因式分解单元测试题及---答案

合集下载

(完整版)因式分解单元测试题及答案,推荐文档

(完整版)因式分解单元测试题及答案,推荐文档

8、6,9 9、4.03
10、 n n 2 n 12 1 (n≥2 的整数)
4
三、解答题
1、(1) a a b2 (2) 3a 2a2 15b2 3c2
(3) m 1m 22
(4) x 22 x 22
2、(1)0
(2) 59
3、1000
4、(1)
1993 199 199 1992 1 199 199 1
0.52 0.22
7.8
3.14 0.21 5.14 (吨)
四、(用解法二的方法求解),设 x4 mx3 nx 16 A x 1x 2( A 为整式),
取 x =1,得 m n 15
①,取 x =2,得 4m n 0 ②,由①、②得:
m =-5, n =20。
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十
3、若 x2 3x 10 x ax b,则 a =________, b =________。
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十
4、若 x y 5, xy 6 则 x2 y xy2 =_________, 2x2 2 y2 =__________。
199 1 199198 200
(2) n3 n n n2 1 n n 1n 1因为 n 为正整数,n-1,n,n+1 为三个连
续的整数,必有 2 的倍数和 3 的倍数,所以 n n 1n 1必有 6 的倍数。
5、3
6、四根钢立柱的总质量为
7.8
D 2
2
d 2
2
h
7.8
3.14
6、已知两个正方形的周长差是 96cm,面积差是 960 cm2 ,则这两个正方形的边 长分别是_______________cm。

七年级数学下册《因式分解》单元测试卷(附带答案解析)

七年级数学下册《因式分解》单元测试卷(附带答案解析)

七年级数学下册《因式分解》单元测试卷(附带答案解析)一.选择题1.下列多项式不能用平方差分解因式的是()A.0.36a2﹣0.04b2B.x2﹣16C.﹣a2+b2+c2D.﹣x2+y22.多项式4ab2+8ab2﹣12ab的公因式是()A.4ab B.2ab C.3ab D.5ab3.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣44.下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1D.a2﹣1=a(a﹣)5.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形②是直角三角形③是钝角三角形④是等边三角形,其中正确说法的个数是()A.4个B.3个C.2个D.1个6.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A.6B.18C.28D.507.若a=x﹣20,b=x﹣18,c=x﹣16,则a2+b2+c2﹣ab﹣ac﹣bc的值为()A.12B.24C.27D.54二.填空题(共8小题)8.因式分解:a3+2a2b+ab2=.9.已知x2+2x+2y+y2+2=0,则x2022+y2023=.10.若x2+2x﹣3=0,则x3+x2﹣5x+2022=.11.分解因式:25a﹣ab2=.12.若x2+mx﹣n=(x+2)(x﹣5),则m﹣n=.13.若mn=1,m﹣n=2,则m2n﹣mn2的值是.14.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.15.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为.三.解答题16.分解因式:x(x+4)+4.17.将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc18.因式分解:(1)2a3﹣8a(2)3x2y﹣18xy2+27y319.因式分解:(1)x2(a﹣b)+9(b﹣a)(2)(a2+4)2﹣16a2.20.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你完成下列各题:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2(2)因式分解:25(a+2)2﹣10(a+2)+1(3)因式分解:(y2﹣6y)(y2﹣6y+18)+81.21.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)若F(a)=且a为100以内的正整数,则a=(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.参考答案与解析一.选择题1.解:A、0.36a2﹣0.04b2=(0.6a+0.2b)(0.6a﹣0.2b),能分解因式,本选项不符合题意B、x2﹣16=(x+4)(x﹣4),本选项不合题意C、﹣a2+b2+c2无法分解因式,本选项符合题意D、﹣x2+y2=(y+x)(y﹣x),本选项不合题意故选:C.2.解:多项式4ab2+8ab2﹣12ab的公因式4ab故选:A.3.解:A、原式不能分解B、原式=(x+y)2﹣2=(x+y+)(x+y﹣)C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4)D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2)故选:A.4.解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.5.解:∵a2+b2+c2=ab+bc+ca∴2a2+2b2+2c2=2ab+2bc+2ca即(a﹣b)2+(b﹣c)2+(a﹣c)2=0∴a=b=c∴此三角形为等边三角形,同时也是锐角三角形.故选:C.6.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2将a+b=3,ab=2代入得,ab(a+b)2=2×32=18故代数式a3b+2a2b2+ab3的值为18故选:B.7.解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]∵a=x﹣20,b=x﹣18,c=x﹣16∴a﹣b=﹣2,a﹣c=﹣4,b﹣c=﹣2则原式=×(4+16+4)=12故选:A.二.填空题8.解:原式=a(a2+2ab+b2)=a(a+b)2故答案为a(a+b)29.解:∵x2+2x+2y+y2+2=0∴(x2+2x+1)+(y2+2y+1)=0∴(x+1)2+(y+1)2=0∴x+1=0,y+1=0解得:x=﹣1,y=﹣1∴x2022+y2023=(﹣1)2022+(﹣1)2023=1+(﹣1)=0故答案为0.10.解:∵x2+2x﹣3=0∴x2=3﹣2x∴x3+x2﹣5x+2022=x(3﹣2x)+x2﹣5x+2022=3x﹣2x2+x2﹣5x+2022=﹣3+2x﹣2x+2022=2019 11.解:25a﹣ab2=a(25﹣b2)=a(5+b)(5﹣b)故答案为a(5+b)(5﹣b)12.解:∵x2+mx﹣n=(x+2)(x﹣5)=x2﹣3x﹣10∴m=﹣3,n=10∴m﹣n=﹣3﹣10=﹣13.故答案为﹣13.13.解:∵mn=1,m﹣n=2∴m2n﹣mn2=mn(m﹣n)=1×2=2故答案为2.14.解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式∴2(3﹣m)=±10解得:m=﹣2或8.故答案为﹣2或8.15.解:因式分解x2+ax+b时∵甲看错了a的值,分解的结果是(x+6)(x﹣2)∴b=6×(﹣2)=﹣12又∵乙看错了b的值,分解的结果为(x﹣8)(x+4)∴a=﹣8+4=﹣4∴原二次三项式为x2﹣4x﹣12因此,x2﹣4x﹣12=(x﹣6)(x+2)故答案为(x﹣6)(x+2).三.解答题16.解:原式=x2+4x+4=(x+2)217.解:(1)原式=4x(2x﹣y)(2)原式=3x2(x2+2xy+y2)=3x2(x+y)2(3)原式=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c).18.解:(1)原式=2a(a2﹣4)=2a(a+2)(a﹣2)(2)原式=3y(x2﹣6xy+9y2)=3y(x﹣3y)2 19.解:(1)原式=x2(a﹣b)﹣9(a﹣b)=(a﹣b)(x2﹣9)=(a﹣b)(x﹣3)(x+3)(2)原式=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)220.解:(1)设x﹣y=m原式=1﹣2m+m2=(1﹣m)2=[1﹣(x﹣y)]2=(1﹣x+y)2(2)设a+2=m原式=25m2﹣10m+1=(5m﹣1)2=[5(a+2)﹣1]2=(5a+9)2(3)设y2﹣6y=m原式=m(m+18)+81=m2+18m+81=(m+9)2=(y2﹣6y+9)2=(y﹣3)4.21.解:(1)2×3=6,4×6=24,6×9=54,8×12=96 (2)F(m)存在最大值和最小值.当m为完全平方数,设m=n2(n为正整数)∵|n﹣n|=0∴n×n是m的最佳分解∴F(m)==1又∵F(m)=且p≤q∴F(m)最大值为1此时m为16,25,36,49,64,81当m为最大的两位数质数97时,F(m)存在最小值,最小值为.故答案为6,24,54,96.。

浙教版七年级数学下册《因式分解》单元练习检测试卷及答案解析含有详细分析

浙教版七年级数学下册《因式分解》单元练习检测试卷及答案解析含有详细分析

浙教版七年级数学下册《因式分解》单元练习检测试卷及答案解析一、选择题1、下列等式从左到右的变形,属于因式分解的是()A.a(x-y)=ax-ay B.(x+1)(x+3)=x2+4x+3C.x3﹣x=x(x+1)(x-1) D.x2+2x+1=x(x+2)+12、下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2﹣2x﹣15=(x+3)(x﹣5)C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+4)3、如果二次三项式可分解为,那么a+b的值为( )A.-2 B.-1 C.1 D.24、边长为a,b的长方形,它的周长为14,面积为10,则a b+ab的值为( )A.35 B.70 C.140 D.2805、把多项式(a﹣2)+m(2﹣a)分解因式等于().A.(a﹣2)(+m)B.(a﹣2)(﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)6、能被下列数整除的是( )A.3 B.5 C.7 D.97、下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2-2abC.D.8、把分解因式,其结果为( )A.()()B.()C.D.()9、将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+aC.(a+1)2-a-1 D.(a-2)2+2(a-2)+110、一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( )A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y) D.x2-y2=(x+y)(x-y)二、填空题11、因式分解:-x= .12、分解因式:x2+2(x﹣2)﹣4=______.13、在实数范围内分解因式:a3﹣5a= .14、多项式6x2y-2xy3+4xyz的公因式是__________.15、已知x+y=6,xy=4,则x2y+xy2的值为.16、把多项式ax2+2a2x+a3分解因式的结果是.17、利用整式乘法公式计算104×96时,通常将其变形为__________________时再计算18、若,且,则___.19、分解因:=______________________.20、已知58-1能被20--30之间的两个整数整除,则这两个整数是。

因式分解单元测试卷附答案

因式分解单元测试卷附答案

因式分解单元测试卷附答案It was last revised on January 2, 2021第3章 因式分解水平测试(总分:120分,时间:90分钟) 学校 班级 座号 姓名一、选择题(每3分,共24分) 1.-(3a+5)(3a -5)是多项式( )分解因式的结果.A 、9a 2-25B 、9a 2+25C 、-9a 2-25D 、-9a 2+25 2、多项式9x m y n -1-15x 3m y n 的公因式是( )-1-13.已知54-1能被20~30之间的两个整数整除,则这两个整数是( ) A 、25,27 B 、26,28 C 、24,26 D 、22,244、如果多项式-51abc +51ab 2-a 2bc 的一个因式是-51ab ,那么另一个因式是( )-b +5ac +b -5ac -b +51ac+b -51ac5、用提取公因式法分解因式正确的是( )-9a 2b 2=3abc (4-3ab ) -3xy +6y =3y (x 2-x +2y )C.-a 2+ab -ac =-a (a -b +c ) +5xy -y =y (x 2+5x )6、64-(3a -2b )2分解因式的结果是( ).A 、(8+3a -2b )(8-3a -2b )B 、(8+3a+2b )(8-3a -2b )C 、(8+3a+2b )(8-3a+2b )D 、(8+3a -2b )(8-3a+2b )7、8a (x -y )2-4b (y -x )提取公因式后,剩余的因式是() +2ay+b +2ay-b+b8、下列分解因式不正确的是( ). A 、4y 2-1=(4y +1)(4y -1) B 、a 4+1-2a 2=(a -1)2(a+1)2C 、2291314923x x x ⎛⎫-+=- ⎪⎝⎭D 、-16+a 4=(a 2+4)(a -2)(a +2)二、填空(每题3分,共24分)1、将9(a+b )2-64(a -b )2分解因式为____________.2、-xy 2(x +y )3+x (x +y )2的公因式是__ ______.3、x 2+6x+9当x=___________时,该多项式的值最小,最小值是_____________.4、5(m -n )4-(n -m )5可以写成________与________的乘积.5、100m 2+(_________)mn 2+49n 4=(____________)2.6、计算:36×29-12×33=________.7、将多项式42+x 加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整式: , , .8、)(22⋅=+++n n n n a a a a三、解答(共72分)1、分解因式:(24分)(1)(x 2+y 2)2-4x 2y 2 (2)x 2-2xy +y 2-mx +my(3)a (x -a )(x +y )2-b (x -a )2(x +y ) (4)12ab -6(a 2+b 2)(5)196(a+2)2-169(a+3)2(6) ()()22141m m m ---2、若a =-5,a +b +c =-,求代数式a 2(-b -c )-(c +b )的值.(6分)3、已知a -2b=21,ab=2,求-a 4b 2+4a 3b 3-4a 2b 4的值. (6分)4.(2016菏泽)已知4x= 3y ,求代数式()()()2222x y x y x y y ---+-的值.5、32003-4×32002+10×32001能被7整除吗为什么(6分)6、已知x 2+y 2-4x+6y+13=0,求(x+y)2017的值。

因式分解单元测试卷及答案解析

因式分解单元测试卷及答案解析

因式分解单元检测卷时间:90分钟满分:120分班级:__________姓名:__________得分:__________ 一、选择题(每小题3分,共30分)1.下列等式从左到右的变形属于因式分解的是()A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)2.多项式-6xy2+9xy2z-12x2y2的公因式是()A.-3xy B.3xyz C.3y2z D.-3xy23.下列各式中,不能用平方差公式因式分解的是()A.-a2-4b2B.-1+25a2 C.116-9a2D.-a4+14.把代数式xy2-9x分解因式,结果正确的是()A.x(y2-9) B.x(y+3)2 C.x(y+3)(y-3) D.x(y+9)(y-9) 5.若(x+y)3-xy(x+y)=(x+y)·M,则M是()A.x2+y2B.x2-xy+y2 C.x2-3xy+y2D.x2+xy+y26.计算2100+(-2)101的结果是()A.2100B.-2100 C.2 D.-27.下列因式分解中,正确的是()A.x2y2-z2=x2(y+z)(y-z) B.-x2y+4xy-5y=-y(x2+4x+5)C.(x+2)2-9=(x+5)(x-1) D.9-12a+4a2=-(3-2a)28.如图是边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2-ab的值为() A.70 B.60C.130 D.1409.设n为整数,则代数式(2n+1)2-25一定能被下列数整除的是()A.4 B.5 C.n+2 D.1210.已知a,b,c是三角形ABC的三条边,且三角形两边之和大于第三边,则代数式(a-c)2-b2的值是()A.正数B.0 C.负数D.无法确定二、填空题(每小题3分,共24分)11.分解因式2a (b +c )-3(b +c )的结果是______________.12.多项式3a 2b 2-6a 3b 3-12a 2b 2c 的公因式是________.13.已知a ,b 互为相反数,则a 2-b 24的值为________. 14.把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解:________________.15.分解因式:(m +1)(m -9)+8m =________________.16.若x +y =10,xy =1,则x 3y +xy 3的值是________.17.若二次三项式x 2+mx +9是一个完全平方式,则代数式m 2-2m +1的值为________.18.先阅读,再分解因式:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x )2=(x 2-2x +2)(x 2+2x +2),按照这种方法分解因式:x 4+64=______________.三、解答题(共66分)19.(16分)分解因式:(1)(2a +b )2-(a +2b )2; (2)-3x 2+2x -13;(3)3m 4-48; (4)x 2(x -y )+4(y -x ).20.(10分)(1)已知x =13,y =12,求代数式(3x +2y )2-(3x -6y )2的值;(2)已知a -b =-1,ab =3,求a 3b +ab 3-2a 2b 2的值.21.(8分)给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.22.(10分)利用因式分解计算:(1)8352-1652; (2)2032-203×206+1032.23.(10分)如图,在半径为R 的圆形钢板上,钻四个半径为r 的小圆孔,若R =8.9cm ,r =0.55cm ,请你应用所学知识用最简单的方法计算剩余部分面积(结果保留π).24.(12分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=____________;(2)因式分解:(a+b)(a+b-4)+4;(3)试说明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.参考答案与解析1.D 2.D 3.A 4.C 5.D6.B 7.C 8.B 9.A 10.C11.(b +c )(2a -3) 12.3a 2b 2 13.014.x 2+3x +2=(x +2)(x +1)15.(m +3)(m -3) 16.98 17.25或4918.(x 2-4x +8)(x 2+4x +8)19.解:(1)原式=(2a +b +a +2b )(2a +b -a -2b )=3(a +b )(a -b ).(4分)(2)原式=-3⎝⎛⎭⎫x 2-23x +19=-3⎝⎛⎭⎫x -132.(8分) (3)原式=3(m 4-42)=3(m 2+4)(m 2-4)=3(m 2+4)(m +2)(m -2).(12分)(4)原式=(x -y )(x 2-4)=(x -y )(x +2)(x -2).(16分)20.解:(1)原式=(3x +2y +3x -6y )(3x +2y -3x +6y )=(6x -4y )·8y =16y (3x -2y ).(2分)当x =13,y =12时,原式=16×12×⎝⎛⎭⎫3×13-2×12=0.(5分) (2)原式=ab (a 2+b 2-2ab )=ab (a -b )2.(7分)当ab =3,a -b =-1时,原式=3×(-1)2=3.(10分)21.解:12x 2+2x -1+12x 2+4x +1=x 2+6x =x (x +6)(答案不唯一).(8分) 22.解:(1)原式=(835+165)×(835-165)=1000×670=670000.(5分)(2)原式=2032-2×203×103+1032=(203-103)2=1002=10000.(10分)23.解:S 剩余=πR 2-4πr 2=π(R +2r )(R -2r ).(5分)当R =8.9cm ,r =0.55cm 时,S 剩余=π×10×7.8=78π(cm 2).(9分)答:剩余部分的面积为78πcm 2.(10分)24.解:(1)(x -y +1)2(2分)(2)令A =a +b ,则原式=A (A -4)+4=A 2-4A +4=(A -2)2,故(a +b )(a +b -4)+4=(a +b -2)2.(6分)(3)(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2.∵n 为正整数,∴n 2+3n +1也为正整数,∴式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(12分)。

八年级下数学《第四章因式分解》单元测试(含答案)

八年级下数学《第四章因式分解》单元测试(含答案)

第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2] 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。

北师大八年级下册第四章《因式分解》单元测试题含答案解析

北师大八年级下册第四章《因式分解》单元测试题含答案解析

第四章《因式分解》检测题一.选择题(共12小题)1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣252.多项式4x2﹣4与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)23.把多项式(x+1)(x﹣1)﹣(1﹣x)提取公因式(x﹣1)后,余下的部分是()A.(x+1) B.(x﹣1) C.x D.(x+2)4.下列多项式的分解因式,正确的是()A.12xyz﹣9x2y2=3xyz(4﹣3xyz)B.3a2y﹣3ay+6y=3y(a2﹣a+2)C.﹣x2+xy﹣xz=﹣x(x2+y﹣z) D.a2b+5ab﹣b=b(a2+5a)5.若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是()A.﹣15 B.15 C.2 D.﹣86.计算(﹣2)+2等于()A.2B.﹣2 C.﹣2 D.27.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+2)8.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b) B.b(a﹣b)2 C.b(a2﹣b2)D.b(a+b)2 9.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2 B.a(x+2)2 C.a(x﹣4)2 D.a(x+2)(x﹣2)10.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣1511.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣412.n是整数,式子 [1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数二.填空题(共6小题)13.给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是(填上序号).14.如图中的四边形均为矩形,根据图形,写出一个正确的等式.15.若a=49,b=109,则ab﹣9a的值为.16.在实数范围内分解因式:x5﹣4x=.17.设a=8582﹣1,b=8562+1713,c=14292﹣11422,则数a,b,c 按从小到大的顺序排列,结果是<<.18.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是三角形.三.解答题(共10小题)19.把下列各式分解因式:(1)2m(m﹣n)2﹣8m2(n﹣m)(2)﹣8a2b+12ab2﹣4a3b3.(3)(x﹣1)(x﹣3)+1.(4)(x2+4)2﹣16x2.(5) x2+y2+2xy﹣1.(6)(x2y2+3)(x2y2﹣7)+37(实数范围内).20.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.21.先化简,再求值:(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值.(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1.22.先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),则:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得,∴解法二:设2x3﹣x2+m=A•(2x+1)(A为整式)由于上式为恒等式,为方便计算了取,2×=0,故.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.23.老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为1;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.24.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案与解析一.选择题1.【分析】利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.2.【分析】分别将多项式4x2﹣4与多项式x2﹣2x+1进行因式分解,再寻找他们的公因式.解:∵4x2﹣4=4(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式4x2﹣4与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.3.【分析】原式变形后,提取公因式即可得到所求结果.解:原式=(x+1)(x﹣1)+(x﹣1)=(x﹣1)(x+2),则余下的部分是(x+2),故选D4.【分析】A选项中提取公因式3xy;B选项提公因式3y;C选项提公因式﹣x,注意符号的变化;D提公因式b.解:A、12xyz﹣9x2y2=3xy(4z﹣3xy),故此选项错误;B、3a2y﹣3ay+6y=3y(a2﹣a+2),故此选项正确;C、﹣x2+xy﹣xz=﹣x(x﹣y+z),故此选项错误;D、a2b+5ab﹣b=b(a2+5a﹣1),故此选项错误;故选:B.5.【分析】直接将原式提取公因式ab,进而分解因式得出答案.解:∵ab=﹣3,a﹣2b=5,a2b﹣2ab2=ab(a﹣2b)=﹣3×5=﹣15.故选:A.6.【分析】直接提取公因式法分解因式求出答案.解:(﹣2)+2=﹣2+2=2×(﹣2+1)=﹣2.故选:C.7.【分析】A、原式利用平方差公式分解得到结果,即可做出判断;B、原式利用完全平方公式分解得到结果,即可做出判断;C、原式提取公因式得到结果,即可做出判断;D、原式提取公因式得到结果,即可做出判断.解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=3m(x﹣2y),错误;D、原式=2(x+2),正确,故选D8.【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.9.【分析】先提取公因式a,再利用完全平方公式分解即可.解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.10.【分析】根据平方差公式,十字相乘法分解因式,找到两个运算中相同的因式,即为乙,进一步确定甲与丙,再把甲与丙相加即可求解.解:∵x2﹣4=(x+2)(x﹣2),x2+15x﹣34=(x+17)(x﹣2),∴乙为x﹣2,∴甲为x+2,丙为x+17,∴甲与丙相加的结果x+2+x+17=2x+19.故选:A.11.【分析】各项利用平方差公式及完全平方公式判断即可.解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A12.【分析】根据题意,可以利用分类讨论的数学思想探索式子 [1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)= [1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选C.二.填空题13.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.14.【分析】直接利用矩形面积求法结合提取公因式法分解因式即可.解:由题意可得:am+bm+cm=m(a+b+c).故答案为:am+bm+cm=m(a+b+c).15.【分析】原式提取公因式a后,将a与b的值代入计算即可求出值.解:当a=49,b=109时,原式=a(b﹣9)=49×100=4900,故答案为:4900.16.【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(x4﹣4)=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案为:x(x2+2)(x+)(x﹣)17.【分析】运用平方差公式和完全平方公式进行变形,把其中一个因数化为857,再比较另一个因数,另一个因数大的这个数就大.解:∵a=8582﹣1=(858+1)(858﹣1)=857×859,b=8562+1713=8562+856×2+1=(856+1)2=8572,c=14292﹣11422=(1429+1142)(1429﹣1142)=2571×287=857×3×287=857×861,∴b<a<c,故答案为:b、a、c.18.【分析】先把原式化为完全平方的形式再求解.解:∵原式=a2+c2﹣2ab﹣2bc+2b2=0,a2+b2﹣2ab+c2﹣2bc+b2=0,即(a﹣b)2+(b﹣c)2=0,∴a﹣b=0且b﹣c=0,即a=b且b=c,∴a=b=c.故△ABC是等边三角形.故答案为:等边.三.解答题19.(1)【分析】直接提取公因式2m(m﹣n),进而分解因式得出答案;解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n);(2)【分析】直接提取公因式﹣4ab,进而分解因式得出答案.解:﹣8a2b+12ab2﹣4a3b3=﹣4ab(2a﹣3b+a2b2).(3)【分析】首先利用多项式乘法计算出(x﹣1)(x﹣3)=x2﹣4x+3,再加上1后变形成x2﹣4x+4,然后再利用完全平方公式进行分解即可.解:原式=x2﹣4x+3+1,=x2﹣4x+4,=(x﹣2)2.(4)【分析】利用公式法因式分解.解:(x2+4)2﹣16x2,=(x2+4+4x)(x2+4﹣4x)=(x+2)2•(x﹣2)2.(5)【分析】将前三项组合,利用完全平方公式分解因式,进而结合平方差公式分解因式得出即可.解:x2+y2+2xy﹣1=(x+y)2﹣1=(x+y﹣1)(x+y+1).(6)【分析】将x2y2看作一个整体,然后进行因式分解.解:(x2y2+3)(x2y2﹣7)+37=(x2y2)2﹣4x2y2+16=(x2y24)2=(xy+2)2(xy﹣2)2.20.【分析】已知等式左边利用完全平方公式变形,利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解:∵x2+y2﹣4x+6y+13=(x﹣2)2+(y+3)2=0,∴x﹣2=0,y+3=0,即x=2,y=﹣3,则原式=(x﹣3y)2=112=121.21.【分析】(1)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案;(2)根据平方差公式,可化简整式,根据代数式求值,可得答案.解:(1)原式=ab(a2+2ab+b2)=ab(a+b)2,当a+b=2,ab=2时,原式=2×22=8;(2)原式=4x2﹣y2﹣(4y2﹣x2)=5x2﹣5y2,当x=2,y=1时,原式=5×22﹣5×12=15.22.【分析】设x4+mx3+nx﹣16=A(x﹣1)(x﹣2),对x进行两次赋值,可得出两个关于m、n的方程,联立求解可得出m、n的值.解:设x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A为整式),取x=1,得1+m+n﹣16=0①,取x=2,得16+8m+2n﹣16=0②,由①、②解得m=﹣5,n=20.23.【分析】根据分组法、提公因式法分解因式分解,可得答案.解:x3﹣x2﹣x+1=x2(x﹣1)﹣(x﹣1)=(x﹣1)2(x+1)4x3﹣4x2﹣x+1=4x2(x﹣1)﹣(x﹣1)=(x﹣1)(2x+1)(2x﹣1)24.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)4(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.。

因式分解单元测试题及 答案

因式分解单元测试题及 答案

因式分解单元测试题及答案因式分解单元测试题一、选择题(每小题3分,共30分)1.下列各式从左到右的变形中,是因式分解的是()A、(a+3)(a-3)=a2-9B、a2-b2=(a+b)(a-b)C、a2-4a-5=a(a-4)-5D、m2-2m-3=m(m-2)-3m2.下列各式的分解因式:① 100p2-25q2=(10+5q)(10-5q)② -4m-n=-(2m+n)(2m-n)③ x-6=(x+3)(x-2)④ -x-x+42=-x+(x-42)其中正确的个数有()A、0B、1C、2D、33.下列各式中,能用完全平方公式分解因式的是()A、(x+y)(y-x)-4xyB、a2-2ab+4b2C、4m2-m+1D、(a-b)2-2(a+b)+14.当n是整数时,(2n+1)-(2n-1)是()A、2的倍数B、4的倍数C、6的倍数D、8的倍数5.设M=a(a+1)(a+2)。

N=a(a-1)(a+1),那么M-N等于()A、a2+aB、(a+1)(a+2)C、a2-aD、(a-1)(a+2)6.已知正方形的面积是(16-8x+x2) cm2(x>4cm),则正方形的周长是()A、(4-x)cmB、(x-4)cmC、(16-4x)cmD、(4x-16)cm7.若多项式(2x)3-81能分解成4x+9(2x+3)(2x-3),那么n=( )A、2B、4C、6D、88.已知248-1可以被60到70之间的某两个整数整除,则这两个数分别是()A、61,62B、61,63C、63,65D、65,679.如图①,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A、(a+2b)(a-b)=a2+ab-2b2B、(a+b)2=a2+2ab+b22x² + 3xy + y² - 5xy(x - y)的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解单元测试题
一、选择题(每小题3分,共30分)
1、下列各式从左到右的变形中,是因式分解的是( )
A 、()()2339a a a +-=-
B 、()()22a b a b a b -=+-
C 、()24545a a a a --=--
D 、23232m m m m m ⎛⎫
--=-- ⎪⎝⎭
2、下列各式的分解因式:①()()2210025105105p q q q -=+-
②()()22422m n m n m n --=-+-③()()2632x x x -=+-④2
21142x x x ⎛⎫--+=-- ⎪⎝⎭其中正确的个数有( )
A 、0
B 、1
C 、2
D 、3
3、下列各式中,能用完全平方公式分解因式的是( )
A 、()()4x y y x xy +--
B 、
2224a ab b -+
C 、21
44m m -+ D 、()2221a b a b ---+
4、当n 是整数时,()()222121n n +--是( )
A 、2的倍数
B 、4的倍数
C 、6的倍数
D 、8的倍数
5、设()()()()1
1
12,1133M a a a N a a a =++=-+,那么M N -等于( )
A 、2a a +
B 、()()12a a ++
C 、21133a a +
D 、()()1
123a a ++
6、已知正方形的面积是()22168x x cm -+(x >4cm),则正方形的周长是( )
A 、()4x cm -
B 、()4x cm -
C 、()164x cm -
D 、()416x cm -
7、若多项式()281n x -能分解成()()()2492323x x x ++-,那么n=( )
A 、2
B 、4
C 、6
D 、8
8、已知4821-可以被60到70之间的某两个整数整除,则这两个数分别是( )
A 、61,62
B 、61,63
C 、63,
65,67
9、如图①,在边长为a 的正方形中挖掉一个 边长为b 的小正方形(a >b ),把余下的部分
剪拼成一个矩形(
如图②),通过计算两个图
形(阴影部分)的面积,验证了一个等式,则 这个等式是( ) A 、()()2222a b a b a ab b +-=+- B 、()2222a b a ab b +=++
C 、()2222a b a ab b -=-+
D 、()()22a b a b a b -=+-
① ②
10、三角形的三边a 、b 、c 满足()2230a b c b c b -+-=,则这个三角形的形状是( )
A 、等腰三角形
B 、等边三角形
C 、直角三角形
D 、等腰直角三角形
二、填空题(每小题2分,共20分)
1、利用分解因式计算: (1)7716.87.63216
⨯+⨯=___________; (2)221.229 1.334⨯-⨯=__________;
(3)5×998+10=____________。

2、若26x x k -+是x 的完全平方式,则k =__________。

3、若()()2310x x x a x b --=++,则a =________,b =________。

4、若5,6x y xy -==则22x y xy -=_________,2222x y +=__________。

5、若()2
22,8x y z x y z ++=-+=时,x y z --=__________。

6、已知两个正方形的周长差是96cm ,面积差是9602cm ,则这两个正方形的边长分别是_______________cm 。

7、已知2221440x y x xy y --+++=,则x y +=___________。

8、甲、乙两个同学分解因式2x ax b ++时,甲看错了b ,分解结果为()()24x x ++;乙看错了a ,分解结果为()()19x x ++,则a =________,b =________。

9、甲、乙、丙三家房地产公司相同的商品房售价都是20.15万元,为盘活资金,甲、乙分别让利7%、13%,丙的让利
是甲、乙两家公司让利之和。

则丙共让利___________万元。

10、观察下列各式:22222431,3541,4651,,1012111⨯=-⨯=-⨯=-⋅⋅⋅⋅⋅⋅⨯=-,…将你猜想到的规律用只含一个字母的式
子表示出来:____________________。

三、解答题(共44分)
1、把下列各式分解因式:(12分)
(1) 3222a a b ab -+ (2) 322159a ab ac -+- (3) ()()2
2141m m m ---
(4) ()222416x x +-
2、利用分解因式的方法计算:(6分)
(1) ()
()200120022001222-+-- (2) ()51125530+÷
3、已知 6.61, 3.39x y ==-,求()()()2235x y x xy y xy x y -++--的值。

(6分)
4、(1) 3199199-能被198整除吗?能被200整除吗?说明你的理由。

(2)说明:当n 为正整数时,3n n -的值必为6的倍数。

(8分)
5、已知m 、n 互为相反数,且满足()()224416m n +-+=,求22m m n n
+-的值。

四、阅读理解(6分)
先阅读第(1)题的解答过程,然后再解第(2)题。

(1)已知多项式322x x m -+有一个因式是21x +,求m 的值。

解法一:设()()322221x x m x x ax b -+=+++,
则()()323222212x x m x a x a b x b -+=+++++。

比较系数得21120a a b b m +=-⎧⎪+=⎨⎪=⎩, 解得11212
a b m ⎧⎪=-⎪⎪=⎨⎪⎪=⎪⎩ ∴12m =。

解法二:设()32221x x m A x -+=+(A 为整式),
由于上式为恒等式,为方便计算取12x =-,3112022m ⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭,故12m =。

(2)已知4316x mx nx ++-有因式()1x -和()2x -,求m 、n 的值。

参考答案
一、选择题
1、B
2、A
3、A
4、D
5、A
6、D
7、B
8、C
9、D 10、A
二、填空题
1、(1)7 (2)6.32 (3)5000
2、9
3、a =-5或2,b =2或-5
4、30,74
5、4
6、32cm,8cm
7、14
8、6,9 9、4.03 10、()()2211n n n +=+-(n ≥2的整数) 三、解答题
1、(1) ()2a a b - (2) ()22232153a a b c --+ (3) ()()2
12m m -- (4) ()()2222x x -+
2、(1)0 (2) 95
3、1000
4、(1)()()
()32199199199199119919911991199198200-=-=⨯+⨯-=⨯⨯
(2) ()()()32111n n n n n n n -=-=+-因为n 为正整数,n-1,n,n+1为三个连续的整数,必有2的倍数和3的倍数,
所以()()11n n n +-必有6的倍数。

5、3
6、四根钢立柱的总质量为()22227.87.8 3.140.50.27.822D d h π⎡⎤⎛⎫⎛⎫-•=⨯-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣

3.140.21 5.14⨯⨯≈(吨)
四、(用解法二的方法求解),设()()431612(x mx nx A x x A ++-=•--为整式),取x =1,得15m n += ①,取x =2,
得40m n += ②,由①、②得:m =-5,n =20。

相关文档
最新文档