混沌现象的通俗解释
混沌现象

摘要混沌现象是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性一不可重复、不可预测,这就是混沌现象。
进一步研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。
牛顿确定性理论能够充分处理的多为线性系统,而线性系统大多是由非线性系统简化来的。
因此,在现实生活和实际工程技术问题中,混沌是无处不在的。
“ 混沌”是近代非常引人注目的热点研究,它掀起了继相对论和量子力学以来基础科学的第三次革命。
科学中的混沌概念不同于古典哲学和日常语言中的理解,简单地说,混沌是一种确定系统中出现的无规则的运动。
混沌理论所研究的是非线性动力学混沌,目的是要揭示貌似随机的现象背后可能隐藏的简单规律,以求发现一大类复杂问题普遍遵循的共同规律。
关键词:蝴蝶效应;虫口模型;分叉现象;N自由度正交;相空间;目录第一章:蝴蝶效应~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 1.1蝴蝶效应的提出~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 1.2蝴蝶效应的含义~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 1.3产生蝴蝶效应的内在机制~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2 1.4蝴蝶效应与混沌学理论~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2 第二章:虫口模型~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~3第三章:相空间~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~5参考文献~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~6 谢词~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~7第一章:蝴蝶效应蝴蝶效应(Butterfly Effect)是指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期的巨大的连锁反应。
非线性动力学中的混沌与分岔现象

非线性动力学中的混沌与分岔现象混沌现象的介绍混沌现象是非线性动力学中一个重要的研究课题,它描述了一种似乎随机的、无规律可循的运动状态。
在混沌现象的研究中,人们发现了一些特征,如灵敏依赖于初始条件、无周期运动和封闭轨道等。
混沌现象的研究对于理解自然界中的复杂系统行为具有重要的意义。
混沌现象最早是由美国数学家Edward Lorenz于20世纪60年代发现的。
他在研究气象学中的大气运动方程时,意外地发现了不确定性的现象。
这个发现被称为“蝴蝶效应”,即当一个蝴蝶在巴西振动翅膀时,可能引发一系列的气流变化,最终导致美国得克萨斯州的一个龙卷风的形成。
这个例子说明了混沌现象中初始条件的微小变化可能引起系统运动的巨大变化。
混沌现象的数学表示混沌现象可以用一些非线性动力学方程描述。
这些方程通常包含了一些非线性项,使得系统的演化不再是简单的线性叠加。
一个经典的混沌系统方程是Lorenz方程:\\frac{{dx}}{{dt}} = \\sigma(y - x),\\frac{{dy}}{{dt}} = x(\\rho - z) - y,\\frac{{dz}}{{dt}} = xy - \\beta z其中,x、y和z是系统的状态变量,t是时间。
σ、ρ和β是一些常数,它们决定了系统的性质。
这个方程描述了一个三维空间中的运动,这种运动就是混沌现象。
分岔现象的介绍分岔现象是混沌现象的一个重要特征,它描述了系统参数发生微小变化时,系统行为的剧烈变化。
简单来说,分岔现象就是系统从一个稳定的演化状态变成多个稳定状态的过程。
分岔现象的经典例子是Logistic映射。
Logistic映射是一种常用的非线性映射,它用于描述生物种群的增长。
Logistic映射的公式为:x_{n+1} = r \\cdot x_n \\cdot (1 - x_n)其中,x_n是第n个时刻的种群密度,x_{n+1}是下一个时刻的种群密度,r是系统的参数,它决定了种群的增长速度。
自然科学的混沌与分形

自然科学的混沌与分形一、引言自然科学是研究自然界现象和规律的学科,其中混沌与分形是近年来备受关注的研究领域。
混沌理论和分形几何不仅在物理学、化学、生物学等领域有广泛应用,而且在经济学、社会科学等其他领域也有重要意义。
本文将从混沌与分形的基本概念入手,介绍其在自然科学中的应用及意义。
二、混沌1.混沌的定义混沌是指某些动态系统表现出无序不规则的行为,即使系统初始状态非常相似,其演化结果也会有很大差异。
这些系统可能具有非线性特征或者对初值极其敏感。
2.混沌的起源20世纪60年代初期,美国数学家洛伦兹通过对大气运动方程组的研究发现了混沌现象。
他发现即使初始条件微小变化,天气预报结果也会截然不同。
这个发现引起了人们对于非线性动力系统的关注。
3.混沌在自然科学中的应用(1)天气预报:由于天气系统具有非线性特征,天气预报的准确性受到混沌现象的影响。
(2)流体力学:混沌现象在流体运动中也十分常见,如涡旋、湍流等。
(3)生物学:许多生物系统也表现出混沌行为,如心电图、神经元放电等。
三、分形1.分形的定义分形是指一类具有自相似性质的几何图形。
即使在不同尺度下观察,这些图形的局部结构都与整体结构相似。
分形具有无限细节和复杂性,其维度可能是非整数。
2.分形的起源20世纪70年代初期,法国数学家曼德博发现了著名的“曼德博集合”,这是一种具有自相似性质的复杂几何图形。
此后,人们开始研究分形几何,并发现了许多新型分形。
3.分形在自然科学中的应用(1)地理学:地球表面上许多地貌景观都呈现出分形特征,如海岸线、山脉等。
(2)物理学:许多物理系统也表现出分形行为,如布朗运动、液滴形成等。
(3)生物学:许多生物系统具有分形结构,如肺泡、血管等。
四、混沌与分形的关系混沌和分形是密不可分的。
在某些情况下,混沌现象可以导致分形结构的出现。
例如,曼德博集合就是一种由混沌现象产生的分形。
此外,混沌理论和分形几何也可以相互补充,共同解释自然界中复杂的现象。
生物学系统中的混沌现象研究

生物学系统中的混沌现象研究混沌是一种复杂而充满着不确定性的动力学现象。
生物学系统中的混沌现象即指由生物体内的分子、细胞、组织、器官等物质和能量作用所表现出的无规则、非周期的动态过程。
这种现象无论是在生物学研究领域内,还是在跨学科领域中,都备受关注。
1. 混沌现象的基本特征混沌现象是神秘而复杂的,它的基本特征包括:(1) 非周期性:混沌现象并不像简单周期运动那样,有规则地沿着同一条轨道运动,而是经历着非周期性、无规律的运动。
(2) 敏感性依赖性:微小的扰动可能导致混沌系统内的运动过程大幅变化,这种现象称作“蝴蝶效应”。
(3) 分形特性:混沌系统常常有着自相似性,即小尺度上的结构与大尺度上的结构相似。
2. 生物学系统中的混沌现象生物学系统的混沌现象广泛存在于各个层面,例如细胞、组织、器官等。
其中,生物分子发生混沌现象的例子最为典型。
(1) 混沌酶反应酶是一类促进化学反应的生物催化剂。
在混合不同浓度的酶和底物溶液时,它们之间会发生混沌反应。
实验表明,这种混沌反应与双稳态、螺旋等复杂动力学现象的出现密切相关。
(2) 神经元系统中的混沌神经元是生物体内最基本的神经信息处理单元,而神经元网络中的混沌现象则为神经元处理信息提供了一个全新的视角。
同时,混沌现象也能为神经元网络模型提供丰富的研究方法和工具。
(3) 心脏系统中的混沌心脏是人体内一个非常重要的器官,也是混沌现象研究的一个热点。
例如,心脏的电活动信号常常呈现混沌现象,这在心脏疾病的诊断和治疗方面具有重要的意义。
3. 混沌现象在生物学研究中的应用(1) 生物信息加密混沌序列拥有很好的随机性、序列长度和生成速度。
因此,混沌序列可以被广泛的应用于密码算法中,非常适用于生物信息学安全领域。
(2) 生物信号诊断混沌信号在生物信号诊断领域中也是一个研究热点。
心电图中所包含的混沌信号已经被广泛地应用于心脏发病诊断中。
同样,测量肌电信号也有很高的信噪比和混乱性,医生们也将混沌信号应用于肌肉疾病的诊断中。
管理科学中的混沌现象研究

管理科学中的混沌现象研究一、引言混沌理论是20世纪60年代末期由美国数学家Edward Lorenz 提出的,在经过几十年的发展和研究,已成为一门发展完备的科学理论。
混沌现象已经应用到多个领域,包括天气预报、股票市场、流体力学等。
本文将会对混沌现象在管理科学中的应用进行探讨和分析。
二、混沌现象简述所谓混沌现象,指的是在某些非线性系统中,当初始条件发生微小变化时,系统的状态也发生了很大的改变,产生了不可预测的结果。
与此同时,混沌现象还包括一些普遍的特征,如无规律出现的震荡、出现奇异吸引子等。
三、混沌现象在管理科学中的应用在管理科学领域中,混沌现象主要被应用于预测和控制方面。
具体应用包括:1.金融市场预测由于股票、期货市场本身就具有非线性因素,所以混沌理论在金融市场预测中应用得非常广泛。
基于混沌理论的金融市场预测模型,可以根据历史股市数据预测未来市场的趋势和价格波动情况。
通过这种方法,投资者可以更好地把握市场节奏,提高盈利率和降低投资风险。
2.产品质量控制在产品量产后,混沌理论被应用于分析生产工艺。
通过对不同温度、压力等参数进行微调,可以防止系统进入混沌状态,保证产品质量的稳定性,提高生产效率和质量。
3.销售预测进入市场后,混沌理论也可以被应用于销售预测。
通过对客户交易数据的分析,可以预测客户的未来购买行为,从而帮助企业更准确地进行产品定价和库存管理,提高销售效率和盈利率。
4.组织管理在组织管理方面,混沌理论可以通过研究组织内部的交互关系和协作模式,优化组织结构,提升组织运营效率。
此外,混沌理论还可以被用于解决企业中的决策问题。
通过对决策者的行为和决策参数进行分析,可以确定最优决策方案,提高决策者的决策质量和效率。
四、结论在管理科学中,混沌理论的应用范围非常广泛,并且具有非常重要的价值。
通过混沌理论的应用,可以提高企业的管理效率和盈利能力。
因此,我们应该积极探索混沌理论在管理科学中的应用,以期更好地服务于企业和社会的发展。
混沌名词解释

混沌名词解释混沌名词解释一、概述混沌是一个用于描述非线性系统中的无序、不可预测行为的数学概念。
它源自于希腊神话中的混沌之神,意味着无序、杂乱和无规律。
二、混沌理论1. 定义混沌是指非线性动力系统中的一种状态,其特征是系统在长时间演化过程中表现出极其敏感的依赖初始条件和微小扰动的特性。
简单来说,就是微小的变化会导致系统演化出完全不同的结果。
2. 混沌吸引子混沌吸引子是描述混沌系统演化过程中所呈现出来的吸引态。
它具有分形结构,即在不同尺度上都具有相似的形态。
混沌吸引子可以帮助我们理解和描述复杂系统中的无序行为。
三、混沌现象1. 灵敏依赖初始条件混沌系统对初始条件极其敏感,微小差异会导致系统演化出完全不同的结果。
这种现象被称为“蝴蝶效应”,即蝴蝶在某个地方轻微拍动翅膀,可能会引起在另一个地方的龙卷风。
2. 随机性和确定性混沌系统表现出随机性和确定性的结合。
尽管系统的演化是确定的,但由于初始条件的微小差异,结果变得无法预测,呈现出随机性。
3. 分岔现象分岔是混沌系统中常见的现象。
当控制参数逐渐变化时,系统可能会从一个稳定状态突然跳跃到另一个稳定状态或周期状态,这种突变称为分岔。
四、应用领域1. 自然科学混沌理论在自然科学领域有广泛应用。
在气象学中,混沌理论可以帮助我们理解气候系统中的不可预测性;在天体物理学中,混沌理论可以解释行星轨道的复杂运动等。
2. 工程与技术混沌理论在工程与技术领域也有重要应用。
在通信领域中,利用混沌信号可以实现加密通信;在控制系统中,利用混沌控制方法可以实现对非线性系统的稳定控制等。
3. 社会科学混沌理论在社会科学领域也有一定的应用。
在经济学中,混沌理论可以帮助我们理解金融市场的波动和非线性行为;在社会学中,混沌理论可以用于研究人类行为和社会系统的复杂性等。
五、总结混沌是描述非线性系统中无序、不可预测行为的概念。
它具有灵敏依赖初始条件、随机性和确定性的特点,以及分岔现象。
混沌理论在自然科学、工程与技术以及社会科学等领域都有广泛应用。
非线性动力学中的混沌现象

非线性动力学中的混沌现象物理学中的混沌现象是指一个系统虽然是确定性的,但由于微小的初始条件差异会导致结果的巨大差异,表现出不可预测性。
混沌现象是由于系统的非线性行为引起的,在非线性动力学的研究中广泛存在。
在这篇文章中,我们将探讨混沌现象的原理和应用,以及如何在非线性系统中应对混沌现象的挑战。
非线性动力学中的混沌现象的起源非线性动力学是研究非线性系统演化行为的学科。
我们知道,在线性系统中,输出是输入的一种缩放,而非线性系统中则不然。
非线性系统不会按照线性关系的方式响应任意输入,而是具有更为复杂的特征。
这种特征在一定程度上会导致系统表现出混沌现象。
混沌现象最早是由美国的工程师爱德华·洛伦茨在1963年发现的。
他发现,在具有非线性行为的系统中,一个微小的初始条件差异会导致结果的巨大不同,这意味着无法预测这个系统的演化。
他发现的这个现象被称为燥动现象,后来被广泛认识到是混沌现象。
非线性系统中的混沌现象可以被看做是一个自组织的有序性,这种有序性不是像普通的周期性运动那样可预测的,而是具有随机性和复杂性。
这种复杂性涉及到许多要素,包括吸引子、分叉、倍增、条纹、密度波、涡旋等。
非线性动力学中的混沌现象的应用混沌现象的应用范围非常广泛。
在天文学、气象学、生物学以及金融学等领域都有广泛的应用发展。
例如,在天气预报中,混沌理论可以让我们更好地了解大气环境的变化规律,从而提高天气预报的准确性。
在气象学中,通过对大气环境中一些元素的混沌特性研究,可以预测气候变化的趋势。
在金融学中,混沌现象的应用于交易量的预测。
在分析金融市场时,我们常用技术分析来试图预测股票价格的变化。
但由于股票市场是高度非线性的,这样的预测并不可靠。
但是,如果我们能够了解系统的混沌特性,就可以更好地了解市场的基本运作方式,并采取相应的投资策略。
非线性动力学中的混沌现象的挑战混沌现象对于非线性系统的设计和控制,都是相当大的挑战。
在实际应用中,我们需要对非线性系统的微小变化进行精细的控制,以避免混沌现象对输出的影响。
混沌现象

山东轻工业学院 Байду номын сангаас理学院 3
近代物理 概 论
混 沌 现 象
第三,对于理解混沌现象有重要意义的一条差别: 第三,对于理解混沌现象有重要意义的一条差别: 线性关系保持讯号的频率成分不变, 线性关系保持讯号的频率成分不变,而非线性使频率结 构发生变化。 构发生变化。 线性:频率成分不变;非线性: 线性:频率成分不变;非线性:频率变换器 第四,非线性是引起行为突变的原因。 第四,非线性是引起行为突变的原因。 线性:引起行为渐变;非线性: 线性:引起行为渐变;非线性:可能导致突变
基础研究主要的任务是认识世界 基础研究的成果导致技术革命 三类系统 1. 简单系统:混沌现象往往需要避免 简单系统: 2. 大量情况:混沌的作用不能简单的以“利”、 大量情况:混沌的作用不能简单的以“ “害”名之 3. 复杂系统,生命现象:混沌可能起着根本性 复杂系统,生命现象: 的积极作用
山东轻工业学院 数理学院 8
马尔萨斯人口论模型: 马尔萨斯人口论模型:
x n+1 = axn
2 x n +1 = ax n − bx n
线性模型 最简单的非线性模型
混沌道路
四、通向混沌的各种道路
1. 倍周期分岔道路 2. 阵发混沌道路 倍周期分岔和阵发混沌是两种最常见的通向混沌的 道路。实际上,可以说有无穷多种通向混沌的道路。 道路。实际上,可以说有无穷多种通向混沌的道路。
混 沌 现 象
所谓“确定论系统” 所谓“确定论系统”,是指描述该系统的数学模 型是不包含任何随机因素的完全确定的方程。 型是不包含任何随机因素的完全确定的方程。 混沌现象是确定论系统所表现出来的随机行为的 混沌现象是确定论系统所表现出来的随机行为的 总称。它的根源在于非线性的相互作用。 总称。它的根源在于非线性的相互作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混沌现象的通俗解释非线性,俗称“蝴蝶效应”。
什么是蝴蝶效应?先从美国麻省理工学院气象学家洛伦兹(Lorenz)的发现谈起。
为了预报天气,他用计算机求解仿真地球大气的13个方程式。
为了更细致地考察结果,他把一个中间解取出,提高精度再送回。
而当他喝了杯咖啡以后回来再看时竟大吃一惊:本来很小的差异,结果却偏离了十万八千里!计算机没有毛病,于是,洛伦兹(Lorenz)认定,他发现了新的现象:“对初始值的极端不稳定性”,即:“混沌”,又称“蝴蝶效应”,亚洲蝴蝶拍拍翅膀,将使美洲几个月后出现比狂风还厉害的龙卷风!这个发现非同小可,以致科学家都不理解,几家科学杂志也都拒登他的文章,认为“违背常理”:相近的初值代入确定的方程,结果也应相近才对,怎么能大大远离呢!线性,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;而非线性则指不按比例、不成直线的关系,代表不规则的运动和突变。
如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是6-10倍!这就是非线性:1+1不等于2。
激光的生成就是非线性的!当外加电压较小时,激光器犹如普通电灯,光向四面八方散射;而当外加电压达到某一定值时,会突然出现一种全新现象:受激原子好象听到“向右看齐”的命令,发射出相位和方向都一致的单色光,就是激光。
非线性的特点是:横断各个专业,渗透各个领域,几乎可以说是:“无处不在时时有。
”如:天体运动存在混沌;电、光与声波的振荡,会突陷混沌;地磁场在400万年间,方向突变16次,也是由于混沌。
甚至人类自己,原来都是非线性的:与传统的想法相反,健康人的脑电图和心脏跳动并不是规则的,而是混沌的,混沌正是生命力的表现,混沌系统对外界的刺激反应,比非混沌系统快。
由此可见,非线性就在我们身边,躲也躲不掉了。
1979年12月,洛伦兹(Lorenz)在华盛顿的美国科学促进会的一次讲演中提出:一只蝴蝶在巴西扇动翅膀,有可能会在美国的德克萨斯引起一场龙卷风。
他的演讲和结论给人们留下了极其深刻的印象。
从此以后,所谓“蝴蝶效应”之说就不胫而走,名声远扬了。
“蝴蝶效应”之所以令人着迷、令人激动、发人深省,不但在于其大胆的想象力和迷人的美学色彩,更在于其深刻的科学内涵和内在的哲学魅力。
混沌理论认为在混沌系统中,初始条件的十分微小的变化经过不断放大,对其未来状态会造成极其巨大的差别。
我们可以用在西方流传的一首民谣对此作形象的说明。
这首民谣说:丢失一个钉子,坏了一只蹄铁;坏了一只蹄铁,折了一匹战马;折了一匹战马,伤了一位骑士;伤了一位骑士,输了一场战斗;输了一场战斗,亡了一个帝国。
马蹄铁上一个钉子是否会丢失,本是初始条件的十分微小的变化,但其“长期”效应却是一个帝国存与亡的根本差别。
这就是军事和政治领域中的所谓“蝴蝶效应”。
有点不可思议,但是确实能够造成这样的恶果。
一个明智的领导人一定要防微杜渐,看似一些极微小的事情却有可能造成集体内部的分崩离析,那时岂不是悔之晚矣?横过深谷的吊桥,常从一根细线拴个小石头开始。
莫以恶小而为之,莫以善小而不为。
千里之堤,毁于蚁穴。
混沌现象在自然界所经历的途径及是普遍存在的,近些年来,人们不仅从实验室观察到了许多混沌现象,而且认识到混沌产生的条件,其特征,在理论上发现了一些有关混沌产生的普遍规律,混沌理论的研究已经不仅仅局限于物理学方面,而且成为跨学科的十分活跃的研究方向,比如在生命,意识,社会发展变化上的研究。
有人甚至认为混沌理论是继量子论,相对论以后的第三大革命。
所以对混沌与牛顿定律的内在随机性的研究,不仅是在物理学上,更是在各个学科层次上的一次重要变革。
混沌理论不能将其片面的理解为混乱的没有规律的。
那么到底什么是混沌现象呢?它与牛顿力学的内在随机性又体现在什么地方呢?我们可以从简单直观的现象说起。
科学家们之所以如此痴狂地研究混沌,就是因为混沌这种现象普遍存在于日常生活中。
换句话说,有很多自然现象经过数学抽象,使得我们知道这现象的数学实质就是混沌。
例如池塘中鱼的数目,当鱼的数目比较少而又具有充足食物时,它们的数目就会增多,而多到一定数目,就会爆发生存危机,有一些鱼将会死掉。
一千多天以后,当你把每天数得的鱼数在坐标上描出来,得到的图象会让你大为失望——因为它看上去没有任何规律。
这就是混沌。
不仅如此,如果你长时间记录某种流行病的发作期如果你愿意研究心中的涨落节奏;或者,如果你愿意去研究天体与尘埃间的关系,以及湍流、气象、医学、心理、社会的发展。
我们都会发现事物发展有时显得无迹可寻就是混沌。
简单地说,混沌就是随机的无规律状态。
它普遍存在于自然界中。
对于一直沿着“寻找规律”这条道路去探索自然的人们来说,面对“无规律”时曾有些无能为力。
一方面,几百年来人们研究偶然事件的方法就是概率法,但混沌的无规性使得人们完全无法用概率以及误差定律去研究混沌。
另一方面,人们考虑:混沌为何会出现?尤其是,在充满确定性定律的世界里为何只有人们用数学工具得到的结果才有规律性呢?这些问题,其实有一个很简单的答案。
既人们的数学工具、数学处理方法总是充满了近似。
甚至,我们根本无法测定一个量的绝对数值,即真实值。
如果与真实值有任何差异,这个过程都可能变化为面目全非的另一过程。
自然现象中,绝大多数都是非线性的,但人们往往将其近似为线形。
这样做有时是可以的。
但在很多情况下不能,典型的情况是天气预报。
第一次发现这种情况是在19世纪末,法国大数学家庞加莱在研究三体碰撞时,发现即使一个尘埃也能影响另外两个星球的轨迹,从而指出星球轨迹的混沌变化。
混沌是自然界中最基本的运动形式之一,与秩序一起,共同维系这个世界。
混沌本身是确定性中的这个世界。
混沌本身是确定性中随机无规状态。
它并不是无迹可寻的。
如果用物理语言去说,则混沌是普遍存在与自然界的非线性物理想像。
混沌并不是乱成一团,而是无周期的有序性。
这就是我们所说的混沌现象。
我们常常在科学杂志上看见蝴蝶效应这个名词,那么蝴蝶效应是一种什么现象呢?先从美国麻省理工学院的气象学家洛伦兹的发现谈起,为了预报天气,他用计算机求解仿真地球大气的十三个方程式,为了更细致的考察结果,他把一个中间解取出,提高精度在送回,而当他喝了杯咖啡以后回来在看,却大吃一惊:本来很小的差异,结果却相差十万八千里!计算机没有毛病,于是他认定,他发现了新的现象:“对初始值的极端不稳定性”。
称为蝴蝶效应,即假使亚洲蝴蝶拍拍翅膀,可能将使美洲几个月后出现比狂风还厉害的龙卷风!蝴蝶效应说明了:初始条件的十分微小的变化经过不断的放大,对其未来状态会造成极其巨大的改变,我们可以用西方流传的一首民谣来对此做形象的说明,丢失一个钉子,坏了一只铁,坏了一只蹄铁,折了一匹战马,折了一匹战马,伤了一位骑士,伤了一位骑士,输了一场战斗,输了一场战斗,亡了一个帝国。
马蹄铁上的一个钉子是否丢失,本是初始条件的十分微小的变化但是长时间的结果却是一个帝国的存亡之分。
牛顿定律是我们接触最多的物理学理论,被称做经典物理学。
它最早形成的对物体运动的描述,被称为确定性理论,即如果已知物体所受的力和它的初始状态,则它在状态前后的运动是完全确定的,这类运动可重现,比如可以对航天飞机与导弹的运行勾画出准确的历程。
这就使确定性理论长时间的统治了物理学说。
但是物理学家庞家来研究的三体问题,却证明了轨道的复杂性。
人们又相继提出了其他一些限制性的三体问题及其他非线性动力学方程。
证明了这些非线性方程带来的混沌行为。
表现出对初值的敏感性,系统呈现长时间的不确定性或随机性。
揭示出牛顿力学也具有内在随机性比如非线性振子的随机运动。
图(1)为个薄弹性钢梁,一端固定在刚性框架上部,框架的下部装有2个永久磁铁。
框架可随时间按余弦规律左右振动。
图(1)设x为钢梁端点对于其平衡位置O的位移,根据牛顿定律,其动力学方程为其中ω和r是驱动力的频率和振幅,δ是阻尼系数。
等号左边头两项表示了梁的惯性和耗散效应,而第三项表示了磁铁和弹性力的效应,等号右边的余弦项表示了装置的振动。
求解该方程得到得薄钢梁的振动有两个稳定的平衡位置O和O′。
自平衡位置O(或O′)拉开一角θ放手,运动并不总围绕O(或O′)往复,而是时而绕O(或O′)振,时而绕O′(或O)振。
依次记下绕O和O′振动的第一次实验为2,1,2,1,4,3,1,…。
第二次实验仍自平衡位置拉开角度θ放手,得依次绕O和O′的振动次数为2,1,1,1,5,1,3…。
且两次实验中各次振幅也变化不定。
显见,两次实验虽初值相同,但运动并不重现。
所谓实验中的初值都是θ,实际上包含着微小的测量不出的偏差,经时间的演变,经时间演化,表现为两次运动并不相同,体现出对初值的敏感依赖。
从而造成混沌现象。
混沌的发现不是使人们惊奇世界是多么复杂,多么不能从已知的基本原理出发进行解释,多么需要重新认识世界,相反,蒙昧时代人类就为世界的复杂性而感到惊奇和束手无策,所以才求助于神明,后来也才有了科学,力求用简单的基本原理来解释复杂的世界。
混沌的发现只是证明了这一哲学信念的正确性和任务的艰巨性竭力使各较高层次的基本原理纳入较低层次规律的推论之中,并用它们来解释复杂的世界。
在混沌发现以前,人们对所达到的最低层次的自然科学定律了解得已很完备,而对较高层次规律则虽然了解得很不充分。
但已在此基础上实现了对复杂世界中许多不太复杂现象的解释。
这些成功同时也使人们产生了初条件对物理方程解的“客观决定性”一定能保证“操作性决定性”的糊涂观念。
牛顿力学内在随机性的发现向人们证实,一般规律确实蕴含着高层次规律。
简单的基本原理能解释真正复杂的世界确实不是一句空话;同时还使人们清醒地认识到“客观决定性”不一定能保证“操作性决定性”,因此简单求解或烦琐计算不一定能真正解决实际问题。
这表明复杂现实的研究既要从已知的基本原理出发,又要采用和创造灵活多样的新方法、新概念去踏踏实实地进行,这里依然需要创造性。
了解了混沌理论与牛顿定律的内在随机性,我们得出这样的结论牛顿方程内在随机性”不但不否定牛顿方程对其解的客观决定性,相反“牛顿方程内在随机性”的发现,还使人们认识到一大类随机现象原来是决定论方程所为!所以非线性科学不仅不是对”还原论”的否定,相反,其创立和发展还为还原论已经提供并将不断提供有力地新证据。
这有其普遍根源:各不同层次,各不同学的定律。
实际上只不过是人们对于按基本自然定律运动着的物质世界,从不同角度来观察时所得到的一部份规律而已,它们都蕴含于基本自然定律之中。
牛顿定律对力学各层次、生命、意识、社会发展变化等科学定律有客观决定性。
另一方面,力学各层次、生命、意识、社会现象的细节多半不能从有限精度初条件足够精确地操作出来,所以在科学研究的方法上,不能仅限于严格的从头算技术和纯演绎方法,而必须采用和创造灵活多样的方法。