新课标数学中考专题复习5:探索性问题
中考数学探索性问题的解法.doc

L_J 中考数学探索性问题的解法随着应试教育向素质教育的转轨,加强对学生各方面能力考察的题目成了近年来各省市中考试题中的热门问题,探索性问题便是其中一类应运血生的新题型, 这•类问题对培养学生的创造性思维、想象能力和探索能力有很大帮助。
探索性问题又可分为结论探索型和存在探索型两种。
一、结论探索型问题此类题型一般是在给定题设条件下探求结论,它要求学生在对题设条件或图形认真分析的基础上,进行归纳,大胆猜想,然后通过推理、计算获得结论。
例1、长方形的周长为24cm,面积为64cm2,则这样的长方体()(A)有一个(B)有二个(C)有无数个(D)不存在a +b = 12解:设长方体的长为d,宽为b,贝U、址' = 64a> b可视为X2—12x+64=0的两个根•/ △二(一12) 2-4 X 64 = 144-256V0・.・该方程无实根即a、b不存在,因此选(D)a例2、在宽为a的纸带中剪出直径为a的圆5个,直径为5的圆10个,排列方法如图1,计算所用纸带长度,请考虑能否再设计一种排列方法,使所用纸带的长度比原排列方法节省原材料?ffll图2买•恩•收瓦潟暴圈3分析:通过图1观察易发现图中虚线部分具有典型性,为计算方便,取具有典型的部分(图2)进行分析,计算出结果。
易知,在等腰三角形ABC中,BC边上的高为AD,..a V2 a 今27+ 2 龙4 = 4a + — + — a 十一+ 2a = - a..•原排列方法使用纸带长为 2 2 4 4通过计算启发我们,如果把小圆分别插到大圆中,采用如下的排列方法,(如图3)这时纸带长为,a , 72 ° a ,3 ,9」、 3+18>/23 2 24 4 244- A = (6-4很)a a 0.344a可见改进后的排列方法比较合理例3、如图6、有四个动点P、Q、E、F分别从正方形ABCD的顶点A、B、C、D同时出发,沿着AB、BC、CD、DA以同样的速度向点B、C、D、A移动。
中考数学专题复习5:探索性问题

中考数学专题复习5:探索性问题Ⅰ、综合问题精讲:探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目.探索型问题具有较强的综合性,因而解决此类问题用到了所学过的整个初中数学知识.经常用到的知识是:一元一次方程、平面直角坐标系、一次函数与二次函数解析式的求法(图象及其性质)、直角三角形的性质、四边形(特殊)的性质、相似三角形、解直 角三角形等.其中用几何图形的某些特殊性质:勾股定理、相似三角形对应线段成比例等来构造方程是解决问题的主要手段和途径.因此复习中既要重视基础知识的复习,又要加强变式训练和数学思想方法的研究,切实提高分析问题、解决问题的能力. Ⅱ、典型例题剖析【例1】(2005,临沂)如图2-6-1,已知抛物线的顶点为A(O ,1),矩形CDEF 的顶点C 、F 在抛物线上,D 、E 在x 轴上,CF 交y 轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2-6-2,若P 点为抛物线上不同于A 的一点,连结PB 并延长交抛物线于点Q ,过点P 、Q 分别作x 轴的垂线,垂足分别为S 、R .①求证:PB =PS ; ②判断△SBR 的形状;③试探索在线段SR 上是否存在点M ,使得以点P 、S 、M 为顶点的三角形和以点Q 、R 、M 为顶点的三角形相似,若存在,请找出M 点的位置;若不存在,请说明理由. ⑴解:方法一:∵B 点坐标为(0,2),∴OB=2, ∵矩形CDEF 面积为8,∴CF=4.∴C 点坐标为(一2,2).F 点坐标为(2,2)。
中考数学专题--探索性问题

当△B G F 为直角三角形时, ∠B G F = 90°, ∴∠B A C = 45°. 此时 A B
AB = BC , k= BC = 1;
当△B G F 为钝角三角形时, ∠B G F > 90°, ∴∠B A C > 45°,
AB 此时 A B < B C , k= BC < 1,
1.(随州)如图,点 F,B,E,C 在同一直线上,并且 BF=CE,∠ABC=∠DEF.能否由上面的 已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中 选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明. 提供的三个条件是①AB=DE;②AC=DF;③AC∥DF.
专题考点 01 条件探索问题
条件探索型是指所给问题中的结论明确,需要完备条件的题目类型.其解题 基本思路类似于分析法,假设结论成立,逐步探索其成立的条件;或把可能产生的 条件一一列出,逐个分析考查,多采用逆向思维方式.
例
(新疆)如图,▱ABCD 中,点 O 是 AC 与 BD 的交点,过点 O 的直线与 BA,DC
∴0< k< 1.
2.(福州中考)我们知道,经过原点的抛物线的解析式可以是 y=ax2+bx(a≠0). (1)对于这样的抛物线: 当顶点坐标为(1,1)时,a= ; ;
当顶点坐标为(m,m),m≠0 时,a 与 m 之间的关系式是
(2)继续探究,如果 b≠0,且过原点的抛物线顶点在直线 y=kx(k≠0)上,请用含 k 的 代数式表示 b;
( 2) 连接 E C , AF, 则 E F 与 A C 满足 E F = A C 时, 四边形 A E C F 是矩形, 理由如下: 由( 1) 可知△A O E ≌△C O F , ∴O E = O F . ∵A O = C O , ∴四边形 A E C F 是平行四边形, ∵E F = A C , ∴四边形 A E C F 是矩形.
中考数学探索性问题简析

中考数学探索性问题简析锦州市第八中学陈树海一、规律探索问题【简要分析】规律探索问题是根据已知条件或所提供的若干个特例,通过观察、类比、归纳、揭示和发现题目所蕴含的本质规律与特征的一类探索性问题.【典型考题例析】例1 观察下列各式:1×3=12+2×1;2×4=22+2×2;3×5=32+2×3;……请你将猜想到的规律用自然数年n(n≥1)表示出来:.(2005年陕西省中考题)分析与解答观察比较以上各等式知,等式左端是两个因数的乘积,前一个因数依次是1、2、3、……,后一个因数依次是3、4、5、……,它们都是连续的,且后一个因数比前一个因数均大2;等式右端是两项的和,前一个加数依次为12、22、32、……,后一个加数依次是连续自然数的2倍,因而猜想到的规律用自然n(n≥1)表示为n(n+2)=n2+2n.例2 观察下列数表:1 2 3 4 (1)2 3 4 5 (2)3 4 5 6 (3)4 5 6 7 (4)┇ ┇ ┇┇第第第第1 2 3 4列列列列根据数表所反映的规律,猜想第6行与第6列交叉点上的数应为.第n行(n为正整数)与第n列交叉点上的数应为.(2005年北京市丰台区中考题)分析与解答本例属于数字规律的探索问题.经观察,本数表是一个n×n型表,每一行的第1个数字就是该行的序数,后面的第2、3、……、n个数为自然数递增的顺序排列.第n行与第n列的交叉点上的数就是第n行的第n个数.据此,第6行与第6列的交叉点上的数就是第6行的第6个数,即6+5=11.第n行的第n个数为n +(n-1)=2n-1.例3 用同样大小的黑、白两种颜色的棋子摆设如图2-2-1所示的正方形图案.则第n个图案需要用白色棋子枚.(用含有n的代数式表示)(2005年广东省茂名市中考题)分析与解答根据图形提供的信息探索规律,是近几年较流行的一种探索规律型问题.解决这尖问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.很显然,第1个正方形图案有棋子共32=9枚,其中黑色棋子有12=1枚,白色棋子有(32-12)枚;第2个正方形图案有棋子共42=16枚,其中黑色棋子有22=4枚,白色棋子有(42-22)枚;…由此可猜出想第n个图案的白色棋子数为(n+2)2-n2=4(n+1).【提高训练】1.观察下列各式,探索发现规律:1×3=3=22-1;3×5=15=42-1;5×7=35=62-1;7×9=63=82-1;9×11=99=102-1;…用含正整数n的等式表示你所发现的规律为.(2005年山东菏泽市中考题)2.图2-2-2是用积木摆放的一组图案,观察图形并探索:第5个图案中共有块积木.第n个图形共有块积木.(2005年内蒙古呼和浩特市中考题)3.观察下列各式:,…请你将猜想到的规律用含自然数n (n≥1)的代数式表示出来是.(2004年山西省中考题)4.观察下列图形(每个正方形的边长均为1)和相应等式,探索其中的规律:①←→②←→③←→④←→……………………(1)写出第五个等式,并在下面给出的五个正方形上画出与之对应的图示:(2)猜想并写第n个图形相对应的等式.(2005年河北省中考题)【提高训练答案】1.2.n23.4.(1),图示略;(2)二、结论探索问题【简要分析】结论探索问题是指仅给出某种情境而没有明确指出结论,需要解题者去探索符合条件的一类试题.这类探索问题的设问常以适合某种条件的结论“成立”、“不成立”、“是否成立”等语句加以表述,或直接问“有何结论”等.它与传统题的区别在于:探索问题的结论往往也是解题过程.【典型考题例析】例1 如图①,已知AB是⊙O的直径,AC是弦,直线CD切⊙O于点C,AD⊥CD,垂足为D.(1)求证:AC2=AB·AD;(2)若将直线CD向上平移,交⊙O于C1、C2两点,其他条件不变,可得到图②所示的图形,试探索AC1、AC2、AB、AD之间的关系,并说明理由;(3)把直线C1D继续向上平移,使弦C1C2与直径AB相交(交点不与A、B重合),其他条件不变,请你在图③中画出变化后的图形,标好字母,并试着写与(2)相应的结论,判断你的结论是否成立?若不成立,请说明理由;若成立,请给出证明.(2005年内蒙古呼和浩特市中考题)分析与解答第(1)题,连结BC,证明△ACD∽△ABC;第(2)题,探索AC1、AC2、AB、AD所在的两个三角形是否与(1)中有类似的相似;第(3)题的关键是在图③中正确画出图形.(1)连结BC.∵AB是⊙O的直径,∴∠ACB=900.∵AD⊥CD,∴∠ADC=900.∴∠ACB=∠ADC.∵CD切⊙O于C,可证∠ACD=∠ABC.∴△ACD∽△ABC.∴.∴AC2=AB·AD.(2)关系式:AC1·AC2=AB·AD.理由:连结BC1、AC2.∵四边形ABC1C2是圆内接四边形,∴可证∠AC2D∠B.同(1)有∠ADC2=∠AC1B,∴△ADC2∽△AC1B.∴,即AC1·AC2=AB·AD.(3)如图③,结论:AC1·AC2=AB·AD..理由:连结BC1、AC2.同(1)有∠ADC2=∠AC1B.又∵∠AC2D=∠B,∴△ADC2∽△AC1B.∴,即AC1·AC2=AB·AD.说明:本题是一道典型的结论探索题,题中设计的三个问题从特殊到一般,客观地反映了思维的渐进过程.解题的关键是先用常规方法证明第(1)小题的结论,然后第(2)、(3)小题仿照第(1)小题的方法连结及AC2去探索结论并给出证明.例2 如图①,已知E、F为平行四边形ABCD对角线DB的三等分点,连结AE并延长交DC于P,连结PF并延长交AB于Q.(1)在图②的备用图中,画出满足上述条件的图形,试用刻度尺在图①、图②中量得AQ、BQ的长度,估计AQ、BQ间的关系,并填入下表:由上表可猜测AQ、BQ间的关系是.(2)上述(1)中的猜测AQ、BQ间的关系成立吗?为什么?(3)若将平行四边形ABCD改为梯形(AB∥CD),其他条件不变,此时(1)中猜测AQ、BQ间的关系是否成立?(不必说明理由)(2005年浙江省绍兴市中考题)分析与解答本题是一道集操作、测量、猜想、证明于一体的结论开放性试题.解答本题的关键是准确进行测量,然后根据测量的结果合理、正确地猜想.(1)填表格略.猜测:AQ=3BQ.(2)成立.∵四边形ABCD是平行四边形,∴DC∥AB.∴△PDF∽△QBF.∴.∵E、F为BD的三等分点,∴DP:BQ=2.同理AB:PD=2.∴AB:BQ=4.∴AQ:BQ=3,即AQ=3BQ.(3)成立.【提高训练】1.如图①,已知AC、AB是⊙O的弦,AB>AC.(1)在图①中,能否在AB上确定一点E,使得AC2=AE·AB?为什么?(2)在图②中在条件(1)的结论下延长EC到P,连结PB,如果PB=PE,试判断PB和⊙O的位置关系,并说明理由.(2005年甘肃省中考题)2.已知矩形ABCD和点P,当点P在图①中的位置时,则有结论:S△PBC=S△PAC+S△PCD.理由:过点P作EF⊥BC,分别交AD、BC于E、F两点.∵,又∵,∴S△PBC+S△PAD=S△PAC+S△PCD+S PAD.∴S△PBC=S△PAC+S△PCD.请你参照上述信息,当点P分别在图②、图③中的位置时,S△PBC、S△PAC、S△PCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.(2005年黑龙江省中考题)3.已知A为⊙O上一点,B为⊙A与OA的交点,⊙A与⊙O的半径分别为r、R,且r<R.(1)如图①,过点B作⊙A的切线与⊙O交于M、N两点.求证:AM·AN=2Rr;(2)如图②,若⊙A与⊙O的交点为E、F,C是上任意一点,过点C作⊙A的切线与⊙O交于P、Q两点,试问AP·AQ=2Rr是否成立?并证明你的结论.(2004年天津市中考题)【提高训练答案】1.(1)作法有多种,如在⊙O上取点D,使,连结CD交AB于点E,则有AC2=AE·AB,证明略(2)PB是⊙O的切线,连BO并延长交⊙O于F,证∠AFB=∠BEP=∠ABP,故∠PBO=9002.猜想结果:图②结论S△PBC=S△PAC+S△PCD,图③结论S△PBC=S△PAC-S△PCD3.(1)延长AO与⊙O交于点D,连结DM.证明Rt△ABM∽Rt△AMD,由垂径定理得AM=AN,又AB=r,AD=2R,∴AM·AN=2Rr(2)提示:延长AO与⊙O交于点D,连结DQ、AC.证Rt△ADQ∽Rt△APC.∵AD=2R,AC=r,,∴AP·AQ=2Rr(三)方案设计探索问题【简要分析】方案设计探索问题,指的是提出一个数学问题情况如几何图形或图案的设计,物长物高的测量等,要求考生按要求设计某种方案来解决问题的一类探索题.【典型考题例析】例1 请用几何图形“△”、“││”、“⌒”(一个三角形,两条平行线,一个半圆,如图2-2-14)作为构件,尽可能构思独特且有意义的图形,并写一两句帖切、诙谐的解说词.(至少两幅).(2005年青海省湟中县中考题)分析与解答这是几何构件类方案设计题.解答这类问题无固定的模式可套,需要考生去探索、创新.现给出两个参考作案(如图2-2-15),请大家开动脑筋,再设计几幅出来.例2 在某居民小区的中心地带,留有一块长16m,宽12m的矩形空地,计划用于建造一个花圆,设计要求:花圆面积为空地面积的一半,且整体图案成轴对称图形.(1)小明的设计方案如图①所示,其中花园四周是人行道,且人行道的宽度都相等,你知道人行道的宽度是多少吗?,请通过计算,给予解答.(2)其实,设计的方案可以是多种多样的,请你按设计要求,另设计一种方案.(2005年广西钦州市中考题)分析与解答本例集计算、设计于一体,综合考查了学生运用数学知识解决实际问题的能力.(1)设人行道宽为xm,根据题意,得.解之,得.人行道的宽度为2m.(2)符合要求的答案很多,如图②~⑤均可.其中图②中的花园是底边长为16M 的等腰三角形,图③中的花园是两边底长为8M的等腰三角形.图④中的花园是顶点分别是矩形中点的菱形,图⑤中的花园是上底与下底之和为16的等腰梯形.v例3已知:如图①,现有边长为a、边长为b的正方形纸片和宽为a、长为b 的矩形纸片各若干块,试选用这些纸片(每种纸片至少用一次)拼成一个矩形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图痕迹),使拼出的图形面积为2a2+5ab+2b2,并标出此矩形的长和宽.(2005年江苏省盐城市中考题)分析与解答本题是一道实践操作的拼图设计题.解决这类问题我们应从图形的面积着手进行考虑,看看要拼成的矩形与已知正方形、矩形的面积有何倍数关系,然后尝试着进行拼图,下面给出两种拼法(如图②)供参考.例4 高为12.6米的教学楼ED前有一棵大树AB(如图①).(1)某一时刻测得大树AB,教学楼ED在阳光下的投影长分别是BC=2.4米,DF=7.2米.求大树AB的高度;(2)用刻度尺、高为h米的测角仪,请你设计另一种测量大树AB高度的方案.要求:①在图②上,画出你设计的测量方案示意图,并将应测数据标记在图上(长度用字母m、n……表示,角度用希腊字母α、β……表示);②根据你所画的示意图和标注的数据.计算大树AB的高度.(用字母表示)(2005年江苏省泰州市中考题)分析与解答本例属于相似三角形和解直角三角形应用类的方案设计问题.(1)连结AC、EF,则有AC∥EF,易得△ABC~△EDF,∴.∴.∴AB=4.2.故大树AB的高度为4.2米.(2)方案很多,下面提供两种设计方案供参考.方案1:如图③,MG=BN=m,AG=m·tanα,∴AB=(m·tanα+h)米.方案2:如图④,MF=NE=m,AG=,∴AB=(+h)米.【提高训练】1.在图的方格纸中设计一个轴对称图案.在这个图案中必须用到等腰三角形、正方形、圆三种基本图形.(2005年宁夏灵武市中考题)2.在一次数学探索活动中,小强用两条直线把平行四边形ABCD分别割成四部分,使含有一组对项角的两个图形全等.(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有组.(2)请在如图的三个平行四边形中画出满足小强分割方法的直线.(3)由上述实验操作过程,你发现所画的直线有什么规律?(2005年贵州省贵阳市中考题)3.如图①,A、B两点被池塘隔开,为测量AB两点的距离,在AB外选一点C,连结AC和BC,并分别找出AB和BC的中点M、N,如果测行MN=20m,那么AB=2×20m=40m.(1)测AB距离也可由图②所示用三角形相似的知识来解决,请根据题意填空:延长AC到N,使,延长BC到M,使CM= .则由相似三角形得AB= .(2)测AB距离还可由三角形全等的知识来设计测量的方案,求出AB的长,请用上面类似的方法,在图③中画出图形,并叙述你的测量方案.(2005年辽宁省大连市中考题)4.阳光小区有一块正方形空地,设计用作休闲场地和绿化场地.如图①是小聪根据正方形空地完成的设计方案示意图(阴影部分为绿化场地),请你用圆规和直尺在同样的正方形内(图②、图③),画出二种不同于小聪的设计方案示意图,使它们的绿化面积(用阴影表示)与图①中的绿化面相同(不要求写画法)(2005年湖北省孝感市中考题).【提高训练答案】1.略2.(1)无数 (2)只要两条直线都过对角线的交点就行 (3)这两条直线过平行四边形的对称中心(或对角线的交点)3.(1) ,2MN (2)延长AC到D,使CD=AC,延长BC到E,使CE=BC,连结DE,则AB=DE4.设计方案图略.(四)存在性探索问题【简要分析】存在性探索问题是指在某种题设条件下,判断具有某种性质的数学对象是否存在的一类问题.解题的策略与方法是:先假设数学对象存在.以此为条件进行运算或推理,若无矛盾,说明假设正确.由此得出符合条件的数学对象存在;否则说明不存在.【典型考题例析】例1 已知:抛物线y=-(x-m)2+1与x轴相交于A、B(B在A的右边),与y轴的交点为C.当点B原点的右边,点C在原点的下方时,是否存在△BOC为等腰三角形的情形?若存在,求出m的值,若不存在,请说明理由.分析与解答当y=0时,-(x-m)2+1=0,即有(x-m)2=1∴x1=m-1,x2=m+1.∴A(m-1,0),B(m+1,0).∵点B在原点右边,∴OB=m+1.当x=0时,y=-m2+1,点C在原点下方,∴OC=m2-1.假如△BOC是等腰直角三角形,则有OB=OC.即m+1=m2-1.解之,得m1=2,m2=-1.当m=-1时,OC=m2-1,不符合题意,∴m=-1舍去.∴存在△BOC为等腰直角三角形,此时m=2.例2 如图2-2-33,已知O为坐标原点,∠AOB=300,∠AB O=900,且点A的坐标为(2,0).(1)求点B的坐标;(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标,若不存在,请说明理由.(2005年四川省资阳市中考题)分析与解答(1)在Rt△OAB中,∵∠AOB=300,∴.过点B作BD垂直于x轴,垂足为D,则,∴点B的坐标为.(2)将A(2,0)、B、O(0,0)三点的坐标代入y=ax2+bx+c,得,解得.∴二次函数解板式为.(3)设存在点,使四边形ABCD面积最大.∵△OAB面积为定值,∴只要△OBC面积最大,四边形ABCO就有最大面积.过点C作轴的垂线CE,垂足为E,交OB于点F,则.而.∴.∴当时,△OBC面积最大,最大面积为.此时,点C坐标为,四边形ABCD的面积为.【提高训练】1.如图,平面直角坐标系中,Rt△ABC的斜边AB在x轴上,项点C在y轴的负半轴上,,点P在线段OC上,且PO、PC的长(PO<PC)是方程x2-12x+27=0的两根.(1)求P点的坐标;(2)求AP的长;(3)在轴上是否存在点Q,使得以A、C、P、Q为项点的四边形是梯形?若存在,请直接写出直线PQ的解析式;若不存在,请说明理由.(2005年黑龙江省中考题)2.如图,已知两点A(-1,0)、B(4,0)在x轴上,以AB为直径的半圆P交y轴于点C.(1)求经过A、B、C三点的抛物线的解析式;(2)设AC的垂直平分线交OC于D,连结AD并延长AD交半圆P于点E,相等吗?请证明你的结论;(3)设点M为x轴负半轴上一点,,是否存在过点M的直线,使该直线与(1)中所得抛物线的两个交点到y轴的距离相等?若存在,求出这条直线对应函数的解析式;若不存在,请说明理由.(2005年甘肃省中考题)3.如图,已知二次函数y=ax2+2x+3的图象与轴交于点A、点B(点B在x轴的正半轴上),与y轴交于点C,其项点为D,直线DC的函数关系式为y=kx+3,又tan∠OBC=1.(1)求a,k的值;(2)探究:在该二次函数的图象上是否存在点P(点P与B、C不重合),使得△PBC是以BC为一条直角边的直角三角形?若存在,求出P的坐标;若不存在,请说明理由.(2005年广东省茂名中考题)【提高训练答案】1.(1)P(0,-3)(2)(3)存在,直线PQ的解析式为或2.(1)(2),证明略(3)不存在符合要求的直线.连BE,在Rt△AOD中,可得,由△AOD∽△AEB得AE=4.故点M的坐标为(-2,0).设过点M的直线的解析式为y=kx+b,将点M的坐标代入得y=kx+2k,再代入抛物线方程得.由题意知此方程的两根互为相反数,故,这时方程无实数根.3.(1)a=-1,k=1 (2)二次函数y=-x2+2x+3的图象上存在点P(1,4)或P(-2,-5),使得△PBC是以BC为一条直角边的直角三角形.关闭窗口。
中考数学题型解法:规律探索性问题

中考数学题型解法:规律探索性问题第一部分 讲解部分 一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。
这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。
其目的是考查学生收集、分析数据,处理信息的能力。
所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。
二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。
三.考点精讲考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。
例1. 有一组数:13,25579,,101726,请观察它们的构成规律,用你发现的规律写出第n(n 为正整数)个数为 . 分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可.解答:解:21211211⨯-=+; 23221521⨯-=+; 252311031⨯-=+; 272411741⨯-=+; 219251265+⨯-=;…; ∴第n (n 为正整数)个数为2211n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1.例2 阅读下列材料:1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4), 由以上三个等式相加,可得1×2+2×3+3×4=31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程);(2) 1×2+2×3+3×4+···+n ×(n +1) = ______________;(3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式)1(433221+⨯++⨯+⨯+⨯n n [])1()1()2)(1()321432()210321(31+--++++⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯=n n n n n n )2)(1(31++=n n n ;照此方法,同样有公式: )2()1(543432321+⨯+⨯++⨯⨯+⨯⨯+⨯⨯n n n[])2()1()1()3()2()1()43215432()32104321(41+⨯+⨯⨯--+⨯+⨯+⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯=n n n n n n n n )3)(2)(1(41+++=n n n n . 解:(1)∵1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),… 10×11 = 31(10×11×12-9×10×11), ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440. (2))2)(1(31++n n n .(3)1260. 点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.例3 我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:一般地,如果⎩⎨⎧>>d c b a , 那么a +c b +d .(用“>”或“<”填空) 你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。
初中探索性问题教案

初中探索性问题教案教案概述:本教案旨在通过探索性问题,激发学生的思维潜能,培养学生的创新能力和解决问题的能力。
教学过程中,教师需要引导学生主动探究,积极思考,通过小组合作、讨论交流等方式,找到问题的答案。
教学目标:1. 培养学生提出问题、分析问题、解决问题的能力。
2. 培养学生团队合作、沟通交流的能力。
3. 培养学生创新思维、批判性思维的能力。
教学内容:1. 探索性问题:如何提高学生的学习效率?2. 教学方法:小组合作、讨论交流、PPT展示等。
教学步骤:1. 导入:教师通过一个有趣的例子,引出探索性问题:“如何提高学生的学习效率?”2. 小组讨论:学生分组,每组选择一个角度,进行讨论交流,寻找提高学习效率的方法。
3. 分享交流:每个小组选择代表,向全班同学分享他们的讨论成果。
其他同学可以对分享的内容进行评价、补充。
4. PPT展示:每个小组制作一份PPT,展示他们的探索过程和最终成果。
5. 总结:教师引导学生对各个小组的探索成果进行总结,筛选出提高学习效率的有效方法。
6. 课后作业:让学生根据自己的探索成果,制定一个提高学习效率的计划,并在课后进行实施。
教学评价:1. 学生参与度:观察学生在课堂上的参与情况,包括发言、讨论、展示等。
2. 学生创新能力:评价学生在探索过程中提出的新观点、新方法。
3. 学生团队合作能力:评价学生在小组合作中的表现,包括沟通交流、分工合作等。
4. 学生解决问题能力:评价学生对探索性问题的回答是否具有深度、广度。
教学反思:教师需要在教学过程中关注学生的反馈,根据学生的实际情况调整教学策略。
同时,教师也需要不断学习,提高自己的专业素养,以便更好地引导学生进行探索性学习。
通过本教案,学生能够培养探索问题的习惯,提高自己的学习效率,为未来的学习和生活打下坚实的基础。
中考数学复习中探索性问题教学初探

顺次 结四 形 连 边 ABCD各边中 得到四 形 点, 边 A,B,C,D,, 再
顺 连 四 形 尽 ,D 边中 , 到 边 入 Z Z 次 结 边 A C ,各 点 得 四 形 尹 . C尹
……如此下去得到四边形A B.C.D .
( 1)证明:四 形 边 A,B,C,D,是矩形。
(2)写出 边 A,B,C,D, 边 A BCD 面 四 形 和四 形 Z 2 2 2的 积。
厂 F_ A宜 B C 夕
D
并且考查的是同学们非常熟悉的垂径定理的推论, 通
过此问题探索, 可使学生对垂径定理更深刻的掌握。 例2加 图, P是0 0 外一点 ,OP垂直弦AB于点C, 交
丽 于点D, 连结OA,OB,AP,BP , 以上条件 , 根据 写出三
个正确结论, OA=OB除外:
( 1) (2 )
} B mmmN O R " N a me n Pw *mq
昌宁县第二中学 唐泽梅
数学探索性问题已成为近年来中考数学热点之 一, 也是摆在我们每位数学老师面前的一个重要课题, 所以研究数学探索性问题的类型和解题策略, 教会学 生去分析、 解决此类问题, 有助于大面积提高中考数学
教学质量。下面, 自己复习心得和同行探讨。 就 一、 在分块复习中逐渐渗透数学探索性问题, 消除 学生的恐惧心理和畏难情绪 分块复习是将整个初 中数学知识按知识的结构分 单元复习, 这一阶段的主要任务是夯实基础, 即使学生 对单元的基本概念 、 公式、 性质、 定理和所涉及的基本
(3)写出四边形A B} D}的面积。 C 评析:这是一个规律探索题, 此题着重考查用三角 形中 位线定理证明中点四边形是矩形及 四边形面积求 法, 它体现 了特殊到一般 , 有限到无限的化归, 既考查 学生逻辑推理能力, 又培养了学生想象、 猜想和验证直 觉思维和抽象思维能力。 以上三个例题均源于课本, 又高于课本, 并且都从 学生所熟悉的问题出发, 只要稍微点拨, 学生可自己 探 究并尝试和体验成功。 二、在综合复习中激发学生探索的激情和创新思 维火花, 稳定巩固探究的兴趣 综合复习就是学生在熟悉掌握初中 数学基础知识、 基本方法和基本技能的基础上, 能够综合运用所学知识 去分析、 解决问 综合题涉及的知识广, 题, 思维、 方法多, 无固定的解题模式, 这一阶段穿插的探索性问题要有一 定的思维价值, 选题注意围绕中考命题的总思路“ 稳中 求新, 注重能力考查”立足课本, , 源于生活, 让学生体现 到生活中 数学无处不在, 数学即生活, 生活即数学。 例1.如 图, ABC是某城市的一个新区, A AD是BC边 上的高, BC=8千米, AD=4千米, 现在规划新区内 有两条 主干道PE, PF,P, E, F分 别在 △ABC的三条 边上 , 且
新课标九年级数学中考复习强效提升分数精华版探索性问题教案

(2)图②中∠APD的度数为________,
图③∠APD的度数为_______;
(3)根据前面的探索,你能否将本题推
广到一般的正n变形情况?若能,写出推广的题目和结论:若不能,请说明理由。
4.一只青蛙在如图8×8的正方形(每个小正方形的边长为1)网格的
2
3
4
5
6
...
分成的最多平面数
2
4
7
11
...
(1)填表:
(2)设n条直线把平面最多
分成的块数是,请学出
S关于n的表达式,(不需要解题过程)。
9.将正六边形纸片按下列要求分别分割(每次分割,纸片均不得有剩余):
第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中的
一个菱形再分割成一个正六边型和两个全等的正三角形;第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形再分割成一个正六边形和两个全等的正三角形;按上述分割方法进行下去……
第周星期第课时总课时初三备课组
章节
专题
课题
探索性问题
课型
复习课
教法
讲练结合
教学目标(知识、能力、教育)
1.掌握探索性问题的特点及类型,熟练运用探索性问题的解题解题策略解决有关问题。
2.通过对各种类型的探索性问题的探索,培养学生分析问题的能力和解决问题能力。
3.通过富有情趣的问题,激发学生进一步探索知识的激情。感受到数学来源于生活。
教学重点
熟练运用探索性问题的解题解题策略解决有关问题。
教学难点
分析问题以及解决问题能力的培养.
教学媒体
学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标数学中考专题复习5:探索性问题Ⅰ、综合问题精讲:探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目.探索型问题具有较强的综合性,因而解决此类问题用到了所学过的整个初中数学知识.经常用到的知识是:一元一次方程、平面直角坐标系、一次函数与二次函数解析式的求法(图象及其性质)、直角三角形的性质、四边形(特殊)的性质、相似三角形、解直角三角形等.其中用几何图形的某些特殊性质:勾股定理、相似三角形对应线段成比例等来构造方程是解决问题的主要手段和途径.因此复习中既要重视基础知识的复习,又要加强变式训练和数学思想方法的研究,切实提高分析问题、解决问题的能力.Ⅱ、典型例题剖析【例1】(2005,临沂)如图2-6-1,已知抛物线的顶点为A(O,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2-6-2,若P点为抛物线上不同于A的一点,连结PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似,若存在,请找出M点的位置;若不存在,请说明理由.⑴解:方法一:∵B点坐标为(0,2),∴OB=2,∵矩形CDEF面积为8,∴CF=4.∴C点坐标为(一2,2).F点坐标为(2,2)。
设抛物线的解析式为2y ax bx c=++.其过三点A(0,1),C(-2.2),F(2,2)。
得1242242xa b ca b c=⎧⎪=-+⎨⎪=++⎩解得1,0,14a b c===我们的口号:全心全意为人民的教育事业服务!-教改先锋网[]我们的口号:全心全意为人民的教育事业服务!-教改先锋网[]∴此抛物线的解析式为2114yx =+方法二:∵B 点坐标为(0,2),∴OB =2, ∵矩形CDEF 面积为8, ∴CF=4. ∴C 点坐标为(一2,2)。
根据题意可设抛物线解析式为2y ax c =+。
其过点A(0,1)和C(-2.2)124c a c=⎧⎨=+⎩ 解得1,14ac ==此抛物线解析式为2114y x =+(2)解:①过点B 作BN B S ⊥,垂足为N .∵P 点在抛物线y=214x +l 上.可设P 点坐标为21(,1)4a a +.∴PS =2114a+,OB =NS =2,BN =a 。
∴PN=PS —NS=2114a - 在Rt PNB 中.PB 2=222222211(1)(1)44P NB Na a a +=-+=+∴PB =PS =2114a+②根据①同理可知BQ =QR 。
∴12∠=∠, 又∵ 13∠=∠, ∴23∠=∠, 同理∠SBP =∠B ∴2523180∠+∠=︒∴5390∠+∠=︒∴90SBR ∠=︒. ∴ △SBR 为直角三角形. ③方法一:设,PS b QR c ==,∵由①知PS =PB =b .QR QB c ==,PQ b c =+。
∴222()()SR b c b c =+--∴SR =M .且MS =x ,别MR=x。
若使△PSM ∽△MRQ ,则有bx c=20x bc -+=我们的口号:全心全意为人民的教育事业服务!-教改先锋网[]∴12x x == ∴SR =2∴M 为SR 的中点. 若使△PSM ∽△QRM ,则有b x =。
∴2x b c=+。
∴1M R c Q B RO M SxbBPO Sb c==-===+。
∴M 点即为原点O 。
综上所述,当点M 为SR 的中点时.∆PSM ∽ΔMRQ ;当点M 为原点时,∆PSM ∽∆MRQ . 方法二:若以P 、S 、M 为顶点的三角形与以Q 、M 、R 为顶点三角形相似, ∵90PSM MRQ ∠=∠=︒,∴有∆PSM ∽∆MRQ 和∆PSM ∽△QRM 两种情况。
当∆PSM ∽∆MRQ 时.∠SPM =∠RMQ ,∠SMP =∠RQM .由直角三角形两锐角互余性质.知∠PMS+∠QMR =90°。
∴90PMQ ∠=︒。
取PQ 中点为N .连结MN .则MN =12PQ=1()2Q R P S +.∴MN 为直角梯形SRQP 的中位线,∴点M 为SR 的中点 当△PSM ∽△QRM 时,R M Q R Q B M SP SB P==。
又R M R O M SO S=,即M 点与O 点重合。
∴点M 为原点O 。
综上所述,当点M 为SR 的中点时,∆PSM ∽△MRQ ;当点M 为原点时,∆PSM ∽△QRM 。
点拨:通过对图形的观察可以看出C 、F 是一对关于y 轴的对称点,所以(1)的关键是求出其中一个点的坐标就可以应用三点式或 y=ax 2+c 型即可.而对于点 P 既然在抛物线上,所以就可以得到它的坐标为(a ,14 a 2+1).这样再过点B 作BN ⊥PS .得出的几何图形求出PB 、PS 的大小.最后一问的关键是要找出△PSM 与△MRQ 相似的条件. 【例2】探究规律:如图2-6-4所示,已知:直线m ∥n,A 、B 为直线n 上两点,C 、P 为直线m 上两点. (1)请写出图2-6-4中,面积相等的各对三角形;(2)如果A 、B 、C 为三个定点,点P 在m 上移动,那么,无论P 点移动到任何位置,总有________与△ABC 的面积相等.理由是:_________________.解决问题:如图 2-6-5所示,五边形 ABCDE是张大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图2-6-6所示的形状,但承包土地与开垦荒地的分界小路(2-6-6中折线CDE)还保留着;张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按张大爷的要求设计出修路方案(不计分界小路与直路的占地面积).(1)写出设计方案.并画出相应的图形;(2)说明方案设计理由.解:探究规律:(l)△ABC和△ABP,△AOC和△ BOP、△CPA和△CPB.(2)△ABP;因为平行线间的距离相等,所以无论点P在m上移动到任何位置,总有△ABP与△ABC同底等高,因此,它们的面积总相等.解决问题:⑴画法如图2-6-7所示.连接EC,过点D作DF∥EC,交CM于点F,连接EF,EF即为所求直路位置.⑵设EF交CD于点H,由上面得到的结论可知:SΔECF=SΔECD,SΔHCF=SΔEDH,所以S五边形ABCDE=S五边形ABCFE,S五边形EDCMN=S四边形EFMN.点拨:本题是探索规律题,因此在做题时要从前边问题中总结出规律,后边的问题要用前边的结论去一做,所以要连接EC,过D作DF∥EC,再运用同底等高的三角形的面积相等.【例3】(2005,成都模拟,12分)如图2-6-8所示,已知抛物线的顶点为M(2,-4),且过点A(-1,5),连结AM交x轴于点B.⑴求这条抛物线的解析式;⑵求点 B的坐标;⑶设点P(x,y)是抛物线在x轴下方、顶点 M左方一段上的动点,连结 PO,以P为顶点、PQ为腰的等腰三角形的另一顶点Q在x轴上,过Q作x轴的垂线交直线AM于点R,连结PR.设面 PQR的面积为S.求S与x之间的函数解析式;⑷在上述动点P(x,y)中,是否存在使SΔPQR=2的点?若存我们的口号:全心全意为人民的教育事业服务!-教改先锋网[]我们的口号:全心全意为人民的教育事业服务!-教改先锋网[]在,求点P 的坐标;若不存在,说明理由. 解:(1)因为抛物线的顶点为M (2,-4) 所以可设抛物线的解析式为y=(x -2)2 -4. 因为这条抛物线过点A (-1,5) 所以5=a(-1-2)2-4.解得a=1.所以所求抛物线的解析式为y=(x —2)2 -4 (2)设直线AM 的解析式为y=kx+ b . 因为A (-1,5), M (2,-4) 所以524k b k b -+=⎧⎨+=-⎩,解得 k=-3,b=2. 所以直线AM 的解析式为 y=3x +2.当y=0时,得x= 23 ,即AM 与x 轴的交点B (23 ,0)(3)显然,抛物线y=x 2-4x 过原点(0,0〕当动点P (x ,y )使△POQ 是以P 为顶点、PO 为腰且另一顶点Q 在x 轴上的等腰三角形时,由对称性有点 Q (2x ,0)因为动点P 在x 轴下方、顶点M 左方,所以0<x <2.因为当点Q 与B (23 ,0)重合时,△PQR 不存在,所以x ≠13 ,所以动点P (x ,y )应满足条件为0<x <2且x ≠13 ,因为QR 与x 轴垂直且与直线AM 交于点R , 所以R 点的坐标为(2x ,-6x+2) 如图2-6-9所示,作P H ⊥OR 于H , 则PH=|||2|,|62|QP x x x x x QR x -=-==-+而S=△PQR 的面积=12 QR ·P H= 12 |62|x x -+下面分两种情形讨论:①当点Q 在点B 左方时,即0<x <13 时,当R 在 x 轴上方,所以-6x +2>0.所以S=12(-6x +2)x=-3x 2+x ;②当点Q 在点B 右方时,即13<x <2时我们的口号:全心全意为人民的教育事业服务!-教改先锋网[]点R 在x 轴下方,所以-6x +2<0.所以S=12 [-(-6x +2)]x=3x 2-x ;即S 与x 之间的函数解析式可表示为2213(0)313(2)3x x x S x x x ⎧-+<<⎪⎪=⎨⎪-<<⎪⎩(4)当S=2时,应有-3x 2+x =2,即3x 2-x+ 2=0,显然△<0,此方程无解.或有3x 2-x =2,即3x 2 -x -2=0,解得x 1 =1,x 2=-23当x=l 时,y= x 2-4x=-3,即抛物线上的点P (1,-3)可使S ΔPQR =2;当x=-23 <0时,不符合条件,应舍去.所以存在动点P ,使S ΔPQR =2,此时P 点坐标为(1,-3)点拨:此题是一道综合性较强的探究性问题,对于第(1)问我们可以采用顶点式求得此抛物线,而(2)中的点B 是直线 AM 与x 轴的交点,所以只要利用待定系数法就可以求出直线AM ,从而得出与x 轴的交点B .(3)问中注意的是Q 点所处位置的不同得出的S 与x 之间的关系也随之发生变化.(4)可以先假设存在从而得出结论.Ⅲ、综合巩固练习:(100分 90分钟)1. 观察图2-6-10中⑴)至⑸中小黑点的摆放规律,并按照这样的规律继续摆放.记第n 个图中小黑点的个数为y .解答下列问题:⑴ 填下表:⑵ 当n=8时,y=___________;⑶ 根据上表中的数据,把n 作为横坐标,把y 作为纵坐标,在图2-6-11的平面直角坐标系中描出相应的各点(n ,y ),其中1≤n ≤5; ⑷ 请你猜一猜上述各点会在某一函数的图象上吗? 如果在某一函数的图象上,请写出该函数的解析式.2.(5分)图2-6-12是某同学在沙滩上用石子摆成的小房子.观察图形的变化规律,写出第n个小房子用了_____________块石子.3.(10分)已知Rt△ABC中,AC=5,BC=12,∠ACB =90°,P是AB边上的动点(与点A、B 不重合),Q是BC边上的动点(与点B、C不重合).⑴如图2-6-13所示,当PQ∥A C,且Q为BC的中点时,求线段CP的长;⑵当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围,若不可能,请说明理由.4.如图2-6-14所示,在直角坐标系中,以A(-1,-1),B(1,-1),C(1,1),D(-1,l)为顶点的正方形,设正方形在直线l:y=x及动直线2l:y=-x+2a(-l≤a1<1)上方部分的面积为S(例如当a取某个值时,S为图中阴影部分的面积),试分别求出当a=0,a=-1时,相应的S的值.我们的口号:全心全意为人民的教育事业服务!-教改先锋网[]5.(10分)如图2-6-15所示,DE是△ABC的中位线,∠B=90○,AF∥B C.在射线A F 上是否存在点M,使△MEC与△A DE相似?若存在,请先确定点M,再证明这两个三角形相似;若不存在,请说明理由.6.如图2-6-16所示,在正方形ABCD中,AB=1, AC是以点B为圆心.AB长为半径的圆的一段弧点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F石为切点.⑴当∠DEF=45○时,求证点G为线段EF的中点;⑵设AE=x, FC=y,求y关于x的函数解析式;并写出函数的定义域;⑶图2-6-17所示,将△DEF沿直线EF翻折后得△ D1EF,当EF=56时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由。