蛋白质生物合成的过程

合集下载

蛋白质的生物合成

蛋白质的生物合成

蛋白质的生物合成
蛋白质是生命体中最为重要的分子之一,参与了生物体的很多生命过程。

蛋白质的生物合成是指在细胞内通过核糖体合成多肽链,并将多肽链进一步折叠成特定的三维结构的过程。

这个过程需要包括DNA转录、RNA翻译、蛋白质折叠等多个步骤。

在生物体内,DNA中的基因序列被转录成RNA分子。

RNA分子进一步通过核糖体将多个氨基酸连接成一条多肽链。

在这个过程中,RNA 分子会依据基因序列上的密码子来选择相应的氨基酸,并将它们串联在一起。

这个过程中的每一个密码子都对应着一种氨基酸,这种关系被称为遗传密码。

一条多肽链的生命周期并不仅仅是由其基因序列决定的。

在折叠过程中,这条链会被各种分子和酶修饰和加工,最终形成最终的三维结构。

这个过程中的每一个步骤都非常关键,因为一个错误的步骤都可能导致最终的结构失去功能。

蛋白质的生物合成是生命体中最为复杂的分子合成过程之一。

在这个过程中,细胞需要精确地将基因序列转录成RNA分子,并将氨基酸按照正确的顺序连接成多肽链。

同时,细胞还需要通过各种酶和分子来协助蛋白质的折叠和修饰,最终形成具有特定功能的蛋白质。

这个过程非常关键,因为蛋白质的结构和功能决定了生命体的很多生命过程。

- 1 -。

蛋白质的生物合成过程

蛋白质的生物合成过程

六、释放因子(RF) 原核生物中有4种,在真核生物中只有1种。 其主要作用是识别终止密码,协助多肽链的 释放。
七、氨基酰tRNA合成酶
该酶存在于胞液中,与特异氨基酸的活化以及 氨基酰tRNA的合成有关。
每种氨基酰tRNA合成酶对相应氨基酸以及携带氨基 酸的数种tRNA具有高度特异性,这是保证tRNA能 够携带正确的氨基酸对号入座的必要条件。 目前认为,该酶对tRNA的识别,是因为在tRNA的 氨基酸臂上存在特定的识别密码,即第二套遗传密 码。
五、延长因子(EF)
原核生物中存在3种延长因子(EFTU,EFTS, EFG),真核生物中存在2种(EF1,EF2)。其 作用主要促使氨基酰tRNA进入核 蛋白的受体, 并可促进移位过程。
EFTU(GTPase) EFT 原核 EFTS EFG(转位酶) 真核 α (GTPase) EF1 β γ EF2(转位酶)
一、mRNA 作为指导蛋白质生物合成的模板。 mRNA 中每 三个相邻的核苷酸组成三联体,代表一个氨基 酸的信息,此三联体就称为密码 (coden) 。共有 64种不同的密码。 原核生物的转录与翻译同步进行 无义突变 蛋白质的合成是N端——C端
密码的连续性
二、tRNA
在氨基酸tRNA合成酶催化下,特定的tRNA 可与相应的 氨基酸结合,生成氨基酸tRNA, 从而携带氨基酸参与蛋白质的生物合成。 tRNA反密码环中部的三个核苷酸构成三联 体,可以识别mRNA上相应的密码,此三联 体就称为反密码(anticoden)。 反向互补
在蛋白质生物合成过程中,常常由若干核蛋白体结合 在同一mRNA分子上,同时进行翻译,但每两个相邻 核蛋白之间存在一定的间隔,形成念球状结构。
由若干核蛋白体结合在一条mRNA上同时进行多肽 链的翻译所形成的念球状结构称为多核蛋白体。

第十五章_蛋白质的生物合成

第十五章_蛋白质的生物合成

四、氨酰-tRNA合成酶 氨基酸 + tRNA
氨酰-tRNA合成酶
氨酰- tRNA
ATP
AMP+PPi
tRNA的表示方法:
氨酰-tRNA
氨基酸活化; 氨酰tRNA合成酶 只作用于L-AA,消 耗2个高能磷酸键。
氨基酰-tRNA
氨酰-tRNA合成酶的特点
专一性
对氨基酸有极高的专一性,每种氨基酸都有专一的 酶;只作用于L-氨基酸,不作用于D-氨基酸;
密码的防错系统:密码子的碱基顺序与其相应Aa物 理化学性质之间存在巧妙的关系。 中间是U,Aa是非极性、疏水性的; 中间是C,Aa是非极性的或具有不带电荷的极性侧 链; 中间是A或G,Aa是亲水性的;
第一位是A或G,第二位是A或G,Aa具有可解离的亲 水侧链并具碱性; 前二位是AG,Aa具酸性亲水侧链。
1968年诺贝尔生理医学奖
遗传密 码字表
起始密码(start codon ):AUG(编码甲硫氨酸、 甲酰甲硫氨酸),少数情况 GUG; 终止密码(stop codon ):无义密码子 (nonsense codons),不编码氨基酸的密码子,它 们单个或串联在一起用于多肽链翻译的结束,没有 相应的tRNA存在,有UAA、UAG、UGA。
二、阅读框 一个蛋白质的氨基酸序列是由连续的三联体密码子 的线性顺序决定的,这个序列的第一个密码子建立了 一种阅读框(reading frame)。
从mRNA 5’端起始密码子AUG到3’端终止密码子之 间的核苷酸序列,连续50个以上密码子排列编码,无 终止密码子,这段顺序称为开放阅读框架(open reading frame,ORF)。
mRNA结合位点:核糖体 小亚基。
P位和A位紧密连 接,各占一个密 码子的距离。

蛋白质生物合成的方式

蛋白质生物合成的方式

蛋白质生物合成的方式
蛋白质生物合成是生物体内制造蛋白质的过程,它是生物体内的重要生化反应之一。

下面介绍蛋白质生物合成的方式:
1. 氨基酸活化:在蛋白质生物合成中,首先需要将氨基酸激活。

这个过程由特定的酶催化,称为氨基酸激酶。

被激活的氨基酸随后会与另一种分子——核糖磷酸结合,形成称为氨酰-tRNA的化合物。

2. 起始复合物形成:第二个步骤是形成起始复合物。

这个过程涉及氨酰-tRNA 与mRNA的结合,其中mRNA是包含蛋白质序列信息的分子。

这个过程需要核糖体起始因子(eIF)的帮助。

3. 肽链合成:一旦起始复合物形成,蛋白质合成就可以开始了。

每个氨基酸通过肽键连接在一起,形成一个连续的肽链。

这个过程由转录延长因子(eEF)和核糖体来催化。

4. 蛋白质折叠:当肽链合成完成后,蛋白质就会开始折叠成其最终的三维形状。

这个过程需要帮助,包括来自分子伴侣蛋白和折叠酶的帮助。

5. 蛋白质修饰:在某些情况下,还需要对蛋白质进行进一步修饰,例如添加糖基或脂质,或者进行磷酸化或乙酰化等化学修饰。

总的来说,蛋白质生物合成是一个复杂的过程,需要多个酶和分子的协同作用。

通过这个过程,生物体能够制造出其生命活动中所需的蛋白质。

【生物化学】蛋白质的生物合成

【生物化学】蛋白质的生物合成

嘌 呤 霉 素
酯键
(3)转位(translocation)
•转位酶 (translocase): •原核:延长因子G(EF-G),真核:EF-2 • GTP
可结合并水解1分子GTP,促进核 蛋白体向mRNA的3’侧移动
进 位
成肽 转 位
合成
3、肽链终止阶段:
核蛋白体沿mRNA链滑动,不断使多 肽链延长,直到终止信号进入受位。
四、蛋白质生物合成的干扰和抑制
1、抗生素(antibiotics)
名称
作用机制
四环素类 氯霉素类 链霉素类 嘌呤霉素
抑制氨酰-tRNA与原核生物核糖体结合,抑制细菌 蛋白质合成
结合原核生物核糖体大亚基,阻断翻译延长过。高 浓度时,对真核生物线粒体内的蛋白质合成也有阻 断作用 结合原核生物核糖体小亚基,改变其构象,引起读 码错误
,IF)
有抗病毒作
用的蛋白质
1、诱导一种蛋白激酶,使eIF2磷酸 化,从而抑制病毒蛋白质的生物合 成。
2、诱导生成一种寡核苷酸(2’5’A),活化核酸内切酶RNaseL, 可降解病毒RNA。
谢 谢!
(1)识别:释放因子(RF)识别终 止密码,进入核蛋白体的受位。
(2)水解:RF使转肽酶变为水解酶, 多肽链与tRNA之间的酯键被水解, 多肽链释放。
(3)解离:通过水解GTP,使核蛋 白体与mRNA分离,tRNA、RF脱落, 核蛋白体解离为大、小亚基。
进位
肽链的形成 移位
蛋白质 合成过程
肽链合成终止
结构与Tyr-tRNAtyr相似,阻止肽链正常合成
放线菌酮 抑制核糖体转肽酶。且只对真核生物有特异性作用
2、干扰蛋白质生物合成的生物活性物质
名称

原核生物蛋白质合成的过程

原核生物蛋白质合成的过程

蛋白质合成的过程蛋白质生物合成的具体步骤包括:①氨基酸的活化;②活化氨基酸的转运;③活化氨基酸在核蛋白体上的缩合。

(一)氨基酸的活化转运氨基酸的活化过程及其活化后与相应tRNA的结合过程,都是由氨基酰tRNA合成酶来催化的,反应方程为:tRNA+氨基酸+ATP〖FY(KN〗氨基酰tRNA合成酶〖FY)〗氨基酰-tRNA+AMP+焦磷酸。

以氨基酰tRNA形式存在的活化氨基酸,即可投入氨基酸缩合成肽的过程。

氨基酰tRNA合成酶存在于胞液中,具有高度特异性。

它们既能识别特异的氨基酸,又能辨认携带该种氨基酸的特异tRNA分子。

在体内,每种氨基酰tRNA合成酶都能从多种氨基酸中选出与其对应的一种,并选出与此氨基酸相应的特异tRNA。

这是保证遗传信息准确翻译的要点之一。

(二)核蛋白体循环tRNA所携带的氨基酸,是通过“核蛋白体循环”在核蛋白体上缩合成肽,完成翻译过程的。

以原核生物中蛋白质合成为例,将核蛋白体循环人为地分为启动、肽链延长和终止三个阶段进行介绍。

1.启动阶段在蛋白质生物合成的启动阶段,核蛋白体的大、小亚基,mRNA与一种具有启动作用的氨基酸tRNA共同构成启动复合体。

这一过程需要一些称为启动因子的蛋白质以及GTP 与镁离子的参与。

原核生物中的启动因子有3种,IF 1辅助另外两种启动因子IF 2、IF 3起作用。

启动阶段的具体步骤如下:(1)30S亚基在IF 3与IF 1的促进下与mRNA的启动部位结合,在IF 2的促进与IF 1辅助下与甲酰蛋氨酰tRNA以及GTP结合,形成30S启动复合体。

30S启动复合体由30S亚基、mRNA、fMet-tRNA fMet IF 1、IF 2、IF 3与GTP共同构成。

(2)30S启动复合体一经形成,IF 3即行脱落,50S亚基随之与其结合,形成了大、小亚基,mRNA,fMet-tRNA fMet IF 1、IF 2与GTP共同构成的70S启动前复合体。

(3)70S启动前复合体的GTP水解释出GDP与无机磷酸的同时,IF 2和IF 1随之脱落,形成了启动复合体。

简述蛋白质生物合成过程。

简述蛋白质生物合成过程。

简述蛋白质生物合成过程。

蛋白质合成可分四个步骤,以大肠杆菌为例:
(1)氨基酸的活化:游离的氨基酸必须经过活化以获得能量才能参与蛋白质合成,由氨酰-tRNA合成酶催化,消耗1分子ATP,形成氨酰-tRNA。

(2)肽链合成的起始:由起始因子参与,mRNA与30S小亚基、50S 大亚基及起始甲酰甲硫氨酰-tRNA(fMet-tRNAt)形成70S起始复合物,整个过程需GTP水解提供能量。

(3)肽链的延长:起始复合物形成后肽链即开始延长。

首先氨酰-tRNA结合到核糖体的A位,然后,由肽酰转移酶催化与P位的起始氨基酸或肽酰基形成肽键,tRNAf或空载tRNA仍留在P位.最后核糖体沿mRNA5’→3’方向移动一个密码子距离,A位上的延长一个氨基酸单位的肽酰-tRNA转移到P位,全部过程需延伸因子EF-Tu、EF-Ts,能量由GTP提供。

(4)肽链合成终止,当核糖体移至终止密码UAA、UAG或UGA时,终止因子RF-1、RF-2识别终止密码,并使肽酰转移酶活性转为水解作用,将P位肽酰-tRNA水解,释放肽链,合成终止。

蛋白质合成过程

蛋白质合成过程

蛋白质合成过程蛋白质是构成生物体的重要组成部分,参与了生物体内的各种生命活动。

蛋白质的合成是一个复杂而精密的过程,需要经过多个步骤和参与多种生物分子的协同作用。

本文将介绍蛋白质合成的整个过程,包括转录和翻译两个主要阶段,带您深入了解蛋白质合成的奥秘。

一、转录阶段转录是蛋白质合成的第一步,主要发生在细胞核内。

在转录过程中,DNA的信息被转录成RNA,其中mRNA(信使RNA)是编码蛋白质的模板。

以下是转录阶段的具体步骤:1.1 DNA解旋:在转录开始之前,DNA的双螺旋结构需要被解开,使得RNA聚合酶能够访问DNA上的基因信息。

1.2 RNA合成:RNA聚合酶按照DNA模板的信息合成mRNA分子。

RNA聚合酶会在DNA上“读取”信息,然后在合成RNA链时将对应的核苷酸加入到新合成的RNA链中。

1.3 RNA修饰:在合成完成后,mRNA分子会经过一系列修饰过程,包括剪切、剪接和加上帽子和尾巴等修饰,以确保mRNA的稳定性和功能性。

1.4 mRNA运输:修饰完成的mRNA会通过核孔运输到细胞质中,为下一步的翻译提供模板。

二、翻译阶段翻译是蛋白质合成的第二步,主要发生在细胞质中的核糖体上。

在翻译过程中,mRNA上的密码子被翻译成氨基酸序列,从而合成特定的蛋白质。

以下是翻译阶段的具体步骤:2.1 起始子寻找:翻译的起始子AUG会被识别,标志着翻译的开始。

AUG对应的氨基酸是甲硫氨酸。

2.2 氨基酰-tRNA结合:氨基酰-tRNA与mRNA上的密码子配对,带来对应的氨基酸。

tRNA上的抗密码子与mRNA上的密码子互补配对,确保正确的氨基酸被带入。

2.3 肽键形成:氨基酸通过肽键连接成多肽链,形成蛋白质的主干结构。

2.4 翻译终止:当翻译到终止子时,翻译复合物会停止合成,释放出新合成的多肽链。

2.5 蛋白后修饰:新合成的多肽链可能需要进一步的后修饰,如蛋白质的折叠、磷酸化、甲基化等,以获得最终的功能性蛋白质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AUG AU
3' 3'
OH fM
2
fM
(三)转位
tRNA脱落的同时,核蛋白体向mRNA的 3´-端移动一个密码子的距离。由EF-G中的 转位酶催化,此步骤需1个GTP。
5'? AUG AUG 5'? 3'
3'
OH 2
2 fM
3
OH
fM
进位、成肽、转位重复进行,肽链则不 断延长。 在肽链延长过程中,除第一个肽键形成 时, P位上是fMet-tRNA外,以后P位上总是 肽酰-tRNA, A位总是新进位的氨基酰-tRNA, 这就是P位和A位名称的由来。P位是转出肽 酰基,又叫“给位”,A位是接受肽酰基,叫 “受位”。
(五)真核生物起始复合物的形成 *此过程除消耗1个GTP外,还消耗ATP。
二、肽链的延长
又称核蛋白体循环 (ribosomal cycle), 每次循环包括: 进位(entrance) 成肽(peptide bond formation) 转位(translocation) 需要延长因子(EF): 原核:EF-T(EF-Tu,EF-Ts)、EF-G 真核:EF-1、EF-2
第二节
蛋白质生物合成 的过程
一、翻译的起始
起始tRNA与mRNA结合到核蛋白 体上,生成翻译起始复合物。
(一)起始因子IF和eIF
起始步骤 亚基分离 IF IF3 (IF1) eIF eIF3
核酸-核酸、核 eIF3,eIF1,eIF4A mRNA就位 酸-蛋白质之间 eIF4B,CBP-1 的辨认结合 eIF4E (CBP-2) 起始tRNA eIF2,co-eIF2-GTP IF2,GTP(IF1) 就位 eIF3,eIF4C 大亚基结合 各种IF脱落 eIF5,eIF4D
3' 3'
GTP
IF 3 IF 1 核蛋白体 亚基的拆离 AUG 5'? IF 3 IF 130SmRNA源自50S3'
IF 2
5'?
50S
AUG
3'
fM
IF 1-3
fM
IF 1-3 GDP + Pi
翻译起始复合物
(四)真核生物翻译起始的特点
1. 核蛋白体是80S (40S + 60S) 2. 起始因子种类多 3. 起始tRNA的Met不需甲酰化 4. 帽子结合蛋白(CBP)促使mRNA与核蛋 白体小亚基结合 5. 起始tRNA先与核蛋白体小亚基结合, 然后再结合mRNA
三、肽链合成的终止
1. RF与终止密码辨认结合
2. 肽链与tRNA分离 3. tRNA、mRNA及RF从核蛋白体脱落
5'? 5'? UAA UAA
RF RF
3' 3'
5'?
RF
3'
n n-1
OH n
n-1
RR
OH
原核生物蛋白质合成的能量计算
氨基酸活化:2个~P 起始: 延长: 终止: 1个 2个 1个 ATP GTP GTP GTP
结论:每合成一个肽键至少消耗4个~P。
多聚核蛋白体:
一个mRNA分子可同
时有多个核蛋白体在进
行同一种蛋白质的合成,
这种mRNA和多个核蛋
白体的聚合物称为多聚
核蛋白体。
garno而称为SD序列。核蛋白体小亚基上的
16SrRNA近3´-端有与此序列互补的UCCU。
因此又称SD序列为核蛋白体结合位点
(ribosomal binding site,RBS)。
(三)原核生物起始复合物的形成
*
30S 5'? 此阶段消耗1个GTP 5'? IF 3 IF 1
fM
AUG AUG
(二)原核生物mRNA的起始部位
16S-rRNA
3'
5'
5' A U CACUAGG C UCCU A G G A Pu Pu U U U Pu Pu A U G
mRNA 3'
SD序列 rps 辨认序列
(RBS)
SD序列:
原核生物 mRNA 起始密码前,普遍存 在AGGA 序列,因其发现者是 Shine-Dal-
(一)进位
氨基酰-tRNA根据遗传密码的指引, 在GTP和EF-T的协助下,进入核蛋白体 的A位。
5'? AUG 3'
fM
2
EF-T 协 助 进 位 的 Pi 机 制
2
Tu -GTP Ts Tu -GTP
2
GTP Tu Ts
Tu -GDP
Ts
GDP
(二)成肽
转肽酶催化肽键的形成。
5'? 5'?
相关文档
最新文档