连玉君:面板讲义(理论和在STATA中的操作)
STATA面板数据模型操作命令讲解(word文档良心出品)

STATA 面板数据模型估计命令一览表一、静态面板数据的STATA 处理命令εαβit ++=x y it i it 固定效应模型μβit +=x y it itεαμit +=it it 随机效应模型(一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。
在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。
●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第一幅图将不会呈现) xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。
可见,随机效应模型也优于混合OLS模型。
●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。
但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless)可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。
连玉君_Logit模型STATA

15.2.5 假设检验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
15.2.6 模型的解释和拟合优度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
15.2.3 Logistic 模型
在完成了上述变换后,我们就可以定义 Logistic 回归模型了,此时我们假设概率 πi 的 Logit 变换 (而非概率 πi 本身) 服从线性模型,即
logit(πi ) = ln
πi 1 − πi
= xi β ,
(15-6)
其中,xi 为解释变量构成向量,β 为系数向量。
第十五章 LOGISTIC 模型
3
Odds Probability1001 Nhomakorabea80
.8
60
.6
40
.4
20
.2
0
0
0
.2
.4
.6
.8
1
−4
−2
0
2
4
Probability
Logit (log−odds)
图 15-1: logit 变换
由于 logit 变换是一一对应的,所以我们可以通过求取逆对数由 Logit 反向得到概率值 (通常 称为 antilogit)。 由 (15-6) 式可解得:
然函数:
n
ln L(β ) =
yi ln [π(xi )] + (1 − yi ) ln [1 − π(xi )]
i =1
(15-11)
一阶条件为:
Stata命令大全 面板数据计量分析与软件实现

Stata命令大全面板数据计量分析与软件实现说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。
本人做了一定的修改与筛选。
*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。
* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。
常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。
* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。
常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。
* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。
Stata_A_dofiles中山大学连玉君教授stata初级讲义

60
61 * 1.5 浏览资料
62 *
1.5.1 变量的名称
63 *
1.5.2 查看资料的结构
64 *
1.5.2.1 更改变量的存储类型
65 *
1.5.2.2 -list- 命令的使用
66 *
1.5.2.3 定义变量的显示格式
67 *
1.5.2.4 数据和变量的标签
68 *
1.5.2.5 附加说明文字
101 *
1.8.2.3 其他命令
102
103 * 1.9 do 文档: 高效快捷地执行命令
104 *
1.9.1 do 文档简介
105 *
1.9.1.1 打开 do 文档编辑器
106 *
1.9.1.2 保存和关闭
107 *
1.9.1.3 执行 do 文档
108 *
1.9.2 合理规划你的do文档
109 *
47 *
1.3.4 时间序列资料
48 *
1.3.5 面板资料
49 *
1.3.6 STATA官方提供的资料
50 *
1.3.7 其它软件中的数据
51
52 * 1.4 存储和导出数据
53 *
1.4.1 存储数据
54 *
1.4.2 导出和转换
55 *
1.4.2.1 -outfile-命令:导出为 .raw 文本格式
214 *
2.6.1.4 一个例子
215 *
2.6.2 横向关联: -joinby-
216 *
2.6.3 纵向合并:追加样本
217 *
2.6.4 大型数据的处理
218 *
2.6.5 一些有用的外部命令
面板数据stata处理步骤介绍

xA6_Panel_Data - Printed on 2011-11-25 10:43:02 149 reg y x dum1 dum2 dum3, nocons 150 est store m_pooldum3 151 152 *-M2:放入两个虚拟变量,三家公司有一个公共的截距项 153 reg y x dum2 dum3 154 est store m_pooldum2 155 156id t 158 xtreg y x, fe 159 est store m_fe 160 est table m_*, b(%6.3f) star(0.1 0.05 0.01) 161 162 163 *-6.1.4.3 stata的估计方法解析 164 165 * 目的:如果截面的个数非常多,那么采用虚拟变量的方式运算量过大 166 * 因此,要寻求合理的方式去除掉个体效应 167 * 因为,我们关注的是 x 的系数,而非每个截面的截距项 168 * 处理方法: 169 * 170 * y_it = u_i + x_it*b + e_it (1) 171 * ym_i = u_i + xm_i*b + em_i (2) 组内平均 172 * ym = um + xm*b + em (3) 样本平均 173 * (1) - (2), 可得: 174 * (y_it - ym_i) = (x_it - xm_i)*b + (e_it - em_i) (4)//within估计 175 * (4)+(3), 可得: 176 * (y_it-ym_i+ym) = um + (x_it-xm_i+xm)*b + (e_it-em_i+em) 177 * 可重新表示为: 178 * Y_it = a_0 + X_it*b + E_it 179 * 对该模型执行 OLS 估计,即可得到 b 的无偏估计量 180 181 egen y_meanw = mean(y), by(id) /*公司内部平均*/ 182 egen y_mean = mean(y) /*样本平均*/ 183 egen x_meanw = mean(x), by(id) 184 egen x_mean = mean(x) 185 gen dy = y - y_meanw + y_mean 186 gen dx = x - x_meanw + x_mean 187 reg dy dx 188 est store m_stata 189 190 est table m_*, b(%6.3f) star(0.1 0.05 0.01) 191 192 193 *-6.1.4.4 解读 xtreg,fe 的估计结果 194 195 use invest2.dta, clear 196 tsset id t 197 edit 198 xtreg market invest stock, fe 199 200 *-- R^2 201 * y_it = a_0 + x_it*b_o + e_it (1) pooled OLS 202 * y_it = u_i + x_it*b_w + e_it (2) within estimator 203 * ym_i = a_0 + xm_i*b_b + em_i (3) between estimator 204 * 205 * -> R-sq: within 模型(2)对应的R2,是一个真正意义上的R2 206 * -> R-sq: between corr{xm_i*b_w,ym_i}^2 207 * -> R-sq: overall corr{x_it*b_w,y_it}^2 208 209 *-- F(2,93) = 33.23 检验除常数项外其他解释变量的联合显著性 210 * 93 = 100-2-5 211 212 *-- corr(u_i, Xb) = 0.5256 213 214 *-- sigma_u, sigma_e, rho 215 * rho = sigma_u^2 / (sigma_u^2 + sigma_e^2) 216 dis e(sigma_u)^2 / (e(sigma_u)^2 + e(sigma_e)^2) 217 dis 1023.5914^2 / (1023.5914^2 + 370.9569^2) 218 219 *-- 个体效应是否显著?(假设检验) 220 * F(4, 93) = 97.68 H0: a1 = a2 = a3 = a4 = 0 221 * Prob > F = 0.0000 表明,固定效应高度显著 222 Page 3
STATA面板数据模型操作命令讲解

STATA 面板数据模型估计命令一览表一、静态面板数据的STATA处理命令y it i xit it 固定效应模型yit x it itit it it 随机效应模型(一)数据处理输入数据●tsset code year该命令是将数据定义为“面板”形式●xtdes该命令是了解面板数据结构● summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)● gen lag_y=L.y /////// 产生一个滞后一期的新变量gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用 OLS 混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的 F 统计量便在于检验所有的个体效应整体上显著。
在我们这个例子中发现 F 统计量的概率为 0.0000 ,检验结果表明固定效应模型优于混合 OLS模型。
● 2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5( 加上“ qui ”之后第一幅图将不会呈现) ln,re xttest0可以看出, LM检验得到的 P 值为 0.0000 ,表明随机效应非常显著。
可见,随机效应模型也优于混合 OLS模型。
● 3、检验固定效应模型or 随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合 OLS模型。
但是无法明确区分 FE or RE 的优劣,这需要进行接下来的检验,如下:Step1 :估计固定效应模型,存储估计结果Step2 :估计随机效应模型,存储估计结果Step3 :进行 Hausman检验●qui xtreg sq cpi unem g se5ln,fe est store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe ( 或者更优的是 hausman fe,sigmamore/ sigmaless)可以看出, hausman检验的 P 值为 0.0000 ,拒绝了原假设,认为随机效应模型的基本假设得不到满足。
STATA面板数据模型操作命令(完整资料).doc

STATA⾯板数据模型操作命令(完整资料).doc 【最新整理,下载后即可编辑】STATA ⾯板数据模型估计命令⼀览表⼀、静态⾯板数据的STATA 处理命令εαβit ++=x y it i it 固定效应模型µβit +=x y it itεαµit +=it it 随机效应模型(⼀)数据处理输⼊数据●tsset code year 该命令是将数据定义为“⾯板”形式●xtdes 该命令是了解⾯板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产⽣⼀个滞后⼀期的新变量gen F_y=F.y /////// 产⽣⼀个超前项的新变量gen D_y=D.y /////// 产⽣⼀个⼀阶差分的新变量gen D2_y=D2.y /////// 产⽣⼀个⼆阶差分的新变量(⼆)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使⽤OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型⽽⾔,回归结果中最后⼀⾏汇报的F统计量便在于检验所有的个体效应整体上显著。
在我们这个例⼦中发现F 统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。
●2、检验时间效应(混合效应还是随机效应)(检验⽅法:LM 统计量)(原假设:使⽤OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第⼀幅图将不会呈现)xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应⾮常显著。
可见,随机效应模型也优于混合OLS模型。
●3、检验固定效应模型or随机效应模型(检验⽅法:Hausman 检验)原假设:使⽤随机效应模型(个体效应与解释变量⽆关)通过上⾯分析,可以发现当模型加⼊了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。
STATA面板数据模型操作命令讲解

STATA 面板数据模型估计命令一览表一、静态面板数据的STATA 处理命令固定效应模型εαβit ++=x y it i it μβit +=x y it it随机效应模型εαμit +=it it (一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。
在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。
●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第一幅图将不会呈现)xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。
可见,随机效应模型也优于混合OLS模型。
●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。
但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless)可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
(8-3)
(8-4)
假设 1 表明干扰项 ε 与解释变量 x 的当期观察值、前期观察值以及未来的观察 值均不相关,也 就是说模型中所有的解释变量都是严格外生的。假设 2 就是一般的同方差假设,在此 假设下模 型 (8-1) 的 OLS 估计是 BLUE 的。当此假设无法满足时,我们就需要处理异方差或序列 相关以 便得到稳健性估计量。 组内估计量 上面我们已经提到,在假设 1 和假设 2 同时成立的情况下,模型 (8-1) 的 OLS 估计是 BLUE 的。 但在实际操作的过程中,如果 N 比较大,那么我们的模型中将包含 ( N + K ) 个解释变量, 4 计算的工作量往往很大,对于 N 相当大的情况 (如 N=10000 ) ,一般的计算机都 无法胜任。所 以我们有必要先进行一些变换以消除固定效应,进而对简化后的模型进行估计,本小节和下一 小节 介绍的这两种方法都是基于此目的进行的。 我们首先将所有观察值进行堆叠,于是模型 (8-1) 可用矩阵形式表示为: y = Da + Xβ + ε (8-5)
目录
第八章 面板数据模型 8.1 8.2 简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 静态面板数据模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.1 8.2.2 8.2.3 8.2.4 8.3 8.3.1 8.3.2 8.3.3 8.4 8.5 8.6 8.7 固定效应模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 随机效应模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 假设检验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STATA 实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 异方差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 序列相关 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 方差形式未知时的稳健性估计 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 2 7 10 13 25 25 29 33 33 33 33 33
ε 1 , ε 2 , · · · , ε N ) , 均为 N T × 1 向量, D = I N ⊗ 1T , a = 其中, y = (y1 , y2 , · · · , y N ) , ε = (ε (a1 , a2 , · · · , a N ) 。考虑到 D 矩阵的构造形式,它事实上对应着 N 个虚拟变量。因此,模型 (8-5) 等价于在混合 OLS 模型 y = Xβ + ε 中加入 N 个虚拟变量。 在正式估计模型之前,我们先定义一些有用的矩阵运算,它们将在后面的分析中反复使 用。 定义 DD = I N ⊗ JT , 其中, JT = 1T 1T 为 T × T 维矩阵,每个元素均为 1。 同时,我 ¯T , J ¯T = (1/ T )JT 是 T × T 维矩阵,每个元素均为 1/ T ; 们定义 P = D(D D)−1 D = I N ⊗ J −1 Q = I N T − D(D D) D = I N T − P 。 矩阵 P 和 Q 都具有如下性质: (1) 对称、幂等性: P = P , 且 P2 = P ; (2) 正交性: PQ = 0 ; (3) 和为单位矩阵: P + Q = I N T . 我们可以从上述三个性质中的任意两个推导出第三个。易于证明, QD = 0 ,因此,我们可以 通过在等式 (8-5) 两边同时左乘 Q 以消除固定效应: Qy = QXβ + Qε (8-6)
Estimation with STATA
连玉君1 中山大学 岭南学院 金融系
arlionn@
2007.07
特别好的一篇文章丆希望我能学会STATA•C加油両
1 这是我在西安交通大学金禾中心读博期间整理的学习笔记。非常感谢我的导师钟经樊先生带我走进
计量经济学 的多彩世界,并介绍给我一非常难得的朋友 —- STATA。同时,也要感谢金禾中心的 程建博 AT X 软件的使 士 (现就职于建行总行博士后流动站) 和朱晓明博士 (现就职于国家开发银行北京总行) 在 L E 用方面给与的帮助。 如果发现笔记中有任何错误和不妥之处,或是对我还没有想出来的问题有任何解决 的建议, 烦请发邮件给我。同时,我已经完成的笔记 (共 12 章) 都可以在我的博客 ( http:// ) 中下载,欢迎光临。 由于这些笔记还在不断更新中,所以恳请各位将阅读过程中发现的小错误及时反 馈给我, 我会将你们的名字做成列表,定时发送最新版的笔记给你们。
1 如宁夏属于回族自治区,那里的回民因为信仰伊斯兰教,所以不允许饮酒的,而生活 在宁夏的许多汉民也往往
因为自己的回民朋友无法饮酒而无形中减少了啤酒的消费量。
2 如中国南部地区啤酒的消费量比较大,而北方很多地区只有在夏天才会饮用 较多的啤酒,冬天他们一般是只喝
白酒的。
1
8.2 静态面板数据模型
2
ห้องสมุดไป่ตู้
其中, i = 1, 2, · · · , N , t = 1, 2, · · · , T ;xit 为 K × 1 列向量, K 为解释变量的个 数,β 为 K × 1 系数列向量。 对于特定的个体 i 而言, ai 表示那些不随时间改变的影响因素,而这些因 素在多数情况下都是无法 直接观测或难以量化的,如个人的消费习惯、国家的社会制度等,我 们一般称其为“个体效应” (individual effects)。对“个体效应”的处理主要有两种方式:一种 是视其为不随时间改变的固定性因素, 相应的模型称为“固定效应”模型;另一种是视其为随 机因素,相应的模型称为“随机效应”模型。 这两种模型的差异主要反映在对“个体效应”的处理上。 固定效应模型中的个体差异反映 在每个个体都有一个特定的截距项 上;随机效应模型则假设所有的个体具有相同的截距项,个 体的差异主要反应在 随机干扰项的设定上,因此该模型通常也称为“误差成分模型”。基于 此,一种常见的观点认为,当我们 的样本来自一个较小的母体时,我们应该使用固定效应模 型,而当样本来自一个很大的母体时,应当采用 随机效应模型。比如在研究中国地区经济增长 的过程中,我们以全国 28 个省区为研究对象,可以认为这 28 个省区几乎代表了整个母体。同 时也可以假设在样本区间内,各省区的经济结构、人口素质等不可 观测的特质性因素是固定不 变的,因此采用固定效应模型是比较合适的。而当我们研究西安市居民的消费 行为时,即使样 本数为 10000 人,相对于西安市 600 万人口的母体而言仍然是个很小的样本。此时,可以 认为 不同的居民在个人能力、消费习惯等方面的差异是随机的,此时采用随机效应模型较为合适。 遗憾的是,很多情况下,我们并不能明确地区分我们的样本来自一个较大母体还是较小的 母体。因此有些 学者认为,区分固定效应模型和随机效应模型应当看使用二者的假设条件是否 满足。由于随机效应模型 把个体效应设定为干扰项的一部分,所以就要求解释变量与个体效应 不相关,而固定效应模型并不需要这个 假设条件。因此,如果我们的检验结果表明该假设满 足,那么就应该采用随机效应模型,因为它更为有效, 反之,就需要采用固定效应模型。 另外,有些学者认为具体采用哪一种模型主要决定于我们的分析目的。如果主要目的在于 估计模型的参数 ,而模型中个体的数目又不是很大,采用固定效应模型是个不错的选择,因 为它非常容易估计。 但当我们需要对模型的误差成分进行分析时 (通常分解为长期效果和短期 效果) ,就只能采用随机效应模型。 在这种情况下,即使模型中的部分解释变量与个体效应相 关,我们仍然可以通过工具变量法对模型进行估计。 简言之,两种模型有各自的优缺点和适用范围,在实证分析的过程中,我们一方面要根 据分析的目的选择 合适的模型,同时也要以 8.2.3 节中介绍的假设检验方法为基础进行模型筛 选。
8.2.1
固定效应模型
模型的基本设定和假设条件 若视 ai 为固定效应,模型 (8-1) 可以采用向量的形式表示为: yi = ai 1T + xi β + ε i (8-2)
其中, yi = ( yi 1 , yi 2 , · · · , yi T ) , xi = (xi 1 , xi 2 , · · · , xi T ) , ε i = (εi 1 , εi 2 , · · · , εi T ) , 1T 是一个所有元 素都为 1 的 T × 1 列向量。 我们有如下两个基本假设: 3
3 一般应用中,我们也常采用如下两个相对较弱的假设。 假设 1 : E[ε |x ] = 0 和 假设 2 : Var [ε |x ] = σ 2 I 。 i i i i T
第八章 面板数据模型
假设 1 : E[ε i |xi , ai ] = 0 假设 2 : Var [ε i |xi , ai ] = σ 2 IT
非均齐方差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
动态面板模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 面板 VAR 模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 面板门槛模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 面板单位根检验和协整分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .