子里装有3个红球和5个黑球,∴共有8个球,∴从袋中任意摸出一个球是红球的概率为.故答案为:.30.(2019•宁波)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为 .【解答】解:从袋中任意摸出一个球,则摸出的球是红球的概率=.故答案为.。

最新整理初三数学教案2018年中考数学考点归纳:矩形.docx

最新整理初三数学教案2018年中考数学考点归纳:矩形.docx

最新整理初三数学教案2018年中考数学考点归纳:
矩形
2018年中考数学考点归纳:矩形
数学是中考中最能拉分的学科,考生想要取得好成绩必须掌握好相关知识点,为了帮助大家备考2018年中考数学,下面xx为大家带来2018年中考数学复习要掌握的矩形知识点,希望对大家中考数学备考有所帮助。

中考数学几何复习考点:矩形
1、矩形的概念
有一个角是直角的平行四边形叫做矩形。

2、矩形的性质
(1)具有平行四边形的一切性质(2)矩形的四个角都是直角
(3)矩形的对角线相等(4)矩形是轴对称图形
3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形
(3)定理2:对角线相等的平行四边形是矩形
4、矩形的面积S矩形=长×宽=ab
xx为大家带来了2018年中考数学复习要掌握的矩形知识点,希望大家能够掌握好这些数学知识点,更多的中考数学知识点请查阅xx。

备战九年级中考数学一轮复习第25课 矩形与菱形(全国通用)

备战九年级中考数学一轮复习第25课 矩形与菱形(全国通用)
第25课 矩形与菱形
1.矩形的性质与判定 (1)矩形的定义:有一个角是直角的平行四边形叫做矩形. (2)矩形的性质: 性质①:矩形具有平行四边形的一切性质. 性质②:四个角都是直角. 性质③:矩形的对角线相等. 性质④:矩形既是中心对称图形也是轴对称图形.
(3)矩形的判定方法: 判定①:有一个角是直角的平行四边形是矩形. 判定②:对角线相等的平行四边形是矩形. 判定③:有三个角是直角的四边形是矩形.
(4)矩形的面积:S矩形=长×宽; 周长:C矩形=2(长+宽).
1.(1)如图,在矩形ABCD中,AC与BD交于O,判断下列
结论是否正确: ①AB∥CD,AD ∥ BC( √ ) ②∠ABC=∠BCD=∠CDA=∠DAB( √ ) ③OA=OB=OC=OD,AC=BD( √ ) ④矩形既是中心对称图形,又是轴对称图形( √ ) ⑤AC⊥BD,OA=OB=AB( × ) ⑥S△OAB=S△OBC=S△OCD=S△OAD( √ ) ⑦∠1=∠2,AB=BC( × )
(3)菱形的判定方法: 判定①:有一组邻边相等的平行四边形叫做菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四条边都相等的四边形是菱形. (4)菱形的面积:S菱形=底×高=两对角线积的一半. 周长:C菱形=4·边长.
2.(1)如图,在菱形ABCD中,AC与BD交于点O,判断下列结 论是否正确: ①AB∥CD,AC⊥BD( √ ) ②AB=BC=CD=DA( √ ) ③OB=OD,∠1=∠2=∠3=∠4( √ ) ④DA⊥AB,S菱形ABCD=4·S△OAB( × )
(2)如图,在四边形ABCD中,AD∥BC,AB∥CD, AB⊥BC.求证:四边形ABCD是矩形.
证明:∵AD∥BC,AB∥CD ∴四边形ABCD是平行四边形 ∵AB⊥BC,∴∠B=90° ∴ ABCD是矩形

上海市16区2018届中考一模数学试卷分类汇编:押轴题(含答案)

上海市16区2018届中考一模数学试卷分类汇编:押轴题(含答案)

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编押轴题专题宝山区25.(本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD 中,AD //BC ,AD =7,AB =CD =15,BC =25,E 为腰AB 上一点且AE :BE =1:2,F 为BC 一动点,∠FEG =∠B ,EG 交射线BC 于G ,直线EG 交射线CA 于H . (1)求sin ∠ABC ; (2)求∠BAC 的度数;(3)设BF =x ,CH =y ,求y 与x 的函数关系式及其定义域.长宁区25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求 ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图备用图图1DCBA DCA F EP D CB A崇明区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF . (1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.(第25题图1)ABCD FE BD FE CA(第25题图2) BD F ECA(第25题图3)奉贤区25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)已知:如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,AD =CD =2,点E 在边AD 上(不与点A 、D 重合),∠CEB =45°,EB 与对角线AC 相交于点F ,设DE =x . (1)用含x 的代数式表示线段CF 的长;(2)如果把△CAE 的周长记作△CAE C ,△BAF 的周长记作△BAF C ,设△△CAEBAFC y C =,求y 关于x 的函数关系式,并写出它的定义域;(3)当∠ABE 的正切值是35时,求AB 的长.虹口区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知AB =5,AD =4,AD ∥BM ,3cos 5B =(如图),点C 、E 分别为射线BM 上的动点(点C 、E 都不与点B重合),联结AC 、AE ,使得∠DAE =∠BAC ,射线EA 交射线CD 于点F .设BC =x ,AFy AC=. (1)如图1,当x =4时,求AF 的长;(2)当点E 在点C 的右侧时,求y 关于x 的函数关系式,并写出函数的定义域; (3)联结BD 交AE 于点P ,若△ADP 是等腰三角形,直接写出x 的值.黄浦区25.(本题满分14分)如图,线段AB =5,AD =4,∠A =90°,DP ∥AB ,点C 为射线DP 上一点,BE 平分∠ABC 交线段AD 于点E (不与端点A 、D 重合).(1)当∠ABC 为锐角,且tan ∠ABC =2时,求四边形ABCD 的面积; (2)当△ABE 与△BCE 相似时,求线段CD 的长;(3)设CD =x ,DE =y ,求y 关于x 的函数关系式,并写出定义域.嘉定区25. 在正方形ABCD 中,AB =8,点P 在边CD 上,tan ∠PBC =43,点Q 是在射线BP 上的一个动点,过点Q 作AB 的平行线交射线AD 于点M ,点R 在射线AD 上,使RQ 始终与直线BP 垂直。

2018年中考数学考点总动员系列专题25平行线的证明(含解析)

2018年中考数学考点总动员系列专题25平行线的证明(含解析)

考点二十五:平行线的证明聚焦考点☆温习理解一.命题1.命题:判断一件事情的语句,叫做命题.2.真命题:如果题设成立,那么结论一定成立,这样的命题叫真命题.3.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫假命题.4.互逆命题:在两个命题中,如果第一个命题的题设是另一个命题的结论,而第一个命题的结论是另一个命题的题设,那么这两个命题叫做互逆命题.二、平行线的判定与性质(1)平行线的性质如果两直线平行,那么同位角相等;如果两直线平行,那么内错角相等;如果两直线平行,那么同旁内角互补.(2)平行线的判定同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.2.平行线的基本事实(即平行公理)经过直线外一点,有且只有一条直线与这条直线平行.名师点睛☆典例分类考点典例一、推理论证【例1】(2017•宁波)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是()A.3 B.4 C.5 D.6【答案】A【解析】考点:推理与论证.【点睛】此题主要考查了推理与论证,正确结合正方形面积表示出矩形各边长是解题关键.【举一反三】1. (2017•路南区二模)某旅行团在一城市游览,有甲、乙、丙、丁四个景点,导游说:“①要游览甲,就得去乙;②乙、丙只能去一个;③丙、丁要么都去,要么都不去;”根据导游的说法,在下列选项中,该旅行团可能游览的景点是()A.甲、丙 B.甲、丁 C.乙、丁 D.丙、丁【答案】B.【解析】试题分析:根据导游说的分两种情况进行分析:①假设要去甲;②假设去丙;然后分析可得答案.试题解析:导游说:“①要游览甲,就得去乙;②乙、丙只能去一个,;③丙、丁要么都去,要么都不去”,①假设要去甲,就得去乙,就不能去丙,不去丙,就不能去丁,因此可以只去甲和乙;②假设去丙,就得去丁,就不能去乙,不去乙也不能去甲,因此可以只去丙丁;故选:D.考点:推理与论证.2.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y=( )A .2B .3C .6D .x+3【答案】B .考点:整式的加减. 考点典例二、命题的真假【例2】(2017内蒙古通辽第9题)下列命题中,假命题有( )①两点之间线段最短;②到角的两边距离相等的点在角的平分线上;③过一点有且只有一条直线与已知直线平行;④垂直于同一直线的两条直线平行;⑤若⊙O 的弦CD AB ,交于点P ,则PD PC PB PA ⋅=⋅.A .4个B .3个 C. 2个 D .1个【答案】C【解析】试题分析:①根据线段的性质公理,两点之间线段最短,说法正确,不是假命题; ②根据角平分线的性质,到角的两边距离相等的点在角的平分线上,说法正确,不是假命题;③根据垂线的性质、平行公理的推论,过直线外一点有且只有一条直线与已知直线平行,原来的说法错误,是假命题;④在同一平面内,垂直于同一直线的两条直线平行,原来的说法错误,是假命题;⑤如图,连接AC、DB,根据同弧所对的圆周角相等,证出△ACP∽△DBP,然后根据相似三角形的性质得出PA PC,即PA•PB=PC•PD,故若⊙O的弦AB,CD交于点P,则PA•PB=PC•PD的说法正确,不是假命题.PD PB故选:C.考点:命题与定理【点睛】本题考查了命题与定理的知识,解题的关键是掌握有关的知识..【举一反三】(2017广西百色第15题)下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,基中假命题的有(填序号).【答案】②【解析】试题分析:①对顶角相等是真命题;②同旁内角互补是假命题;③全等三角形的对应角相等是真命题;④两直线平行,同位角相等是真命题;故假命题有②.考点:命题与定理.考点典例三、平行线的判定【例3】如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【答案】D.【解析】考点:平行线的判定.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.【举一反三】1. (2017黑龙江绥化第1题)如图,直线,AB CD 被直线EF 所截,155∠=o,下列条件中能判定//AB CD的是( )A .235∠=oB .245∠=oC .255∠=oD .2125∠=o【答案】C【解析】试题分析:A 、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误;B 、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误;C 、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB ∥CD ,故本选项正确;D 、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误;故选C .考点:平行线的判定.2. (2017山东德州第14题)如图利用直尺和三角板过已知直线l 外一点p 作直线l 平行线的方法,其理由是【答案】同位角相等,两直线平行【解析】试题解析:利用三角板中两个60°相等,可判定平行考点:平行线的判定3.如图,直线a ,b 被直线e ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ).A. 55°B. 60°C.70°D. 75°【答案】A.【解析】试题分析:∵∠1=∠2,∴a ∥b,∴∠3的对顶角+∠4=180º,∠3的对顶角=∠3=125°,∴∠4=180º-125º=55º,故选A.考点:平行线的性质与判定.考点典例四、平行线的性质【例3】(2016内蒙古呼伦贝尔市、兴安盟第7题)如图,在△ABC 中,AB=AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC 的大小为( ) dc ba第3题A.40° B.30° C.70° D.50°【答案】A.考点:等腰三角形的性质;平行线的性质.【点睛】利用平行线的性质求角的大小的方法有两种:一是先根据平行线的性质求得与已知角互补或相等的角,再利用互补或相等关系得到答案;二是先求得与已知角互补或相等的角,再利用平行线的性质求得所求的角的大小.【举一反三】1.(2017浙江衢州第5题)如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30° B.40° C.60° D.70°【答案】A.【解析】试题解析:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠E=70°﹣40°=30°.故选A.考点:1.平行线的性质;2.三角形的外角性质.2.(2017浙江宁波第7题)已知直线m n∥,将一块含30°角的直角三角板ABC按如图方式放置(30∠°,则2=ABC=∠°),其中A,B两点分别落在直线m,n上,若120∠的度数为( )A.20°B.30°C.45°D.50°【答案】D.【解析】试题解析:如图,∵m n∥∴∠2=∠3+∠1∵∠1=20°,∠3=30°∴∠2=50°故选D.考点:平行线的性质.课时作业☆能力提升一、选择题1.(2017秋•江阴市期中)甲,乙两人在做“报40”的游戏,其规则是:“两人轮流连续数数,每次最多可以连续数三个数,谁先报到40,谁就获胜”.那么采取适当策略,其结果是()A.后说数者胜 B.先说数者胜 C.两者都能胜 D.无法判断【答案】A.考点:推理与论证.2. (2017湖南株洲第3题)如图示直线l 1,l 2△ABC 被直线l 3所截,且l 1∥l 2,则α=()A .41°B .49°C .51°D .59°【答案】B.【解析】试题分析:因为l 1∥l 2,∴α=49°,故选B .考点:平行线的性质.3.下列命题中,真命题的个数是( ) ①若112x -<<- ,则121x -<<-;②若12x -≤≤,则214x ≤≤;③凸多边形的外角和为360°;④三角形中,若∠A +∠B =90°,则sinA =cosB .A .4B .3C .2D .1【答案】B .考点:命题与定理.4. (2017贵州安顺第5题)如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°【答案】D.【解析】试题解析:如图,∵∠1+∠3=90°,∴∠3=90°﹣40°=50°,∵a∥b,∴∠2+∠3=180°.∴∠2=180°﹣50°=130°.故选D.考点:平行线的性质.5.(2017四川自贡第5题)如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A .45°B .50°C .55°D .60°【答案】C.【解析】试题解析:如图∵AB ⊥BC ,∠1=35°,∴∠2=90°﹣35°=55°.∵a ∥b ,∴∠2=∠3=55°.故选C .考点:平行线的性质.6. (2017新疆乌鲁木齐第2题)如图,直线,172a b ∠=o P ,则2∠的度数是( )A .118oB .108oC .98oD .72o【答案】B .【解析】试题解析:∵直线a ∥b ,∴∠2=∠3,∵∠1=72°,∴∠3=108°,∴∠2=108°,故选B .考点:平行线的性质.7.(2017海南第5题)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45° B.60° C.90° D.120°【答案】C.【解析】试题分析:根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选C.考点:垂线的定义,平行线的性质.8.(2017贵州遵义第6题)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45° B.30° C.20° D.15°【答案】D.【解析】试题分析:∵∠1=30°,∴∠3=90°﹣30°=60°,∵直尺的对边平行,∴∠4=∠3=60°,又∵∠4=∠2+∠5,∠5=45°,∴∠2=60°﹣45°=15°,故选:D.考点:平行线的性质. 二、填空题 9. (2017内蒙古通辽第12题)如图,CD 平分ECB ∠,且AB CD //,若ο36=∠A ,则=∠B .【答案】36°考点:平行线的性质10. (2017湖南常德第12题)命题:“如果m 是整数,那么它是有理数”,则它的逆命题为: .【答案】“如果m 是有理数,那么它是整数”.【解析】试题分析:命题:“如果m 是整数,那么它是有理数”的逆命题为“如果m 是有理数,那么它是整数”. 故答案为:“如果m 是有理数,那么它是整数”.考点:命题与定理.11. (2017内蒙古呼和浩特第12题)如图,//AB CD ,AE 平分CAB ∠交CD 于点E ,若48C ∠=︒,则AED ∠为 .【答案】114°【解析】试题分析:∵AB ∥CD ,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°﹣48°=132°,∵AE 平分∠CAB ,∴∠EAB=66°,∵AB ∥CD ,∴∠EAB+∠AED=180°,∴∠AED=180°﹣66°=114°.考点:1.平行线的性质;2.角平分线的定义.12. (2017内蒙古呼和浩特第14题)下面三个命题:①若,x a y b =⎧⎨=⎩是方程组||2,23x x y =⎧⎨-=⎩的解,则1a b +=或0a b +=; ②函数2241y x x =-++通过配方可化为22(1)3y x =--+;③最小角等于50︒的三角形是锐角三角形. 其中正确命题的序号为 .【答案】②③考点:命题与定理.13. (2016山东淄博第18题)(5分)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.【答案】OA ∥BC ,OB ∥AC,理由详见解析.【解析】试题分析:根据已知可得∠1=∠2,∠2+∠3=180°,由同位角相等,两直线平行即可得OB∥AC,由同旁内角互补,两直线平行可得OA∥BC.试题解析:OA∥BC,OB∥AC,理由如下:∵∠1=50°,∠2=50°,∴∠1=∠2,∴OB∥AC,∵∠2=50°,∠3=130°,∴∠2+∠3=180°,∴OA∥BC.考点:平行线的判定.三、解答题14.A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A 队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由.[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].【答案】至少7分才能保证一定出线.【解析】试题分析:根据题意每队都进行3场比赛,本组进行6场比赛,根据规则每场比赛,两队得分的和是3分或2分,据此对A队的胜负情况进行讨论,从而确定.试题解析:至少要7分才能保证一定出线;每队都进行3场比赛,本组进行6场比赛.若A队两胜一平,则积7分.因此其它队的积分不可能是9分,依据规则,不可能有球队积8分,每场比赛,两队得分的和是3分或2分.6场比赛两队的得分之和最少是12分,最多是18分,∴最多只有两个队得7分.所以积7分保证一定出线.若A队两胜一负,积6分.如表格所示,根据规则,这种情况下,A队不一定出线.同理,当A队积分是5分、4分、3分、2分时不一定出线.总之,至少7分才能保证一定出线.考点:推理与论证.15.(2017重庆A卷第19题)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.【答案】【解析】试题分析:由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.试题解析:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=12∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.考点:平行线的性质.。

【复习必备】2018年中考数学试题分类汇编 知识点24 线段垂直平分线、角平分线、中位线

【复习必备】2018年中考数学试题分类汇编 知识点24 线段垂直平分线、角平分线、中位线

线段垂直平分线、角平分线、中位线一、选择题1. (2018四川泸州,7题,3分) 如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则ABCD 的周长为( ) A.20 B. 16C. 12D.8D第7题图【答案】B【解析】ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点,又因为E 是AB 中点,所以EO 是△ABC 的中位线,AE=21AB ,EO=21BC ,因为AE+EO=4,所以AB+BC=2(AE+EO)=8,ABCD 中AD=BC ,AB=CD ,所以周长为2(AB+BC)=16【知识点】平行四边形的性质,三角形中位线2. (2018四川省南充市,第8题,3分)如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12B .1C .32D 【答案】B【思路分析】1.由∠ACB=90°,∠A=30°,BC的长度,可求得AB的长度,2.利用直角三角形斜边的中线等于斜边第一半,求得CD的长度;3.利用中位线定理,即可求得EF的长.【解题过程】解:在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,,∴AB=4,CD=12AB,∴CD=12×4=2,∵E,F分别为AC,AD的中点,∴EF=12CD=12×2=1,故选B.【知识点】30°所对直角边是斜边的一半;直角三角形斜边的中线等于斜边第一半;中位线定理3. (2018四川省达州市,8,3分)△ABC的周长为19,点D、E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M.若BC=7,则MN的长为().A.32B.2 C.52D.3第8题图【答案】C,【解析】∵△ABC的周长为19,BC=7,∴AB+AC=12.∵∠ABC的平分线垂直于AE,垂足为N,∴BA=BE,N是AE的中点.∵∠ACB的平分线垂直于AD,垂足为M,∴AC=DC,M是AD的中点.∴DE=AB+AC-BC=5.∵MN是△ADE的中位线,∴MN=12DE=52.故选C.【知识点】三角形的中位线4. (2018浙江杭州, 10,3分)如图,在△ABC中,点D在AB边上,DE//BC,与边AC交于点E,连接BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若2AD>AB,则3S1>2S2B. 若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D. 若2AD<AB,则3S1<2S2【答案】D【思路分析】首先考虑极点位置,当2AD=AB即AD=BD时S1,S2的关系,然后再考虑AD>BD时S1,S2的变化情况。

中考数学一轮复习:第25课时矩形课件

中考数学一轮复习:第25课时矩形课件
2
No
返回目录
第25课时 矩形
③当DP=DC时,如解图①,过点D作DQ⊥AC于点Q,则PQ=CQ.
∵S△ADC=
1 2
AD·DC=
1 2
AC·DQ,
∴DQ= AD·DC=24 , AC 5
∴CQ= DC2-DQ2=18 , ∴PC=2CQ= 36 , 5
5 ∴AP=AC-PC= 14,
第2题解图①
返回目录
【提分要点】判定四边形是矩形,可以先判定这个四边形是平行四边形,然 后找角或者对角线的关系,若角度容易求,则可找其一角为90°,便可判定 是矩形;若对角线容易求,则证明其对角线相等即可判定其为矩形.
No
第25课时 矩形
回归教材 1. 证明:有三个角是直角的四边形是矩形. 已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°. 求证:四边形ABCD是矩形. 【自主作答】 证明:∵∠A=∠B=∠C=90°, ∴AD∥BC,AB∥CD, ∴四边形ABCD是平行四边形. ∵∠A=90°, ∴四边形ABCD是矩形.
①若∠BCE=4∠DCE,则∠COE=___3_6_゚___ ; ②过点B作CE的平行线BF,过点C作BE的平行线CF,两平行线相交于点F,则
四边形BFCE是_矩___形__,判定根据为__有__一__个__角__是__直__角__的__平__行__四__边__形__是__矩__形____ ;
例题图②
2 又∵OC2+CE2=
1
BD2+
2 1
BD2=
1
BD2,
4
4
2
∴OC2+CE2=OE2,
∴∠OCE=90°.
∵OD=OC,
∴∠OCD=∠ODC=60°,
∴∠DCE=∠OCE-∠OCD=30°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学试题分类汇编:考点25 矩形 一.选择题(共6小题) 1.(2018•遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥

BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的

面积为( )

A.10 B.12 C.16 D.18 【分析】想办法证明S△PEB=S△PFD解答即可. 【解答】解:作PM⊥AD于M,交BC于N.

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形, ∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN, ∴S△DFP=S△PBE=×2×8=8, ∴S阴=8+8=16, 故选:C.

2.(2018•枣庄)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足

为F,则tan∠BDE的值是( )

A. B. C. D. 【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案. 【解答】解:∵四边形ABCD是矩形, ∴AD=BC,AD∥BC, ∵点E是边BC的中点, ∴BE=BC=AD, ∴△BEF∽△DAF, ∴=, ∴EF=AF, ∴EF=AE, ∵点E是边BC的中点, ∴由矩形的对称性得:AE=DE, ∴EF=DE,设EF=x,则DE=3x, ∴DF==2x, ∴tan∠BDE===; 故选:A.

3.(2018•威海)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,

G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )

A.1 B. C. D. 【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案. 【解答】解:如图,延长GH交AD于点P,

∵四边形ABCD和四边形CEFG都是矩形, ∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1, ∴AD∥GF, ∴∠GFH=∠PAH, 又∵H是AF的中点, ∴AH=FH, 在△APH和△FGH中,

∵, ∴△APH≌△FGH(ASA), ∴AP=GF=1,GH=PH=PG, ∴PD=AD﹣AP=1, ∵CG=2、CD=1, ∴DG=1, 则GH=PG=×=, 故选:C.

4.(2018•杭州)如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,

∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则( ) A.(θ1+θ4)﹣(θ2+θ3)=30° B.(θ2+θ4)﹣(θ1+θ3)=40° C.(θ1+θ2)﹣(θ3+θ4)=70° D.(θ1+θ2)+(θ3+θ4)=180° 【分析】依据矩形的性质以及三角形内角和定理,可得∠ABC=θ2+80°﹣θ1,∠BCD=θ3+130°﹣θ4,再根据矩形ABCD中,∠ABC+∠BCD=180°,即可得到(θ1+θ4)

﹣(θ2+θ3)=30°. 【解答】解:∵AD∥BC,∠APB=80°, ∴∠CBP=∠APB﹣∠DAP=80°﹣θ1, ∴∠ABC=θ2+80°﹣θ1, 又∵△CDP中,∠DCP=180°﹣∠CPD﹣∠CDP=130°﹣θ4, ∴∠BCD=θ3+130°﹣θ4, 又∵矩形ABCD中,∠ABC+∠BCD=180°, ∴θ2+80°﹣θ1+θ3+130°﹣θ4=180°, 即(θ1+θ4)﹣(θ2+θ3)=30°, 故选:A.

5.(2018•聊城)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别

在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为( ) A.(﹣,) B.(﹣,) C.(﹣,) D.(﹣,)

【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案. 【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M, 由题意可得:∠C1NO=∠A1MO=90°, ∠1=∠2=∠3, 则△A1OM∽△OC1N, ∵OA=5,OC=3, ∴OA1=5,A1M=3, ∴OM=4, ∴设NO=3x,则NC1=4x,OC1=3, 则(3x)2+(4x)2=9, 解得:x=±(负数舍去), 则NO=,NC1=, 故点C的对应点C1的坐标为:(﹣,). 故选:A.

6.(2018•上海)已知平行四边形ABCD,下列条件中,不能判定这个平行四边

形为矩形的是( ) A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC 【分析】由矩形的判定方法即可得出答案. 【解答】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确; B、∠A=∠C不能判定这个平行四边形为矩形,错误;

C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;

D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;

故选:B.

二.填空题(共6小题) 7.(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,

装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是 .

【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.

【解答】解:设七巧板的边长为x,则 AB=x+x,

BC=x+x+x=2x,

==.

故答案为:.

8.(2018•达州)如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的

点A1处,则点B的对应点B1的坐标为 (﹣2,6) .

【分析】连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=2,得到答案.

【解答】解:连接OB1,作B1H⊥OA于H, 由题意得,OA=6,AB=OC﹣2, 则tan∠BOA==, ∴∠BOA=30°, ∴∠OBA=60°, 由旋转的性质可知,∠B1OB=∠BOA=30°, ∴∴∠B1OH=60°, 在△AOB和△HB1O,

, ∴△AOB≌△HB1O, ∴B1H=OA=6,OH=AB=2, ∴点B1的坐标为(﹣2,6), 故答案为:(﹣2,6).

9.(2018•上海)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是 .

【分析】先根据要求画图,设矩形的宽AF=x,则CF=x,根据勾股定理列方程可得结论. 【解答】解:在菱形上建立如图所示的矩形EAFC, 设AF=x,则CF=x, 在Rt△CBF中,CB=1,BF=x﹣1, 由勾股定理得:BC2=BF2+CF2, , 解得:x=或0(舍), 即它的宽的值是, 故答案为:.

10.(2018•连云港)如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、

DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为 2 .

【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题; 【解答】解:如图,连接BD.

∵四边形ABCD是矩形, ∴∠ADC=∠DCB=90°,AC=BD=, ∵CG=DG,CF=FB, ∴GF=BD=, ∵AG⊥FG, ∴∠AGF=90°, ∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°, ∴∠DAG=∠CGF, ∴△ADG∽△GCF,设CF=BF=a,CG=DG=b, ∴=, ∴=, ∴b2=2a2, ∵a>0.b>0, ∴b=a, 在Rt△GCF中,3a2=, ∴a=, ∴AB=2b=2. 故答案为2.

11.(2018•株洲)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、

Q分别为AO、AD的中点,则PQ的长度为 2.5 .

【分析】根据矩形的性质可得AC=BD=10,BO=DO=BD=5,再根据三角形中位线定理可得PQ=DO=2.5. 【解答】解:∵四边形ABCD是矩形, ∴AC=BD=10,BO=DO=BD, ∴OD=BD=5, ∵点P、Q是AO,AD的中点, ∴PQ是△AOD的中位线, ∴PQ=DO=2.5. 故答案为:2.5.

12.(2018•嘉兴)如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,

点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是 0或1<AF或4 .

【分析】先根据圆周角定理确定点P在以EF为直径的圆O上,且是与矩形ABCD

相关文档
最新文档