八年级整式的乘法与因式分解单元测试题(Word版 含解析)
八年级整式的乘法与因式分解单元试卷(word版含答案)

八年级整式的乘法与因式分解单元试卷(word版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( )A.2 B.4 C.6 D.8【答案】C【解析】【分析】【详解】试题分析:根据题意可得A=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216根据21=2;22=4;23=8;24=16;25=32;···因此可由16÷4=4,所以216的末位为6故选C点睛:此题是应用平方差公式进行计算的规律探索题,解题的关键是通过添加式子,使原式变化为平方差公式的形式;再根据2的n次幂的计算总结规律,从而可得到结果.2.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a2+b2+c2—ab-bc-ca的值等于( )A.0 B.1 C.2 D.3【答案】D【解析】【分析】首先把a2+b2+c2﹣ab﹣bc﹣ac两两结合为a2﹣ab+b2﹣bc+c2﹣ac,利用提取公因式法因式分解,再把a、b、c代入求值即可.【详解】a2+b2+c2﹣ab﹣bc﹣ac=a2﹣ab+b2﹣bc+c2﹣ac=a(a﹣b)+b(b﹣c)+c(c﹣a)当a=2012x+2011,b=2012x+2012,c=2012x+2013时,a-b=-1,b-c=-1,c-a=2,原式=(2012x+2011)×(﹣1)+(2012x+2012)×(﹣1)+(2012x+2013)×2=﹣2012x﹣2011﹣2012x﹣2012+2012x×2+2013×2=3.故选D.【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.3.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+, 20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.4.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.5.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是()A.等腰三角形B.等边三角形C.直角三角形D.无法确定【答案】A【解析】解:∵a2﹣4b=7,b2﹣4c=﹣6,c2﹣6a=﹣18,∴a2﹣4b+b2﹣4c+c2﹣6a=7﹣6﹣18,整理得:a2﹣6a+9+b2﹣4b+4+c2﹣4c+4=0,即(a﹣3)2+(b﹣2)2+(c﹣2)2=0,∴a=3,b=2,c=2,∴此三角形为等腰三角形.故选A.点睛:本题考查了因式分解的应用,解题的关键是正确的进行因式分解.6.下列分解因式正确的是()A.x2-x+2=x(x-1)+2 B.x2-x=x(x-1)C.x-1=x(1-1x)D.(x-1)2=x2-2x+1【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A、x2-x+2=x(x-1)+2,不是分解因式,故选项错误;B、x2-x=x(x-1),故选项正确;C、x-1=x(1-1x),不是分解因式,故选项错误;D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.故选:B.【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.7.下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a-1)=a2-1 B.a2-6a+9=(a-3)2C.x2+2x+1=x(x+2x)+1 D.-18x4y3=-6x2y2·3x2y【答案】B【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A、是多项式乘法,不是因式分解,错误;B、是因式分解,正确.C 、右边不是积的形式,错误;D 、左边是单项式,不是因式分解,错误.故选B .【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.8.下列因式分解正确的是( )A .()()2444x x x -=+- B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()22212x x x x -+=-+ 【答案】C【解析】【分析】根据因式分解的定义及方法逐项分析即可.【详解】A. ()()2422x x x -=+-,故不正确; B. 221x x +-在实数范围内不能因式分解,故不正确;C. ()()()222x 2x 2=12x 1x 1--=+-,正确; D. ()22212x x x x -+=-+的右边不是积的形式,故不正确; 故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.9.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( )A .正数B .零C .负数D .非负数【答案】A【解析】【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)【答案】B【解析】【分析】 通过平移后,根据长方形的面积计算公式即可求解.【详解】 平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【答案】4035【解析】【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.12.多项式18x n+1-24x n 的公因式是_______.【答案】6x n【解析】运用公因式的概念,找出系数的最大公约数是6,相同字母的最低指数次幂是x n ,可得公因式为6x n .故答案为:6x n.13.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____.【答案】20【解析】【分析】【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点睛】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.14.已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________.【答案】40【解析】【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96 可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可.【详解】∵22x y xy 96+=,∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4,∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24当xy(x+y)= 4⨯24时,无解,当xy(x+y)= 6⨯16时,无解,当xy(x+y)=8⨯12时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x 2+y 2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.15.若a ,b 互为相反数,则a 2﹣b 2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.16.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.17.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.【答案】70.【解析】【分析】由周长和面积可分别求得a+b 和ab 的值,再利用因式分解把所求代数式可化为ab (a+b ),代入可求得答案【详解】∵长、宽分别为a 、b 的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10, ∴a 2b+ab 2=ab (a+b )=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab (a+b )是解题的关键.18.若21x x +=,则433331x x x +++的值为_____.【答案】4【解析】【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.19.分解因式:3x 2-6x+3=__.【答案】3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()222-+=-+=-.36332131x x x x x故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.若m+n=3,则2m2+4mn+2n2-6的值为________.【答案】12【解析】原式=2(m2+2mn+n2)-6,=2(m+n)2-6,=2×9-6,=12.。
八年级数学上册第十四章整式的乘法与因式分解单元综合测试题含解析

《第14章整式的乘法与因式分解》一、填空题1.若x•x a•x b•x c=x2000,则a+b+c=.2.(﹣2ab)=,(﹣a2)3(﹣a32)=.3.如果(a3)2•a x=a24,则x=.4.计算:(1﹣2a)(2a﹣1)=.5.有一个长4×109mm,宽2.5×103mm,高6×103mm的长方体水箱,这个水箱的容积是mm2.6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图写出一个代数恒等式是:.7.已知(﹣x)3=a0+a1x+a2x2+a3x3,求(a0+a2)2﹣(a1+a3)2的值.8.已知:A=﹣2ab,B=3ab(a+2b),C=2a2b﹣2ab2,则3AB﹣AC=.9.用如图所示的正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片张,B类卡片张,C类卡片张.10.我国北宋时期数学家贾宪的著作《开方作法本源》中的“开方作法本源图”如图所示,通过观察你认为图中的a=.二、选择题11.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4C.(﹣2x)2=﹣4x2D.(﹣3a3)•(﹣5a5)=15a812.如果一个单项式与﹣3ab的积为﹣a2bc,则这个单项式为()A.a2c B.ac C.a2c D.ac13.计算[(a+b)2]3•(a+b)3的正确结果是()A.(a+b)8 B.(a+b)9C.(a+b)10D.(a+b)1114.若x2﹣y2=20,且x+y=﹣5,则x﹣y的值是()A.5 B.4 C.﹣4 D.以上都不对15.若25x2+30xy+k是一个完全平方式,则k是()A.36y2B.9y2C.6y2D.y216.已知a+b=2,则a2﹣b2+4b的值是()A.2 B.3 C.4 D.617.计算(5x+2)(2x﹣1)的结果是()A.10x2﹣2 B.10x2﹣x﹣2 C.10x2+4x﹣2 D.10x2﹣5x﹣218.下列计算正确的是()A.(x+7)(x﹣8)=x2+x﹣56 B.(x+2)2=x2+4C.(7﹣2x)(8+x)=56﹣2x2D.(3x+4y)(3x﹣4y)=9x2﹣16y2三、解答题(共46分)19.利用乘法公式公式计算(1)(3a+b)(3a﹣b);(2)10012.20.计算:(x+1)2﹣(x﹣1)2.21.化简求值:(2a﹣3b)2﹣(2a+3b)(2a﹣3b)+(2a+3b)2,其中a=﹣2,b=.22.解方程:2(x﹣2)+x2=(x+1)(x﹣1)+x.23.如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,根据图中标注的数据,计算图中空白部分的面积.24.学习了整数幂的运算后,小明给小华出了这样一道题:试比较3555,4444,5333的大小?小华怎么也做不出来.聪明的读者你能帮小华解答吗?《第14章整式的乘法与因式分解》参考答案与试题解析一、填空题1.若x•x a•x b•x c=x2000,则a+b+c=.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法:底数不变指数相加,可得答案.【解答】解:x•x a•x b•x c=x1+a+b+c=x2000,1+a+b+c=2000,a+b+c=1999,故答案为:1999.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加得出1+a+b+c=2000是解题关键.2.(﹣2ab)=,(﹣a2)3(﹣a32)=.【考点】单项式乘多项式;单项式乘单项式.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:﹣2ab(a﹣b)=﹣2ab•a+2ab•b=﹣2a2b+2ab2,(﹣a2)3(﹣a32)=﹣a6•(﹣a32)=a38.故答案为:﹣2a2b+2ab2,a38.【点评】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.3.如果(a3)2•a x=a24,则x=.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先根据幂的乘方进行计算,再根据同底数幂的乘法得出方程6+x=24,求出即可.【解答】解:∵(a3)2•a x=a24,∴a6•a x=a24,∴6+x=24,∴x=18,故答案为:18.【点评】本题考查了幂的乘方,同底数幂的乘法的应用,解此题的关键是得出方程6+x=24.4.计算:(1﹣2a)(2a﹣1)=.【考点】完全平方公式.【分析】先提取“﹣"号,再根据完全平方公式进行计算即可.【解答】解:(1﹣2a)(2a﹣1)=﹣(1﹣2a)2=﹣(1﹣4a+4a2)=﹣1+4a﹣4a2,故答案为:﹣1+4a﹣4a2.【点评】本题考查了完全平方公式的应用,能熟练地运用公式进行计算是解此题的关键.5.有一个长4×109mm,宽2.5×103mm,高6×103mm的长方体水箱,这个水箱的容积是mm2.【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则求出即可.【解答】解:∵长4×109mm,宽2。
人教版八年级数学上册《第十四章整式的乘法与因式分解》单元测试卷(带答案)

人教版八年级数学上册《第十四章整式的乘法与因式分解》单元测试卷(带答案)一、单选题(共10小题,满分40分)1.下列计算正确的是( )A .a 2·a 3= a 6B .(a 2)3= a 6C .(2a )3=2aD .a 10÷a 2= a 52.下列因式分解正确的是( ) A .()3333x y x y ++=+B .221142x x x ++=+⎛⎫ ⎪⎝⎭ C .()()22x y x y x y -+=+- D .()()22444x y x y x y -=-+ 3.将295变形正确的是( )A .22295905=+B .()()29510051005=+-C .2229510010005=-+D .22295909055=+⨯+ 4.如果29x mx -+(m 是常数)是完全平方式,那么m 的值为( )A .3B .6±C .9±D .65.下列运算正确的是( )A .a 3+a 3=a 6B .a 2•a 3=a 6C .(ab )2=ab 2D .(a 2)4=a 86.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“创新数”,如8=32﹣12,16=52﹣32,所以8,16都是“创新数”,下列整数是“创新数”的是( ) A .20 B .22 C .26 D .247.下列各式中不能用平方差公式计算的是( )A .()y-x ()x+yB .()2x-y ()-y+2xC .()x-3y ()x+3yD .()4x-5y ()5y+4x 8.已知(x -3)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =3,n =9B .m =3,n =6C .m =-3,n =-9D .m =-3,n =99.如图,长方形ABCD 中812812AB AD <<<<,,放入两个边长都为4的正方形 AEFG ,正方形DJIH 及一个边长为8的正方形KCML ,1S 和2S 分别表示对应阴影部分的面积,若12=S S ,则长方形ABCD 的周长是( )A .36B .40C .44D .4810.如果x y +,x y -与22x y -,4,m n +和mm 分别对应6个字:鹿,鸣,数,我,爱,学,现将()()222244m x y n x y -+-因式分解,结果呈现的可能是哪句话( ) A .我爱鹿鸣 B .爱鹿鸣 C .鹿鸣数学 D .我爱数学二、填空题(共8小题,满分32分)11.如图为杨辉三角表,它可以帮助我们按规律写出()na b +(其中n 为正整数)展开式的系数,请仔细观察表中规律,将()4a b +的展开式补充完整. ()1a b a b +=+ ()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++()4434a b a a b +=++ 22344a b ab b ++12.若4,8x y a b ==,则232x y -可表示为 (用含a 、b 的代数式表示).13.如图,请根据图中标的数据,计算大长方形的面积.通过面积不同的计算方法,可以得到的等式关系是: .14.计算:()2321x x x -⋅+-= . 15.如图所示的运算过程中,若开始输入的值为43,我们发现第1次输出的结果为48,第二次输出的结果为24,…,则第2020次输出的结果为 .16.当2x =时,31ax bx ++的值为6,那么当2x =-时,31ax bx ++的值是 .17.已知关于x 、y 的二次式22754524x xy ay x y ++---可分解为两个一次因式的乘积,则a 的值是 . 18.卫星绕地球运动的速度(第一宇宙速度)为37.910⨯米/秒,求卫星绕地球运行5×103秒后所经过的路程是 米(用科学记数法表示)三、解答题(共6小题,每题8分,满分48分)19.计算.(1)()()2x y a b ++;(2)()()a b a b +-;(3)()13a b a ⎛⎫-- ⎪⎝⎭; (4)()()3223x y x y --;(5)()()322x x +--.20.利用因式分解计算:(1)20032-1999×2001(2)562+442+56×88.21.先化简,再求值:()()()2212112x x x -++-,其中=1x -.22.(1)计算:(﹣2x 2y )3÷(﹣4xy 2);(2)已知,如图,D 是△ABC 的边AB 上一点,AB∥FC ,DF 交AC 于点E ,DE=EF .求证:AE=CE .23.我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到()2222a b a ab b +=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:_______;(2)若10a b c ++=,25ab ac bc ++=则222a b c ++=_______;(3)在棱长为a 的正方体上割去一个棱长为()b b a <的小正方体(如图3),通过用不同的方法计算图中余下几何体的体积,完成填空:()()33____________a b a b -=-.(4)利用(3)得到的恒等式分解因式:3327x y -.24.请阅读游戏玩法并回答问题:(1)如图1,有一个边长为a 的大正方形纸板,在正中心剪下边长为b 的正方形.则阴影部分面积是______.(2)将图1沿虚线剪开后重新拼接成图2,得到一个平行四边形.则这个平行四边形的底是______,高是______,面积是______.(3)由图1到图2可以得到等式______.(4)利用上述得到的等式计算9991001⨯.参考答案:1.B2.B3.C4.B5.D6.D7.B8.A9.B10.A11.612.a b13.()()2232325a b a b a b ab ++=++14.32363x x x --+15.6.16.-417.6。
八年级整式的乘法与因式分解单元测试卷 (word版,含解析)

八年级整式的乘法与因式分解单元测试卷 (word 版,含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.2.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.3.若(x +y )2=9,(x -y )2=5,则xy 的值为( )A .-1B .1C .-4D .4【答案】B【解析】试题分析:根据完全平方公式,两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,分别化简可知(x+y )2=x 2+2xy+y 2=9①,(x ﹣y )2= x 2-2xy+y 2=5②,①-②可得4xy=4,解得xy=1.故选B点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..4.下列多项式中,能运用公式法进行因式分解的是( )A .a 2+b 2B .x 2+9C .m 2﹣n 2D .x 2+2xy+4y 2【解析】试题分析:直接利用公式法分解因式进而判断得出答案.解:A、a2+b2,无法分解因式,故此选项错误;B、x2+9,无法分解因式,故此选项错误;C、m2﹣n2=(m+n)(m﹣n),故此选项正确;D、x2+2xy+4y2,无法分解因式,故此选项错误;故选C.5.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab 【答案】B【解析】【分析】【详解】解:∵a*b=ab+a+b∴a*(﹣b)+a*b=a(﹣b)+a -b+ab+a+b=﹣ab+a -b+ab+a+b=2a故选B.考点:整式的混合运算.6.如果是个完全平方式,那么的值是()A.8 B.-4 C.±8 D.8或-4【答案】D【解析】试题解析:∵x2+(m-2)x+9是一个完全平方式,∴(x±3)2=x2±2(m-2)x+9,∴2(m-2)=±12,∴m=8或-4.故选D.7.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.12【答案】C【解析】【分析】原式利用完全平方公式的结构特征求出m的值即可.∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.8.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.9.下列等式由左边向右边的变形中,属于因式分解的是 ( )A.x2+5x-1=x(x+5)-1 B.x2-4+3x=(x+2)(x-2)+3xC.(x+2)(x-2)=x2-4 D.x2-9=(x+3)(x-3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、是整式的乘法,故C错误;D、x2-9=(x+3)(x-3),属于因式分解.故选D.此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.10.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B【解析】【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.12.在实数范围内因式分解:231x x +-=____________【答案】3322x x ⎛⎫⎛++ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】利用一元二次方程的解法在实数范围内分解因式即可.【详解】令2310x x +-=∴1x =2x =∴231x x +-=x x ⎛+ ⎝⎭⎝⎭故答案为:x x ⎛+ ⎝⎭⎝⎭【点睛】本题考查实数范围内的因式分解,利用一元二次方程的解法即可解答,熟练掌握相关知识点是解题关键.13.(m+n+p+q) (m-n-p-q)=(__________) 2-(__________) 2.【答案】m n+p+q【解析】(m+n+p+q)(m-n-p-q)=[m+(n+p+q)][m-(n+p+q)]=()22m n p q -++,故答案为(1)m ,(2)n+p+q. 点睛:本题主要考查了平方差公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差,多项式与多项相乘时,要注意观察能否将其中符号相同的项结合成为一项后,再运用平方差公式运算.14.222---x xy y =__________【答案】()2x y -+【解析】根据因式分解的方法,先提公因式“﹣”,再根据完全平方公式分解因式为:()()2222222x xy y x xy y x y ---=-++=-+. 故答案为()2x y -+.点睛:此题主要考查了因式分解,因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),注意符号的变化.15.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.17.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.【答案】()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).18.若()2242x ax x ++=-,则a =_____.【答案】-4【解析】【分析】直接利用完全平方公式得出a 的值.【详解】解:∵()2242x ax x ++=-,∴4a =-故答案为:4-【点睛】此题主要考查了公式法分解因式,正确应用公式是解题关键.19.若2x+5y ﹣3=0,则4x •32y 的值为________.【答案】8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.20.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x 2+2x =3代入即可得答案.【详解】原式=x 2+2x+1-(x 2-4)+x 2=x 2+2x+1-x 2+4+x 2=x 2+2x+5.∵x 2+2x =3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.。
《整式的乘法与因式分解》单元检测(含答案)

(1) 用含a、b的代数式表示绿化面积;
(2) 求出当a=3米,b=2米时的绿化面积.
24.图a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.
【详解】∵a2n-1an+5=a16,
∴a2n-1+n+5=a16,即a3n+4=a16,
则3n+4=16,
解得n=4,
故选B.
【点睛】本题考查了同底数幂 乘法,属于基础题,解答本题的关键掌握同底数幂的运算法则.
4.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()
A.1﹣3abB.﹣3abC.1+3abD.﹣1﹣3ab
A. 60B. 50C. 25D. 15
二.填空题(共8小题)
11.计算:0.6a2b• a2b2﹣(﹣10a)•a3b3=_____.
12.如果(nx+1)(x2+x)的结果不含x2的项(n为常数),那么n=_____.
13.若2018m=6,2018n=4,则20182m﹣n=_____.
14.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,则剩下的钢板的面积为_____.
【详解】解:a2﹣16=(a+4)(a﹣4).
【点睛】本题主要考查用平方差公式进行分解因式,牢记公式是解题的关键.
17.已知4×2a×2a+1=29,且2a+b=8,求ab=_____.
【答案】9
【解析】
【分析】
先由第一个等式求出a的值,再求出b的值,相乘即可求的答案.
八年级整式的乘法与因式分解单元练习(Word版 含答案)

八年级整式的乘法与因式分解单元练习(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B. 【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.2.利用平方差公式计算(25)(25)x x ---的结果是A .245x -B .2425x -C .2254x -D .2425x + 【答案】C【解析】【分析】平方差公式是(a+b )(a-b )=a 2-b 2.【详解】解:()()()()()2225252525425254x x x x x x ---=--+=--=-, 故选择C.【点睛】本题考查了平方差公式,应牢记公式的形式.3.下列计算正确的是( )A .3x 2 ·4x 2 =12x 2B .(x -1)(x —1)=x 2—1C .(x 5)2 =x 7D .x 4 ÷x =x 3【答案】D【解析】试题分析:根据单项式乘以单项式的法则,可知3x 2 ·4x 2 =12x 4,故A 不正确; 根据乘法公式(完全平方公式)可知(x -1)(x —1)=x 2—2x+1,故B 不正确;根据幂的乘方,底数不变,指数相乘,可得(x 5)2 =x 10,故C 不正确;根据同底数幂的相除,可知x 4 ÷x =x 3,故D 正确. 故选:D.4.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.5.已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题的图形是( )A.B.C.D.【答案】A【解析】∵222+=++,(2)44x y x y xy>),则这个图形∴若用边长分别为x和y的两种正方形组成一个图形来解决(其中x y应选A,其中图形A中,中间的正方形的边长是x,四个角上的小正方形边长是y,四周带虚线的每个矩形的面积是xy.故选A.6.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab【答案】B【解析】【分析】【详解】解:∵a*b=ab+a+b∴a*(﹣b)+a*b=a(﹣b)+a -b+ab+a+b=﹣ab+a -b+ab+a+b=2a故选B.考点:整式的混合运算.7.如果是个完全平方式,那么的值是()A.8 B.-4 C.±8 D.8或-4【解析】试题解析:∵x 2+(m -2)x +9是一个完全平方式,∴(x ±3)2=x 2±2(m -2)x +9,∴2(m -2)=±12,∴m =8或-4.故选D .8.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8 【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.9.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b +D .+a b【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】宽为:()()()()22222a ab ab ba b a b a b +++÷+=+÷+= ()12a b + 故选:C【点睛】考核知识点:整式除法与面积.掌握整式除法法则是关键.10.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0, ∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.若a-b=1,则222a b b --的值为____________.【答案】1【解析】【分析】先局部因式分解,然后再将a-b=1代入,最后在进行计算即可.【详解】解:222a b b --=(a+b )(a-b )-2b=a+b-2b=a-b=1【点睛】本题考查了因式分解的应用,弄清题意、并根据灵活进行局部因式分解是解答本题的关键.12.因式分解:225101a a -+=______________【答案】()251a -【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:225101a a -+=()251a -. 故答案为:()251a -.13.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m 应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.14.若a 2+a-1=0,则a 3+2a 2+2014的值是___________.【答案】2015【解析】【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可.【详解】∵a 2+a-1=0∴a 2+a=1a 3+2a 2+2014=a (a 2+a )+a 2+2014=a+a 2+2014=2015故答案为2015【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.15.(1)已知32m a =,33n b =,则()()332243mn m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0.【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+- 21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.16.计算:=_____.【答案】1【分析】根据平方差公式可以使本题解答比较简便.【详解】解:====1.【点睛】本题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.17.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).【答案】ab【解析】【分析】【详解】设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得,12122{2x x ax x b +=-=解得,122{4a bx a b x +=-= ②的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.19.因式分解:223ax 12ay -=______.【答案】()()3a x 2y x 2y +-【解析】【分析】先提公因式3a ,然后再利用平方差公式进行分解即可得.【详解】原式()223a x 4y =-()()3a x 2y x 2y =+-,故答案为:()()3a x 2y x 2y +-.【点睛】本题考查了综合提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.若21x x +=,则433331x x x +++的值为_____.【答案】4【解析】【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.。
人教版数学八年级上册第十四章《整式的乘法与因式分解》单元检测卷(Word版 含答案)

人教版数学八上《整式的乘法与因式分解》单元检测卷一、选择题1.计算(-a 3)2的结果是( )A.-a 5B.a 5C.a 6D.-a 62.边长为a ,b 的长方形的周长为10,面积为6,则a 3b+ab 3的值为( )A.15B.30C.60D.783.下列各式中计算正确的是( )A.(a+b)(b ﹣a)=a 2﹣b 2B.(﹣m ﹣n)2=m 2+2mn+n 2C.2m 3÷m 3=2mD.(﹣bc)4÷(﹣bc)2=﹣b 2c 24.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a.b 的值分别是( )A.a=2,b=3B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-35.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A.a 2-1B.a 2+aC.a 2+a-2D.(a+2)2-2(a+2)+16.计算(-×103) 2×(1.5×104) 2的值是 ( )A.-1.5×1011B.1014C.-4×1014D.-10147.已知x a =3,x b =4,则x 3a-2b 的值是( )A. B. C.11 D.198.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A.3B.5C.4或5D.3或4或59.已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab+b 2-c 2的值( )A.大于零B.等于零C.小于零D.不能确定10.已知多项式x-a 与x 2+2x-1的乘积中不含x 2项,则常数a 的值是( )A.-1B.1C.2D.-211.已知x=3y+5,且x 2﹣7xy+9y 2=24,则x 2y ﹣3xy 2的值为( )A.0B.1C.5D.1212.已知a=2025x+2024,b=2025x+2025,c=2025x+2026,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A.0B.1C.2D.38271627二、填空题13.已知a m=3,a n=2,则a2m﹣n的值为_____.14.已知x2+2x=3,则代数式(x+1)2﹣(x+2)(x﹣2)+x2的值为_____.15.若64×83=2x,则x=_______.16.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:a2+3ab+2b2=______.17.如图,现有A,C两类正方形卡片和B类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+b),宽为(a+2b)的长方形,那么需要B类长方形卡片__张.18.已知:x2+y2-4x+6y+13=0,则x+y= .三、解答题19.计算:[(ab+1)(ab-1)-2a2b2+1]÷(-ab).20.计算:[-(a2)3]2·(ab2)3·(-2ab)21.分解因式:9(a-b)2-16(a+b)2.22.分解因式:-14abc-7ab+49ab2c.23.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2中阴影部分剪裁后拼成的一个长方形.(1)设如图1中阴影部分面积为S1,如图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+124.阅读:已知a+b=﹣4,ab=3,求a2+b2的值.解:∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.请你根据上述解题思路解答下面问题:(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.(2)已知a﹣c﹣b=﹣10,(a﹣b)•c=﹣12,求(a﹣b)2+c2的值.25.阅读理解:下面的图象表示2m的个位数字随m(m为正整数)变化的规律.请解答下列问题:(1)根据图象回答下列问题:当m=4n(n为正整数)时,2m的个位数字是;当m=4n+1(n为正整数)时,2m的个位数字是;当m=4n+2(n为正整数)时,2m的个位数字是;当m=4n+3(n为正整数)时,2m的个位数字是;(2)求:(2+1)(22+1)(24+1)(28+1)+1的个位数字.(3)求:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)的个位数字.参考答案1.答案为:C2.答案为:D3.答案为:B4.答案为:B;5.答案为:C6.答案为:B7.答案为:B8.答案为:C9.答案为:C10.答案为:C11.答案为:C12.答案为:D13.答案为:4.5.14.答案为:815.答案为:B16.答案为:(a+2b)(a+b).17.答案为:7.18.答案为:-119.原式=ab.20.原式=-2a16b7;21.原式=-7(7a+b)(a+7b).22.原式=-7ab(2c-7bc+1).23.解:(1)S1=a2-b2,S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.24.解:原式=(a+b)(a+b)(a-b)=(a+b)2(a-b)=[(a-b)2+4ab](a-b)=-3.(2)已知a-c-b=-10,(a-b)c=-12,求(a-b)2+c2的值.解:原式=[(a-b)-c]2+2(a-b)c=76.25.解:由图象观察可得:当m=4n(n为正整数)时,2m的个位数字是6;当m=4n+1(n为正整数)时,2m的个位数字是2;当m=4n+2(n为正整数)时,2m的个位数字是4;当m=4n+3(n为正整数)时,2m的个位数字是8;故答案为: 6;2;4;8;(2)解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=216.因为16=4×4,所以由(1)得,216的个位数字是6,即(2+1)(22+1)(24+1)(28+1)+1的个位数字是6.(3)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)=(22﹣1)(22+1)(24+1)(28+1)(216+1)(232+1)=(24﹣1)(24+1)(28+1)(216+1)(232+1)=(28﹣1)(28+1)(216+1)(232+1)=(216﹣1)(216+1)(232+1)=(232﹣1)(232+1)=264﹣1因为64=4×16,所以264的个位数字是6,所以264﹣1的个位数字是5,即(2+ 1)(22+1)(24+1)(28+1)(216+1)(232+1)的个位数字是5.。
八年级整式的乘法与因式分解单元测试题(Word版 含解析)

八年级整式的乘法与因式分解单元测试题(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.对二次三项式4x 2﹣6xy ﹣3y 2分解因式正确的是( )A .3213214()()x y x y +-++B .2132134()()x y x y +---C .(321)(321)x y y x y y ---+D .321213(2)(2)x y x y -+-- 【答案】D【解析】【分析】 【详解】解:4x 2﹣6xy ﹣3y 2=4[x 2﹣32xy +(34y )2]﹣3y 2﹣94y 2 =4(x ﹣34y )2﹣214y 2 =(2x ﹣32y ﹣212y )(2x ﹣32y +212y ) =(2x 321+y )(2x 321- 故选D .【点睛】本题主要是用配方法来分解因式,但本题的计算,分数,根式多,所以学生还是很容易出错的,注意计算时要细心.2.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( ) A .a 2n -1与-b 2n -1 B .a 2n -1与b 2n -1 C .a 2n 与b 2n D .a n 与b n【答案】B【解析】已知a 与b 互为相反数且都不为零,可得a 、b 的同奇次幂互为相反数,同偶次幂相等,由此可得选项A 、C 相等,选项B 互为相反数,选项D 可能相等,也可能互为相反数,故选B.3.若代数式x 2+ax +64是一个完全平方式,则a 的值是( )A .-16B .16C .8D .±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。
另一种是完全平方差公式,就是两个整式的差括号外的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级整式的乘法与因式分解单元测试题(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知226a b ab +=,且a>b>0,则a b a b+-的值为( )A B C .2 D .±2 【答案】A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab ,∵a >b >0,∴∴a ba b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.2.把多项式2425m -分解因式正确的是( )A .(45)(45)m m +-B .(25)(25)m m +-C .(5)(5)m m -+D .(5)(5)m m m -+【答案】B【解析】利用公式法分解因式的要点,根据平方差公式:()()22a b a b a b -=+-,分解因式为:()()()222425252525m m m m -=-=+-.故选B.3.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.4.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.【答案】A【解析】【分析】根据多项式相乘展开可计算出结果.【详解】 ()()1x m x +-=x 2+(m-1)x-m ,而计算结果不含x 项,则m-1=0,得m=1.【点睛】本题考查多项式相乘展开系数问题.5.若(x +y )2=9,(x -y )2=5,则xy 的值为( )A .-1B .1C .-4D .4【答案】B【解析】试题分析:根据完全平方公式,两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,分别化简可知(x+y )2=x 2+2xy+y 2=9①,(x ﹣y )2= x 2-2xy+y 2=5②,①-②可得4xy=4,解得xy=1.故选B点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..6.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.7.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;22(24)()a a a -+--=-,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.8.如图,矩形的长、宽分别为a 、b ,周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .30C .15D .16【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b ,ab ,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a 、b 的长方形的周长为10,面积6,∴2(a+b )=10,ab=6,则a+b=5,故ab 2+a 2b=ab (b+a )=6×5=30.故选:B .【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.9.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+ D .228x 8x 22(2x 1)-+-=-- 【答案】D【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x 8x 22(2x 1)-+-=--.其他不是因式分解:A,C 右边不是积的形式,B 左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.10.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.“元旦”期间小明去永辉超市购物,恰逢永辉超市“满1400减99元”促销活动,小明准备提前购置一些年货A 和B ,已知A 和B 的单价总和是100到200之间的整数,小明粗略测算了一下发现自己所购年货总价为1305元,不能达到超市的促销活动金额. 于是小明又购买了A 、B 各一件,这样就能参加超市的促销活动,最后刚好付款1305元. 小明经仔细计算发现前面粗略测算时把A 和B 的单价看反了,那么小明实际总共买了______件年货.【答案】22【解析】【分析】设A 单价为a 元,实际购买x 件,B 单价为b 元,实际购买y 元,根据题意列出方程组130599(1)(1)1305ax by a y b x +=+⎧⎨-+-=⎩,将两个方程相加得到(1)(1)2709a x y b x y +-++-=,分解因式得()(1)33743a b x y ++-=⨯⨯⨯,由A 和B 的单价总和是100到200之间的整数得到()(1)12921a b x y ++-=⨯,由此求得答案.【详解】设A 单价为a 元,实际购买x 件,B 单价为b 元,实际购买y 元,130599(1)(1)1305ax by a y b x +=+⎧⎨-+-=⎩, ∴(1)(1)2709a x y b x y +-++-=,∴()(1)33743a b x y ++-=⨯⨯⨯,∵A 和B 的单价总和是100到200之间的整数,即100a b 200<+<,∴()(1)12921a b x y ++-=⨯,即129a b +=, 121x y +-=,∴x+y=22,故答案为:22.【点睛】此题考查因式分解,设未知数列出方程组后将两个方程相加再因式分解是关键的步骤,根据A 和B 的单价总和确定出x+y 的值.12.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m 应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.13.若a 2+a-1=0,则a 3+2a 2+2014的值是___________.【答案】2015【解析】【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可.【详解】∵a 2+a-1=0∴a 2+a=1a 3+2a 2+2014=a (a 2+a )+a 2+2014=a+a 2+2014=2015故答案为2015【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.14.在实数范围内因式分解:231x x +-=____________【答案】3322x x ⎛⎫⎛++ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】利用一元二次方程的解法在实数范围内分解因式即可.【详解】令2310x x +-=∴1x =2x =∴231x x +-=x x ⎛+ ⎝⎭⎝⎭故答案为:x x ⎛+ ⎝⎭⎝⎭【点睛】本题考查实数范围内的因式分解,利用一元二次方程的解法即可解答,熟练掌握相关知识点是解题关键.15.(m+n+p+q) (m-n-p-q)=(__________) 2-(__________) 2.【答案】m n+p+q【解析】(m+n+p+q)(m-n-p-q)=[m+(n+p+q)][m-(n+p+q)]=()22m n p q -++,故答案为(1)m ,(2)n+p+q. 点睛:本题主要考查了平方差公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差,多项式与多项相乘时,要注意观察能否将其中符号相同的项结合成为一项后,再运用平方差公式运算.16.因式分解:214y y ++=______ 【答案】212y ⎛⎫+ ⎪⎝⎭ 【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:2222111124222y y y y y ⎛⎫⎛⎫++=+⨯+=+ ⎪ ⎪⎝⎭⎝⎭. 故答案为:212y ⎛⎫+ ⎪⎝⎭ .17.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.因式分解:223ax 12ay -=______.【答案】()()3a x 2y x 2y +-【解析】【分析】先提公因式3a ,然后再利用平方差公式进行分解即可得.【详解】原式()223a x 4y =-()()3a x 2y x 2y =+-,故答案为:()()3a x 2y x 2y +-.【点睛】本题考查了综合提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为______.【答案】13【解析】【分析】设正方形A 的边长为a ,正方形B 的边长为b ,由图形得出关系式求解即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得a 2﹣b 2﹣2(a ﹣b )b=1即a 2+b 2﹣2ab=1,由图乙得(a+b )2﹣a 2﹣b 2=12,2ab=12,所以a 2+b 2=13,故答案为13.【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是根据图形得出数量关系.20.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a2+2ab+b2=(a+b)2【解析】试题分析:两个正方形的面积分别为a2,b2,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)2,所以a2+2ab+b2=(a+b)2.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.。