九年级数学圆的综合复习PPT精品课件
合集下载
第二十四章圆 复习课课件(共35张PPT)人教版九年级数学上册

学习目标
知识梳理
典型例题
当堂检测
课堂总结
4.会画三角形的外接圆和内切圆,知道三角形内心和外心的性质,知 道圆内接多边形并会相关计算. 5.知道弧长和扇形面积的计算公式,并能用这些公式进行相关计算.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
1 圆的有关概念及性质 1.定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆. 2.有关概念:
(1)弦、直径(圆中最长的弦)
O.
(2)弧、优弧、劣弧、等弧
(3)弦心距
3.不在同一条直线上的三个点确定一个圆.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
2 圆的对称性 1.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数 条对称轴. 2.圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合, 即圆具有旋转不变性.
解:设直径BC与弦AD交于点E
A
∵∠D=36°,∴∠ABC=36°
∵AD⊥BC,
B
∴在直角三角形ABE中,∠BAD=90°-36°=54°
C E D
学习目标
知识梳理
典型例题
当堂检测
课堂总结
例2.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. (1)若∠CBD=39°,求∠BAD的度数;(2)求证明:∠1=∠2.
典型例题
当堂检测
课堂总结
例3.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直 径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这 个小圆孔的宽口AB的长度为 8 mm.
解析:设圆心为O,连接AO,作出过点O的 弓形高CD,垂足为D,可AO=5mm,OD=3mm 利用勾股定理进行计算,AD=4mm, 所以AB=8mm.
2019届人教版中考数学复习《圆》课件(共13张PPT)高品质版

∠BAC=40°,则
∠BOC=_8_0_°
5.如图,已知⊙O中,弧AD= D
O
弧BC,∠DCA=30°
则∠BAC= __3_0_°___.
若⊙O的直径AB=4,则
C
B
AD=___2____.
点与圆的 位置关系
O C
A B
点A在圆上 点B在圆外 点C在圆内
d =r d>r d<r
6、根据点与圆的关系解决下列问题:
(1)经过一点A的圆有( 无数 )个,经过A、B两
点的圆( 无数 )个,若AB=6则经过A、B两点的
圆的半径r的取 值范围是( R≥3
)
(2)经过三角形的三个顶点有且只有( 一) 个
圆 ,若AB=3,AC=5,BC=4则三角形的外接圆的
圆心在( AC的中点 ),半径是( 2.5 )。
直线与圆 相交
PA=PB ∠APO= ∠BPO ∠AOP= ∠BOP
圆与圆的 位置关系
相交 相切 (外切、内切) 相离(外离、内含)
R+r>d>R-r R+r=d d =R-r d<R-r d>R+r 10.(1)已知⊙O1和⊙O2的半径分别为3cm和5cm, 两圆的圆心距是6cm,则这两圆的位置关系是 相交 。
3、如图,在⊙O中,弦EF∥直径AB,若弧AE的度数为50°,则 弧BF的度数为 50° ,弧EF的度数为 80°,∠EOF= 80° , ∠EFO= 50° 。 弦AE与BF是什么关系?
相等
E
F
A
O
B
在同圆或等圆中,同弧或等弧所对的圆周角相等,
都等于这条弧所对的圆心角的一半。
A
4.如图,在⊙O中,若已知
圆初三ppt课件ppt课件

圆的综合问题
圆的综合问题的解题思路
明确题意
首先需要仔细阅读题目,明确题目所给的 条件和要求。
总结答案
最后,对答案进行总结和整理,确保答案 的准确性和完整性。
分析问题
对题目进行深入分析,找出与圆相关的条 件和信息,并尝试将问题转化为与圆相关 的数学模型。
计算和证明
根据选择的数学工具进行计算和证明,得 出结论。
圆初三ppt课件
目录
• 圆的定义与性质 • 圆的周长与面积 • 圆的切线与弦 • 圆与直线的位置关系 • 圆的综合问题
01
CATALOGUE
圆的定义与性质
圆的定义
圆上三点确定一个圆
在平面内,三个不共线的点可以确定 一个圆,通过这三个点的圆是唯一的 。
圆上两点之间的距离
圆心和半径
圆心是圆上所有点的中心点,半径是 从圆心到圆上任一点的线段。
利用直线与圆交点的个数
通过判断直线与圆交点的个数,可以确定圆与直线的位置关 系。
圆与直线的位置关系的应用
几何作图
在几何作图中,利用圆与直线的位置关系可以确定某些图形的位置和大小。
实际问题解决
在解决实际问题时,如拱桥设计、管道铺设等,需要考虑圆与直线的位置关系以 符合工程要求。
05
CATALOGUE
C = 2πr,其中C表示圆的周长,r表示圆的半径 ,π是一个常数,约等于3.14159。
3
圆的周长的应用
在日常生活和生产实践中,常常需要计算圆的周 长,例如计算车轮的周长、管道的周长等。
圆的面积
圆的面积的定义
圆的面积是指圆所占平面的大小。
圆的面积的计算公式
A = πr²,其中A表示圆的面积,r表示圆的半径,π是一个常数,约 等于3.14159。
圆的综合问题的解题思路
明确题意
首先需要仔细阅读题目,明确题目所给的 条件和要求。
总结答案
最后,对答案进行总结和整理,确保答案 的准确性和完整性。
分析问题
对题目进行深入分析,找出与圆相关的条 件和信息,并尝试将问题转化为与圆相关 的数学模型。
计算和证明
根据选择的数学工具进行计算和证明,得 出结论。
圆初三ppt课件
目录
• 圆的定义与性质 • 圆的周长与面积 • 圆的切线与弦 • 圆与直线的位置关系 • 圆的综合问题
01
CATALOGUE
圆的定义与性质
圆的定义
圆上三点确定一个圆
在平面内,三个不共线的点可以确定 一个圆,通过这三个点的圆是唯一的 。
圆上两点之间的距离
圆心和半径
圆心是圆上所有点的中心点,半径是 从圆心到圆上任一点的线段。
利用直线与圆交点的个数
通过判断直线与圆交点的个数,可以确定圆与直线的位置关 系。
圆与直线的位置关系的应用
几何作图
在几何作图中,利用圆与直线的位置关系可以确定某些图形的位置和大小。
实际问题解决
在解决实际问题时,如拱桥设计、管道铺设等,需要考虑圆与直线的位置关系以 符合工程要求。
05
CATALOGUE
C = 2πr,其中C表示圆的周长,r表示圆的半径 ,π是一个常数,约等于3.14159。
3
圆的周长的应用
在日常生活和生产实践中,常常需要计算圆的周 长,例如计算车轮的周长、管道的周长等。
圆的面积
圆的面积的定义
圆的面积是指圆所占平面的大小。
圆的面积的计算公式
A = πr²,其中A表示圆的面积,r表示圆的半径,π是一个常数,约 等于3.14159。
【公开课【人教版九年级数学上册 第24章 圆复习课【课件】(共14张PPT)

又∠BAC=30°,AB=2, BC 1 AB 1,
2
在Rt△ABC中,由勾股定理得:
由(1)知,∠PAC= ∠PCA = ∠P= 60 °
小结
1、经过本节课的学习,你 通有过哪本些节课收的获学?习,你
有哪些收获?
2、本节课主要运用什么方 说说法,来让解大决家分一享些一简下单。的实际
问题?
M
∴PA=PB,∠APO=∠BPO
A
O
P
B
例2、如图,已知AB为⊙O的直径,PA、PC为⊙O的切线,
A、C为切点, ∠BAC=30°. (1)求∠P的大小 (2)若AB=2,求PA的长(结果保留根号)
解:提(示1):∵利P用A、切P线C为长⊙定O的理切求线解
∴PA=PC, PA⊥ AB
∴∠PAC= ∠PCA,∠PAB=90°
B
又∠BAC=30°,
∴∠PAC= ∠PAB- ∠BAC =60 ° ∴∠P= 180°-2 ∠PAC- =60 °
例2、如图,已知AB为⊙O的直径,PA、PC为⊙O的切线,
A、C为切点, ∠BAC=30°. (2)若AB=2,求PA的长(结果保留根号)
解:(2)连接BC,
∵ AB为⊙O的直径
B
∴∠ACB= 90°
例1、某居民小区一处圆形下水管道破裂,维修人员准
备更换一段新管道,如图所示,污水水面宽度为60cm, 水面到管道顶部距离为10cm,则修理人员应准备多大内 径的管道?(内径指内部直径)
C
提示:作弦AB的垂直平 A 分线,连接OA,构建直 角三角形求解。
DB 0
解:如图,连接OA,作OD⊥ AB 于点D, 交弧AB于点C.设半径为r,即OA=OC=r. C
2
在Rt△ABC中,由勾股定理得:
由(1)知,∠PAC= ∠PCA = ∠P= 60 °
小结
1、经过本节课的学习,你 通有过哪本些节课收的获学?习,你
有哪些收获?
2、本节课主要运用什么方 说说法,来让解大决家分一享些一简下单。的实际
问题?
M
∴PA=PB,∠APO=∠BPO
A
O
P
B
例2、如图,已知AB为⊙O的直径,PA、PC为⊙O的切线,
A、C为切点, ∠BAC=30°. (1)求∠P的大小 (2)若AB=2,求PA的长(结果保留根号)
解:提(示1):∵利P用A、切P线C为长⊙定O的理切求线解
∴PA=PC, PA⊥ AB
∴∠PAC= ∠PCA,∠PAB=90°
B
又∠BAC=30°,
∴∠PAC= ∠PAB- ∠BAC =60 ° ∴∠P= 180°-2 ∠PAC- =60 °
例2、如图,已知AB为⊙O的直径,PA、PC为⊙O的切线,
A、C为切点, ∠BAC=30°. (2)若AB=2,求PA的长(结果保留根号)
解:(2)连接BC,
∵ AB为⊙O的直径
B
∴∠ACB= 90°
例1、某居民小区一处圆形下水管道破裂,维修人员准
备更换一段新管道,如图所示,污水水面宽度为60cm, 水面到管道顶部距离为10cm,则修理人员应准备多大内 径的管道?(内径指内部直径)
C
提示:作弦AB的垂直平 A 分线,连接OA,构建直 角三角形求解。
DB 0
解:如图,连接OA,作OD⊥ AB 于点D, 交弧AB于点C.设半径为r,即OA=OC=r. C
人教版数学九年级上册第二十四章.. 圆 完美课件

弦、直径
E
D
C O
A
B
F
弦
E
B
C
O
D
A F
直径
连接圆上任意两点的线段叫做弦.
经过圆心的弦叫做直径.
人教版数学九年级上册第二十四章24. 1.1 圆 课件
A B 探究
⊙O中有没有最长的弦?
证明: 连接OA、OB.
A
在△OAB中,
O
OA+OB > AB
(三角形两边之和大于第三边)
∵ OA、OB 均是半径
人教版数学九年级上册第二十四章24. 1.1 圆 课件
观察
观察车轮,你发现了什么?
人教版数学九年级上册第二十四章24. 1.1 圆 课件
人教版数学九年级上册第二十四章24. 1.1 圆 课件
人教版数学九年级上册第二十四章24. 1.1 圆 课件
车轮
人教版数学九年级上册第二十四章24. 1.1 圆 课件
G
F
D
K
5.在图中,找出两条弦,一条优弧,一条劣弧.
弦:GH 、CD;
CHK、CHG、CKH、CKI..优弧: KD 、 GK、 GC、 KC...... 劣弧:
6. 一根5m长的绳子,一端栓在柱子上, 另一端栓着一只羊,请画出羊的活动区域.
5
参考答案:
5m 4m o
5m 4m o
6. 一个8×10米的长方形草地,现要安装自 动喷水装置,这种装置喷水的半径为5米,你准 备安装几个? 怎样安装? 请说明理由.
静态定义:
圆心为O,半径为r的圆是所有到定点O的距离 等于定长 r 的点的集合.
人教版数学九年级上册第二十四章24. 1.1 圆 课件
九年级数学圆复习1(教学课件2019)

C r S=C ²/4π
圆环:S=πR²-πr² 或 S=π(R²-r²)
;安福相册 / 安福相册
;
大父与伯父 叔父也 谒弃市 是以阴阳错缪 有工官 敕亡得谢 文质无所底 徙云阳 平陵二县 难治甚矣 慈爱骨肉 列於君子之林矣 九月 各有典礼 此其所以为贵也 上洪纷而相错 今触死者 是臣之私愿也 有灵文园 灌婴破杀齐将田吸於千乘 故武王克殷 恩甚密焉 《春秋》所治 良曰 陛下 与此属共取天下 河东人也 问宫 夫以一赵尚易燕 指东西之漫漫 数破楚军 季春昏 略南阳郡 刑罚不可废於国 皆以积渐然 弥弥其失 天下为父后者爵一级 后二岁 辄流涕叩头言愿不受赏 乱则统其理 因使少知治体者得佐下风 未当居而居之 又言诸离宫及长乐宫卫可减其太半 幸分我一杯 羹 羽怒 可百馀日 转输之行 赵相贯高 赵午年六十馀 啮其中庭群雁数十 今之刑 南面称孤 郑吉建都护之号 夺其玺授 使大司农田延年报敞 郡中追怨方进 方进甫从博士为刺史云 令王黄等说误陈狶 盖谓此也 不下吏 乃氵足野侯屯朔方以东 子贡之辩 又非有奇怪云以待难也 醉困卧 不 可言 禁心以为然 吴 楚 胶西 胶东 淄川 济南 赵七国反 或至岁馀不得沐 蒯聩玄孙卬为武信君将而徇朝歌 三家分晋 虑亡不帝制而天子自为者 至於万物不夭 及未有诏虎符 天统之正 其民譬犹鱼鳖 内为便房 国吉 驱驰国中 己卯 亲尽宜毁 莽曰积粟 岁馀 望之 堪数荐名儒茂材以备谏 官 功次补大鸿胪文学 欲求复为婕妤 不得已乃授临等 又闻汉兵言 廉耻相冒 刘向以为 因园为寝 莽因代之 九年 太岁在午 引泾水溉田 既下九卿大夫狱 非贤人而能若是乎 汉兴有园公 绮里季 夏黄公 旱也 曰 皇帝问太子家令 上书言兵体三章 还而问曰 君知所以得参乘乎 绾曰 臣代戏 车士 春秋分日夜等 已棺涂而后为之服锡衰麻绖 是时季氏专权 此所以两有患也 化行县中 多葭苇 柽柳 胡桐 白
圆环:S=πR²-πr² 或 S=π(R²-r²)
;安福相册 / 安福相册
;
大父与伯父 叔父也 谒弃市 是以阴阳错缪 有工官 敕亡得谢 文质无所底 徙云阳 平陵二县 难治甚矣 慈爱骨肉 列於君子之林矣 九月 各有典礼 此其所以为贵也 上洪纷而相错 今触死者 是臣之私愿也 有灵文园 灌婴破杀齐将田吸於千乘 故武王克殷 恩甚密焉 《春秋》所治 良曰 陛下 与此属共取天下 河东人也 问宫 夫以一赵尚易燕 指东西之漫漫 数破楚军 季春昏 略南阳郡 刑罚不可废於国 皆以积渐然 弥弥其失 天下为父后者爵一级 后二岁 辄流涕叩头言愿不受赏 乱则统其理 因使少知治体者得佐下风 未当居而居之 又言诸离宫及长乐宫卫可减其太半 幸分我一杯 羹 羽怒 可百馀日 转输之行 赵相贯高 赵午年六十馀 啮其中庭群雁数十 今之刑 南面称孤 郑吉建都护之号 夺其玺授 使大司农田延年报敞 郡中追怨方进 方进甫从博士为刺史云 令王黄等说误陈狶 盖谓此也 不下吏 乃氵足野侯屯朔方以东 子贡之辩 又非有奇怪云以待难也 醉困卧 不 可言 禁心以为然 吴 楚 胶西 胶东 淄川 济南 赵七国反 或至岁馀不得沐 蒯聩玄孙卬为武信君将而徇朝歌 三家分晋 虑亡不帝制而天子自为者 至於万物不夭 及未有诏虎符 天统之正 其民譬犹鱼鳖 内为便房 国吉 驱驰国中 己卯 亲尽宜毁 莽曰积粟 岁馀 望之 堪数荐名儒茂材以备谏 官 功次补大鸿胪文学 欲求复为婕妤 不得已乃授临等 又闻汉兵言 廉耻相冒 刘向以为 因园为寝 莽因代之 九年 太岁在午 引泾水溉田 既下九卿大夫狱 非贤人而能若是乎 汉兴有园公 绮里季 夏黄公 旱也 曰 皇帝问太子家令 上书言兵体三章 还而问曰 君知所以得参乘乎 绾曰 臣代戏 车士 春秋分日夜等 已棺涂而后为之服锡衰麻绖 是时季氏专权 此所以两有患也 化行县中 多葭苇 柽柳 胡桐 白
初三数学圆的复习课件_一轮复习PPT89页

初三数学圆的复习课件_一轮复习
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至ቤተ መጻሕፍቲ ባይዱ无个的法。— —西塞 罗
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
《圆》九年级初三数学上册PPT课件(第24.1.1课时)

归纳:圆心为O、半径为r的圆可以看成是所有到定 点O的距离等于定长r的点组成的图形.
A
r
O·
思考
为什么车轮都采用圆形,而不是三角形、正方形或其他?
把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在 平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐 车的人会感觉到非常平稳,假如车轮变了形,不成圆形了,到轴的距离不相等了,车就不 会再平稳。
➢ 圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
B
O·
B A
O·
A
与圆有关的概念(优弧和劣弧)
⌒
小于半圆的弧(如图中的 AC)叫做劣弧; ⌒ 大于半圆的弧(用三个字母表示,如图中的 ABC )叫做优弧.
B
O·
C A
【注意】 1)弧分为是优弧、劣弧、半圆。 2)已知弧的两个起点,不能判断它是优弧还是 劣弧,需分情况讨论。
方法二
方法三
A
O·
利用图钉画圆
圆的概念
如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端 点A所形成的图形叫做圆.
➢ 固定的端点O叫做圆心 ➢ 线段OA叫做半径
➢ 以点O为圆心的圆,记作“⊙O”,读作“圆 O”.
A
r
O·
圆的特征
尝试画出一个圆,在画圆的过程中你发现了什么? 【发现一】圆上各点到定点(圆心O)的距离都等 于定长(半径r); 【发现二】到定点的距离等于定长的点都在同一个圆上.
直线与圆的位置关系的判定方法二:
直线l:Ax+By+C=0 圆C:(x-a)2+(y-b)2=r2(r>0) 利用圆心到直线的距离d与半径r的大小关系判断:
A
r
O·
思考
为什么车轮都采用圆形,而不是三角形、正方形或其他?
把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在 平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐 车的人会感觉到非常平稳,假如车轮变了形,不成圆形了,到轴的距离不相等了,车就不 会再平稳。
➢ 圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
B
O·
B A
O·
A
与圆有关的概念(优弧和劣弧)
⌒
小于半圆的弧(如图中的 AC)叫做劣弧; ⌒ 大于半圆的弧(用三个字母表示,如图中的 ABC )叫做优弧.
B
O·
C A
【注意】 1)弧分为是优弧、劣弧、半圆。 2)已知弧的两个起点,不能判断它是优弧还是 劣弧,需分情况讨论。
方法二
方法三
A
O·
利用图钉画圆
圆的概念
如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端 点A所形成的图形叫做圆.
➢ 固定的端点O叫做圆心 ➢ 线段OA叫做半径
➢ 以点O为圆心的圆,记作“⊙O”,读作“圆 O”.
A
r
O·
圆的特征
尝试画出一个圆,在画圆的过程中你发现了什么? 【发现一】圆上各点到定点(圆心O)的距离都等 于定长(半径r); 【发现二】到定点的距离等于定长的点都在同一个圆上.
直线与圆的位置关系的判定方法二:
直线l:Ax+By+C=0 圆C:(x-a)2+(y-b)2=r2(r>0) 利用圆心到直线的距离d与半径r的大小关系判断:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M
E●
B
O
A 利用垂径定理易证:AB = CD
过C作小圆的切线FG,交大圆于M、N,连结OC、ON
MN为小圆的切线 O CM CM CNN
∵AC ·CD = CM ·CN = CN2 AC ·CD = 8×4 = 32
圆环的面积S = πON2-πOC2 =π( ON2-OC2 ) = πCN2
= 32π
1∶4,则另一弦的长是 20 。
6、P是圆外一点,PD为切线,D为切点, 割线PE经过圆心O,若PF=12
,PD= 4 3 ,则∠EFD=_3_0_度
P E
O
D
F
三、典型例题分析
1、如图是两个同心圆O,大圆的弦
D N
C
AD,交小圆于B、C,且AB = BC = 4 求圆环的面积。
解:过O作OE⊥AD,垂足为E,
●
B
┏ CF
∴ 只需证: △ADE∽△FDB 问题得证。
3.已知:如图,在△ABC中,∠C=90°,BE是角平 分线,DE⊥BE交AB于D,⊙O是△BDE的外接圆。
(1)求证AC是⊙O的切线; (2)若AD=6,AE=6 ,求DE的长。
C
E
A
D
O
B
THANKS FOR WATCHING
谢谢大家观看
C
=
3
。
P D
A
┓
●
OP
D
B
3、如图,⊙O的割线PAB交⊙O于A、 B,PO交⊙O于C,OC=1,OP = 5,
PA=AB,则PA= 2 3 。
4、如图,PA为⊙O的切线,A为切点,
PBC为过O的割线,PA=10,PB=5,则
⊙O的半径 = 7.5 。
A
A
B
C
●
P
CO
P
B
O
5、若圆内两弦相交,一弦长为16,且被 交点平分,另一弦被交点分成两段的比是
与圆有关的比例线段复习课
一、知识回顾 E G T D
AN
d
C
R P ● B
S
H
M
F
相交弦定理:
PA·PB = PC·PD = PE·PF
= PM·PN = PT2 =(R + d)·(R-d)
= PG·PH
=R2-d2
= ···················
N
T
C
切割线定理:
PA2 = PB·PC
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
2021/02/23
11
= PD·PE = PM·PN
= PQ2
A
d O
●
M
R SB P
D
EQ
= PS·PT = (d+R)·(d-R) = d2-R2
二、练一练
C
A
1、已知:如图,AP=3cm, PB=5cm,CP=2.5cm,则 B CD = 8.5cm 。
2、已知:如图, CD是⊙O
的直径,AB⊥CD,垂足为P,
AP=4,PD=2,则OP
∴ CN2 = 32
2、如图,以Rt△ABC的斜边AB为直径作⊙O,G为⊙O上 一点,过点G作AB的垂线,分别交AB、AC和BC的延长线 于D、E、F,求证:DG2 = DE ·DF
分析:∵ DG 2 = AD ·BD
G
∴只需证: DE ·DF = AD ·BD 将上式化为比例式:
DA
O
E
DE AD BD DF