线三等角模型

合集下载

中考数学相似三角形重要模型一线三等角模型

中考数学相似三角形重要模型一线三等角模型

相似三角形重要模型-一线三等角模型相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。

模型1.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1 图2 图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.例1.(2023·山东东营·统考中考真题)如图,A B C为等边三角形,点D,E分别在边B C,A B上,60A D E∠=︒,若4B D D C=, 2.4D E=,则A D的长为()A.1.8B.2.4C.3D.3.2例2.(2023·湖南·统考中考真题)如图,,C A ADE D A D⊥⊥,点B是线段A D上的一点,且C B B E⊥.已知8,6,4A B A C D E===.(1)证明:A B C D E B∽△△.(2)求线段B D的长.例3.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,∠BAC=90°,A BA C=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:B DA E=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,A BA C=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在ABC中,沿ABC的边AB、AC向外作矩形ABDE和矩形ACFG,A BA E =A CA G=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.例4.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,A B A C=,D 、A 、E 三点都在直线m 上,并且有B D AA E CB AC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设C P Qβ∠=.当β在许可范围内变化时,α取何值总有△ABP ∽△PCQ ?当α在许可范围内变化时,β取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.例5.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在A B C中,90A C B ∠=︒,A C B C=,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:A D C C E B△≌△.(1)探究问题:如果A CB C≠,其他条件不变,如图②,可得到结论;A D CC E B△∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x=与直线C D 交于点()2,1M ,且两直线夹角为α,且3ta n 2α=,请你求出直线C D 的解析式.(3)拓展应用:如图④,在矩形A B C D 中,3A B=,5B C=,点E为B C 边上—个动点,连接A E ,将线段A E 绕点E 顺时针旋转90︒,点A 落在点P 处,当点P 在矩形A B C D外部时,连接P C ,P D .若D P C △为直角三角形时,请你探究并直接写出B E 的长.Rt ABD中,上一动点,连接折叠得H E F,延长②B E M H E M≅;③当M2B,则正确的有(九年级校考阶段练习)已知A B C是等边三角形,E F和B D F∠,将B C E沿B则A F=P C D△;九年级校考阶段练习)如图,在A B C中,12.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R放在直线l上,分别过两锐角的顶点M,N作l的垂线,垂足分别为P,Q,(1)如图1.观察图1可知:与NQ相等的线段是______________,与N R Q∠相等的角是_____(2)问题探究直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作正方形ACEF 和正方形CDGH,如图2,过E,H分别作BC所在直线的垂线,垂足分别为K,L.试探究EK与HL之间的数量关系,并证明你的结论.(3)拓展延伸:直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作矩形ACEF和矩形CDGH,连接EH交BC所在的直线于点T,如图3.如果A C kC E=,试探究TE与TH=,C D kC H之间的数量关系,并证明你的结论.将.A B P沿着这样的点P,使得点问题解决(3)15.(2023春·四川广安·九年级校考阶段练习)如图1和图2,在平面直角坐标系中,点C的坐标为(0,4),A是x轴上的一个动点,M是线段AC的中点.把线段AM以A为旋转中心、按顺时针方向旋转90°得到AB.过B作x轴的垂线、过点C作y轴的垂线,两直线交于点D,直线DB交x轴于点E.设A点的横坐标为m.(1)求证:△AOC∽△BEA;(2)若m=3,则点B的坐标为;若m=﹣3,则点B的坐标为;(3)若m>0,△BCD的面积为S,则m为何值时,S=6?(4)是否存在m,使得以B、C、D为顶点的三角形与△AOC相似?若存在,求此时m的值;若不存在,请说明理由.16.(2020·四川雅安·中考真题)如图,已知边长为10的正方形A B C D E、不重,是B C边上一动点(与B C 合),连结A E G,是B C延长线上的点,过点E作A E的垂线交D C G∠的角平分线于点F,若F G B G⊥.(1)求证:A B E E G FE C=,求C E F△△;(2)若2∽△的△的面积;(3)请直接写出E C为何值时,C E F面积最大.的何位置时有B E H B A E∽?B C。

几何模型一线三等角模型

几何模型一线三等角模型

一线三等角模型一.一线三等角概念“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。

二.一线三等角的分类全等篇同侧锐角直角钝角P异侧相似篇同侧锐角直角钝角异侧三、“一线三等角”的性质1.一般情况下,如图 3-1,由∠1=∠2=∠3,易得△AEC ∽△BDE.2.当等角所对的边相等时,则两个三角形全等.如图 3-1,若 CE=ED ,则△AEC ≌△BDE.3.中点型“一线三等角”如图 3-2,当∠1=∠2=∠3,且 D 是 BC 中点时,△BDE∽△CFD∽△DFE. 4.“中点型一线三等角“的变式(了解) 如图 3-3,当∠1=∠2 且1902BOC BAC ∠=︒+∠时,点 O 是△ABC 的内心.可以考虑构造“一线三等角”.如图 3-4“中点型一线三等角”通常与三角形的内心或旁心相关, ? 1902BOC BAC ∠=︒+∠这是内心的性质,反之未必是内心.在图 3-4(右图)中,如果延长 BE 与 CF ,交于点 P ,则点 D 是△PEF 的旁心.5.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明 )图 3-5其实这个第 4 图,延长 DC 反而好理解.相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题 四、“一线三等角”的应用1.“一线三等角”应用的三种情况.a.图形中已经存在“一线三等角”,直接应用模型解题;b.图形中存在“一线二等角”,不上“一等角”构造模型解题;c.图形中只有直线上一个角,不上“二等角”构造模型解题.体会:感觉最后一种情况出现比较多,尤其是压轴题中,经常会有一个特殊角或指导该角的三角函数值时,我经常构造“一线三等角”来解题.2.在定边对定角问题中,构造一线三等角是基本手段,尤其是直角坐标系中的张角问题,在 x 轴或 y 轴(也可以是平行于 x 轴或 y 轴的直线)上构造一线三等角解决问题更是重要的手段.3.构造一线三等角的步骤:找角、定线、构相似 坐标系中,要讲究“线”的特殊性如图 3-6,线上有一特殊角,就考虑构造同侧型一线三等角当然只加这两条线通常是不够的,为了利用这个特殊角导线段的关系,过 C 、D 两点作直线 l 的垂线是必不可少的。

中考数学常见几何模型一线三等角(K型图)模型(从全等到相似)

中考数学常见几何模型一线三等角(K型图)模型(从全等到相似)

专题05 一线三等角(K 型图)模型(从全等到相似) 全等三角形与相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。

模型1.一线三等角(K 型图)模型(全等模型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。

【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角 直角一线三等角(“K 型图”) 钝角一线三等角条件:A CED B ∠=∠=∠+ CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅异侧型一线三等角:锐角一线三等角 直角一线三等角 钝角一线三等角条件:FAC ABD CED ∠=∠=∠+ 任意一边相等证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅1.(2022·湖南湘潭·中考真题)在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,过点B 、C 分别作l 的垂线,垂足分别为点D 、E .(1)特例体验:如图①,若直线l BC ∥,AB AC ==分别求出线段BD 、CE 和DE 的长;(2)规律探究:①如图②,若直线l 从图①状态开始绕点A 旋转()045αα<<︒,请探究线段BD 、CE 和DE 的数量关系并说明理由;②如图③,若直线l 从图①状态开始绕点A 顺时针旋转()4590αα︒<<︒,与线段BC 相交于点H ,请再探线段BD 、CE 和DE 的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD 交线段AC 于点F ,若3CE =,1DE =,求BFC S △.【答案】(1)BD =1;CE =1;DE =2(2)①DE =CE +BD ;理由见解析;②BD =CE +DE ;理由见解析 (3)258BFC S ∆=【分析】(1)先根据得出90452ABC ACB ︒∠=∠==︒,根据l BC ∥,得出45DAB ABC ∠=∠=︒,45EAC ACE ∠=∠=︒,再根据90BDA CEA ∠=∠=︒,求出45ABD ∠=︒,45ACE ∠=︒, 即可得出45DAB ABD EAC ACE ∠=∠=∠=∠=︒,最后根据三角函数得出1AD BD ==,1AE CE ==,即可求出2DE AD AE =+=;(2)①DE =CE +BD “AAS”证明ABD CAE ∆∆≌,得出AD =CE ,BD =AE ,即可得出结论;②BD =CE +DE ;根据题意,利用“AAS”证明ABD CAE ∆∆≌,得出AD =CE ,BD =AE ,即可得出结论;(3)在Rt△AEC 中,根据勾股定理求出5AC =,根据DF CE ∥,得出AD AF AE CF =,代入数据求出AF ,根据AC =5,算出CF ,即可求出三角形的面积.(1)解:△90BAC ∠=︒,AB AC =,△90452ABC ACB ︒∠=∠==︒, △l BC ∥,△45DAB ABC ∠=∠=︒,45EAC ACE ∠=∠=︒,△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△904545ABD ∠=︒-︒=︒,904545ACE ∠=-=︒︒︒,△45DAB ABD EAC ACE ∠=∠=∠=∠=︒,△sin 1AD BD AB DAB ==⨯∠==,sin 1AE CE AC EAC ==⨯∠==,△2DE AD AE =+=. (2)①DE =CE +BD ;理由如下:△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△90DAB DBA ∠+∠=︒,△90BAC ∠=︒,△90DAB CAE ∠+∠=︒,△DBA CAE ∠=∠,△AB =AC ,△ABD CAE ∆∆≌,△AD =CE ,BD =AE ,△DE =AD +AE =CE +BD ,即DE =CE +BD ;②BD =CE +DE ,理由如下:△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△90DAB DBA ∠+∠=︒,△90BAC ∠=︒,△90DAB CAE ∠+∠=︒,△DBA CAE ∠=∠,△AB =AC ,△ABD CAE ∆∆≌,△AD =CE ,BD =AE ,△BD =AE =AD +DE =CE +DE ,即BD =CE +DE .(3)根据解析(2)可知,AD =CE=3,△314AE AD DE =+=+=,在Rt△AEC 中,根据勾股定理可得:5AC =,△BD △AE ,CE △AE ,△DF CE ∥,△AD AF AE CF =,即345AF =,解得:154=AF , △155544CF AC AF =-=-=,△AB =AC =5,△1152552248BFC S CF AB ∆=⨯=⨯⨯=. 【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明ABD CAE ∆∆≌,是解题的关键.2.(2022·黑龙江·九年级期末)(1)如图(1),已知:在△ABC 中,△BAC =90°,AB =AC ,直线m 经过点A ,BD △直线m , CE △直线m ,垂足分别为点D 、E .证明△DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有△BDA =△AEC =△BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为△BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若△BDA =△AEC =△BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立,证明见解析(3)△DEF 为等边三角形,证明见解析【分析】(1)因为DE=DA+AE,故由全等三角形的判定AAS证△ADB△△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE;(2)成立,仍然通过证明△ADB△△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD;(3)由△ADB△△CEA得BD=AE,△DBA =△CAE,由△ABF和△ACF均等边三角形,得△ABF=△CAF=60°,FB=F A,所以△DBA+△ABF=△CAE+△CAF,即△DBF=△F AE,所以△DBF△△EAF,所以FD=FE,△BFD=△AFE,再根据△DFE=△DF A+△AFE=△DF A+△BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:△BD△直线m,CE△直线m,△△BDA=△CEA=90°.△△BAC=90°,△△BAD+△CAE=90°.△△BAD+△ABD=90°,△△CAE=△ABD.又AB=AC,△△ADB△△CEA(AAS).△AE=BD,AD=CE.△DE=AE+AD=BD+CE;(2)成立.证明如下:△△BDA =△BAC=α,△△DBA+△BAD=△BAD +△CAE=180°-α.△△DBA=△CAE.△△BDA=△AEC=α,AB=AC,△△ADB△△CEA(AAS).△AE=BD,AD=CE.△DE=AE+AD=BD+CE;(3)△DEF为等边三角形.理由如下:由(2)知,△ADB△△CEA,BD=AE,△DBA =△CAE,△△ABF和△ACF均为等边三角形,△△ABF=△CAF=60°.△△DBA+△ABF=△CAE+△CAF.△△DBF=△F AE.△BF=AF,△△DBF△△EAF(SAS).△DF=EF,△BFD=△AFE.△△DFE=△DF A+△AFE=△DF A+△BFD=60°.△△DEF为等边三角形.【点睛】此题考查了全等三角形的性质和判定、等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,等边三角形的性质和判定.3.(2022·江苏·九年级专题练习)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,ABC 是等腰直角三角形,90C ∠=︒,AE =BD ,则AED ≌_______; ②如图2,ABC 为正三角形,,60BD CF EDF =∠=︒,则BDE ≌________;③如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l ⊥于E ,CF l ⊥于F .若1AE =,2CF =,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A 的坐标为(,则点C 的坐标为________.【模型变式】(3)如图5所示,在ABC 中,90ACB ∠=︒,AC BC =,BE CE ⊥于E ,AD △CE 于D ,4cm DE =,6cm AD =,求BE 的长.△四边形OABC是正方形△△AOC=90゜,AO=OC模型2.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论; (2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设CPQ β∠=.当β在许可范围内变化时,α取何值总有△ABP △△PCQ ?当α在许可范围内变化时,β取何值总有△ABP △△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.【答案】(1)DE AE AD BD CE =+=+;证明见解析;(2)30α=︒;75β=︒;(3)可能;30α=︒,30β=︒或52.5α=︒,75β=︒.【分析】(1)证明△ADB △△CEA (AAS ),由全等三角形的性质得出AE =BD ,AD =CE ,则可得出结论;(2)由β=△2或△1=△CQP ,即△2=30°+β-α=β,解得α=30°,即可求解;由β=△1或△2=△CQP ,同理可得:β=75°,即可求解;(3)①当α=30°,β=30°时,则△2=△B =α=30°,即可求解;②当β=75°,α=52.5°时,同理可解.【详解】解:(1)如图1,△BDA BAC α∠=∠=,△180DBA BAD BAD CAE ∠∠∠∠α+=+=︒-,△DBA CAE ∠=∠,在△ADB 和△CEA 中,DBA EAC BDA AEC BA AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADB △△CEA (AAS ),△AE BD =,AD CE =, △DE AE AD BD CE =+=+;(2)在△ABP 中,2230APC B αβ∠=∠+∠=+∠=︒+,△1150β∠=︒-,同理可得:230βα∠=︒+-;由2β=∠或1CQP ∠=∠,即230βαβ∠=︒+-=,解得30α=︒,则△ABP △△PCQ ;△当β在许可范围内变化时,30α=︒时,总有△ABP △△PCQ ;由1β=∠或2CQP ∠=∠,同理可得:75β=︒.△当α在许可范围内变化时,75β=︒总有△ABP △△QCP ;(3)可能.①当30α=︒,30β=︒时,则230B α∠=∠==︒,则△ABP △△PCQ △△BCA ; ②当75β=︒,52.5α=︒时,同理可得:115075ββ∠=︒-=︒=,23052.5βαα∠=︒+-=︒=,△△ABP △△CQP △△BCA .【点睛】本题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的性质是解本题的关键.2.(2022·河南新乡·二模)如图,△ABC 和△ADE 是有公共顶点A 的两个等腰直角三角形,△DAE =△BAC =90°,AD =AE ,AB =AC =6,D 在线段BC 上,从B 到C 运动,点M 和点N 分别是边BC ,DE 的中点.(1)【问题发现】若点D 是BC 边的中点时,BD MN= ,直线BD 与MN 相交所成的锐角的度数为 (请直接写出结果)(2)【解决问题]若点D 是BC 边上任意一点时,上述结论是否成立,请说明理由.(3)【拓展探究】在整个运动过程中,请直接写出N 点运动的路径长,及CN 的最小值.当点D 是BC 的中点时,△AB =AC ,△AD △BC ,AD 平分△BAC ,如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B ∠=∠=∠=︒时,求证:AD BC AP BP ⋅=⋅.(2)探究:若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用:如图3,在ABC 中,AB =45B ∠=︒,以点A 为直角顶点作等腰Rt ADE △.点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若CE =CD 的长.)结论仍然成立,理由如下,BPD ∠=又BPD ∠=DPC BPC +∠DPC ∠=∠α,BPC ∴∠ADP ∴∽△△,△AD ⋅BC)∠ABD DFE ∴∽,AB DF ∴ADE 是等腰直角三角形,,2AB =,4DF ∴=,45EFD ∠=135DEC =︒,EFC DEC ∴∽,FC EC ∴5EC =,()45FC CD FC FC ⋅=⋅+=,1FC ∴= 【点睛】本题考查相似三角形的综合题,三角形的相似;能够通过构造45°角将问题转化为一线三角是解题的关键.模型3.一线三直角模型(相似模型)【模型解读与图示】“一线三直角”模型的图形,实则是“一线三等角”型的图形的特例,因为这种图形在正方形和矩形中出现的比较多,对它做一专门研究,这样的图形,因为有三个角是直角,就有两个角相等,再根据“等角的余角相等”可以得到另外一对角相等,从而判定两个三角形相似.1.(2022·湖南郴州·中考真题)如图1,在矩形ABCD 中,4AB =,6BC =.点E 是线段AD 上的动点(点E 不与点A ,D 重合),连接CE ,过点E 作EF CE ⊥,交AB 于点F .(1)求证:AEF DCE ∽;(2)如图2,连接CF ,过点B 作BG CF ⊥,垂足为G ,连接AG .点M 是线段BC 的中点,连接GM .①求AG GM +的最小值;②当AG GM +取最小值时,求线段DE 的长.【答案】(1)见解析(2)①5;②3DE =3DE =【分析】(1)证明出DCE AEF ∠=∠即可求解;(2)①连接AM .先证明132BM CM GM BC ====.确定出点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点共线时,AG GM AM +=.此时,AG GM +取最小值.在Rt ABM 中利用勾股定理即可求出AM ,则问题得解.②先求出AF ,求AF 的第一种方法:过点M 作∥MN AB 交FC 于点N ,即有CMN CBF ∽△△,进而有12MN CM BF CB ==.设AF x =,则4BF x =-,()142MN x =-.再根据∥MN AB ,得到AFG MNG ∽△△,得到AF AG MN GM =,则有()21342xx =-,解方程即可求出AF ;求AF 的第二种方法:过点G 作GH AB ∥交BC于点H .即有MHG MBA ∽△△.则有GM GH MH AM AB MB ==,根据5AM =,可得3543GH MH ==,进而求出125GH =,95MH =.由GH AB ∥得CHG CBF ∽△△,即可求出AF .求出AF 之后,由(1)的结论可得AF AE DE DC.设DE y =,则6AE y =-,即有164y y -=,解得解方程即可求出DE .(1)证明:如图1,△四边形ABCD 是矩形,△90A D ∠=∠=︒,△90CED DCE ∠+∠=︒.△EF CE ⊥,△90CED AEF ∠+∠=︒,△DCE AEF ∠=∠,△AEF DCE ∽;(2)①解:如图2-1,连接AM .△BG CF ⊥,△BGC 是直角二角形.△132BM CM GM BC ====. △点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点不共线时,由三角形两边之和大于箒三边得:AG GM AM +>, 当A ,G ,M 三点共线时,AG GM AM +=.此时,AG GM +取最小值.在Rt ABM中,5AM ==.△AG GM+的最小值为5.②(求AF 的方法一)如图2-2,过点M 作∥MN AB 交FC 于点N ,△CMN CBF ∽△△.△12MN CM BF CB ==. 设AF x =,则4BF x =-,△()11422MN BF x ==-. △∥MN AB ,△AFG MNG ∽△△,△AF AG MN GM =, 由①知AG GM +的最小值为5、即5AM =,又△3GM =,△2AG =.△()21342xx =-,解得1x =,即1AF =.(求AF 的方法二)如图2-3,过点G 作GH AB ∥交BC 于点H .△MHG MBA ∽△△.△GM GH MH AM AB MB==, 由①知AG GM +的最小值为5,即5=,又△3GM =,△3543GH MH ==.△125GH =,95MH =. 由GH AB ∥得CHG CBF ∽△△,△GH CH FB CB =,即1293556FB +=,解得3FB =. △1AF AB FB =-=.由(1)的结论可得AF AE DE DC . 设DE y =,则6AE y =-,△164y y -=,解得3y =3△036<,036<<,△3DE =+或3DE =【点睛】本题主要考查了相似三角形的判定与性质、平行的性质、勾股定理以及一元二次方程的应用等知识,掌握相似三角形的判定与性质是解答本题的关键.2.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R 放在直线l 上,分别过两锐角的顶点M ,N 作l 的垂线,垂足分别为P , Q ,(1)如图1.观察图1可知:与NQ 相等的线段是______________,与NRQ ∠相等的角是_____(2)问题探究直角ABC 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作正方形ACEF 和正方形CDGH ,如图2,过E ,H 分别作BC 所在直线的垂线,垂足分别为K ,L .试探究EK 与HL 之间的数量关系,并证明你的结论.(3)拓展延伸:直角ABC 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作矩形ACEF 和矩形CDGH ,连接EH 交BC 所在的直线于点T ,如图3.如果AC kCE =,CD kCH =,试探究TE 与TH 之间的数量关系,并证明你的结论.【答案】(1)PR ,PMR ∠,(2)EK LH =,证明见解析;(3)ET HT=,证明见解析.【分析】(1)根据等腰直角三角形的性质得到,=MR RN ,90MRN ∠=︒,根据余角性质得到PMR NRQ ∠=∠,再证明MPR NRQ ≌△△,即可得到QN PR =,NRQ PMR ∠=∠;(2)证明ABC CEK ≌△△,得到EK BC =,再证明DCB CHL ≌△△,得到BC HL =,可得到EK LH =;(3)证明ACB ECM ∽△△,得到BC kEM =,证明BCD NHC ∽△△,得到BC kHN =,得到EM HN =,证明NHT EMT ≌△△即可得到ET HT =. (1)解:△MRN △是等腰直角三角形,△=MR RN ,90MRN ∠=︒,△MP PQ ⊥,NQ PQ ⊥,△90MPR NQR ∠=∠=︒,△90PMR MRP MRP NRQ ∠+∠=∠+∠=︒,△PMR NRQ ∠=∠,在MPR △和NRQ △中,PMR NRQ MPR NRQ MR NR ∠=∠⎧⎪∠=∠⎨⎪=⎩△MPR NRQ ≌△△,△QN PR =,NRQ PMR ∠=∠,故答案为:PR ,PMR ∠;(2)解:△四边形ACEF 是正方形,△AC CE =,90ACE ∠=︒,△EK BK ⊥△90B EKC ∠=∠=︒,△90BAC ACB ACB ECK ∠+∠=∠+∠=︒,△BAC ECK ∠=∠,在ABC 和CEK △中,BAC KCE B EKCAC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩△ABC CEK ≌△△,△EK BC =, △四边形CDGH 是正方形,△CD CH =,90DCH ∠=︒在DCB和△3)解:过△四边形ACEF是矩形,△90ACE∠=︒,△90BAC ACB ACB ECM∠+∠=∠+∠=︒,顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC中,△ACB =90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:△ADC△△CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图②,可得到结论;△ADC△△CEB.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y=12x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=32,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,AB=4,BC=5,点E为BC边上一个动点,连接AE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.由(1)可得:△NFO△△OEM,△NF OF NO==,△点M(2,1),△OE=2,ME=1,OE ME MONF OF33ON33课后专项训练:1.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知Rt ABC 中,90ACB ∠=︒,AC BC =,直线l 过点C ,过点A 作AD l ⊥,过点B 作BE l ⊥,垂足分别为D 、E .求证:CD BE =. (2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为()4,2,求点M 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线44y x =-+与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45︒后,所得的直线交x 轴于点R .求点R 的坐标.20由已知得OM=ON,且△OMN=90°,△由(1)得△OFM△△MGN,=35x+4.【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,汕头市潮阳区教师发展中心教学研究室一模)直角三角形ABC中,△ACB=90°,CB=CA,直线ED经过点C,过A作AD△ED于D,过B作BE△ED于E.求证:△BEC△△CDA;(2)模型应用:①已知直线AB与y轴交于A点,与x轴交于B点,sin△ABO=35,OB=4,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x-5上的一点,若△APD是以D为直角顶点的等腰直角三角形,请求出所有符合条件的点D的坐标.和CDA中⎧⎪⎨⎪⎩①如图,过点中sin△ABO ,AB=5m,)可证得CDB∆当D在AB的下方时,过D作DE△y轴于E,交BC于F,,在ABC中,MN经过点C,且AD MN⊥于D,BE MN⊥于E.(1)由图1,证明:DE AD BE=+;(2)当直线MN绕点C旋转到图2的位置时,请猜想出DE,AD,BE的等量关系并说明理由;(3)当直线MN绕点C旋转到图3的位置时,试问DE,AD,BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).【答案】(1)证明见解析;(2)DE AD BE =-,证明过程见解析;(3)DE BE AD =-,证明过程见解析【分析】(1)先证明△ADC △△CEB ,得到AD=CE ,DC=BE ,进而得到DE=CE+DC=AD+BE 即可;(2)同(1)中思路,证明△ADC △△CEB ,进而得到DE=CE -DC=AD -BE 即可;(3)同(1)中思路,证明△ADC △△CEB ,进而得到DE=DC -CE=BE -AD 即可.【详解】解:(1)证明:在ABC 中,△90ACB ∠=︒,△90ACD BCE ∠+∠=︒,△AD MN ⊥,△90ACD CAD ∠+∠=︒,△BCE =∠∠CAD ,又△AC BC =,90ADC CEB ∠=∠=,△()≌ADC CEB AAS ,△AD CE =,DC BE =, △直线MN 经过点C ,△DE CE DC AD BE =+=+;(2)DE ,AD ,BE 的等量关系为:DE AD BE =-,理由如下:△AD MN ⊥于D ,BE MN ⊥于E △90ADC BEC ACB ∠=∠=∠=︒,△90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,△CAD BCE ∠=∠,在ADC 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩,△()ADC CEB AAS △≌△△CE AD =,CD BE =,△DE CE CD AD BE =-=-;(3)当MN 旋转到图3的位置时,DE 、AD 、BE 所满足的等量关系是DE BE AD =-,理由如下:△AD MN ⊥于D ,BE MN ⊥于E △90ADC BEC ACB ∠=∠=∠=︒,△90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,△CAD BCE ∠=∠,在ADC 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩,△()ADC CEB AAS △≌△△CE AD =,CD BE =,△DE CD CE BE AD =-=-.【点睛】本题考查了全等三角形的判定方法、等腰直角三角形的性质及等角的余角相等等知识点,熟练掌握三角形全等的判定方法是求解的关键.4.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E , 2.5cm AD =, 1.7cm DE =.求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图②,点B ,C 在MAN ∠的边AM 、AN 上,AB AC =,点E ,F 在MAN∠内部的射线AD 上,且BED CFD BAC ∠=∠=∠.求证:ABE CAF ∆∆≌.(3)拓展应用:如图③,在ABC ∆中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC ∆的面积为15,则ACF ∆与BDE ∆的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm ;(2)见解析(3)5【分析】(1)利用AAS 定理证明△CEB △△ADC ,根据全等三角形的性质解答即可; (2)由条件可得△BEA =△AFC ,△4=△ABE ,根据AAS 可证明△ABE △△CAF ;(3)先证明△ABE △△CAF ,得到ACF ∆与BDE ∆的面积之和为△ABD 的面积,再根据2CD BD =故可求解.【详解】解:(1)△BE △CE ,AD △CE ,△△E =△ADC =90°,△△EBC +△BCE =90°.△△BCE +△ACD =90°,△△EBC =△DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△CEB △△ADC (AAS ),△BE =DC ,CE =AD =2.5cm .△DC =CE −DE ,DE =1.7cm ,△DC =2.5−1.7=0.8cm ,△BE =0.8cm 故答案为:0.8cm ; (2)证明:△△1=△2,△△BEA =△AFC .△△1=△ABE +△3,△3+△4=△BAC ,△1=△BAC ,△△BAC =△ABE +△3,△△4=△ABE .△△AEB =△AFC ,△ABE =△4,AB =AC ,△△ABE △△CAF (AAS ).(3)△BED CFD BAC ∠=∠=∠△△ABE +△BAE =△F AC +△BAE =△F AC +△ACF△△ABE =△CAF ,△BAE =△ACF又AB AC =△△ABE △△CAF ,△ABE CAF S S =△ACF ∆与BDE ∆的面积之和等于ABE ∆与BDE ∆的面积之和,即为△ABD 的面积,△2CD BD =,△ABD 与△ACD 的高相同则13ABD ABC S S =△△=5 故ACF ∆与BDE ∆的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.5.(2022·无锡市九年级月考)(1)如图1,直线m 经过等腰直角△ABC 的直角顶点A ,过点B 、C 分别作BD ⊥m ,CE ⊥m D 、E .求证:BD +CE =DE ;(2)如图2,直线m 经过△ABC 的顶点A ,AB =AC ,在直线m 上取两点 D 、E ,使∠ADB =∠AEC =α,补充∠BAC = (用α表示),线段BD 、CE 与DE 之间满足BD +CE =DE ,补充条件后并证明;(3)在(2)的条件中,将直线m 绕着点A 逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB =∠AEC = (用α表示).通过观察或测量,猜想线段BD 、CE 与DE 之间满足的数量关系,并予以证明.【答案】(1)证明见详解,(2)∠BAC=α,证法见详解,(3)180º-α,DE=EC-BD,证明见详解.【分析】(1)根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA;(2)补充∠BAC=α.利用△ADB≌△CAE,即可得出三角形对应边之间的关系,即可得出答案;(3)180º-α,DE=CE-BD,根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA,即可得出三角形对应边之间的关系,即可得出答案.【详解】证明:(1)∵BD⊥m,CE⊥m,∠ABC=90°,AC=BC,∴△ADB和△AEC都是直角三角形,∴∠DBA+∠DAB=90°,∴∠ECA+∠EAC=90°,∵∠BAC=90°,∠DAB+∠EAC=90º,∴∠DAB=∠ECA,又∵∠ADB=∠CEA=90°,AB=BC,所以△ADB≌△CEA(AAS),BD=AE,DA=EC,DE=DA+AE=EC+BD,BD+CE=DE.(2)∵等腰△ABC中,AC=CB,∠ADB=∠BAC=∠CEA=α,∴∠DAB+∠EAC=180°-α,∠ECA+∠CAE=180º-α,∴∠DAB=∠ECA,∵∠ADB=∠CEA=α,AC=CB,∴△ADB≌△CEA(AAS),∴CE=AD,BD=AE,∴AD+BE=CE+CD,所以BD+CE=DE.(3)180º-α,数量关系为DE=CE-BD,∵∠ADB=∠AEC=180º-α,∠BAC=α,∴∠ABD+∠BAD=α,∠BAD+∠EAC=α,∴∠ABD=∠CAE,∵AB=AC,∴△BAD≌△ACE(AAS),∴AD=CE,BD=AE,∴DE=AD-AE=EC-BD.【点睛】点评:此题主要考查了三角形全等的证明,根据已知得出∠DAB=∠ECA,再利用全等三角形的判定方法得出是解决问题的关键.6.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,△BAC=90°,ABAC=k,直线l经过点A,BD△直线I,CE上直线l,垂足分别为D、E.求证:BDAE=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,ABAC=k,D、A、E三点都在直线l上,并且有△BDA=△AEC=△BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在ABC中,沿ABC的边AB、AC向外作矩形ABDE和矩形ACFG,ABAE=ACAG=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI 之间的数量关系:.【答案】(1)见解析(2)结论还成立,证明见解析(3)①见解析②BC=AI【分析】(1)由条件可证明△ABD△△CAE,可得BDAE=ABAC=k;(2)由条件可知△BAD+△CAE=180°−α,且△DBA+△BAD=180°−α,可得△DBA=△CAE,结合条件可证明△ABD△△CAE,同(1)可得出结论;(3)①过点G作GM∥AE交AI的延长线于点M,连接EM,证明△ABC△△GMA,再得到四边形AGME是平行四边形,故可求解;②由①得到BC=12AM,再根据四边形AGME是平行四边形得到BC=AI,故可求解.【详解】(1)如图1,△BD△直线l,CE△直线l,△△BDA=△CEA=90°,△△BAC=90°,△△BAD+△CAE=90°△△BAD+△ABD=90°,△△CAE=△ABD△△ABD=△CAE,△BDA=△CEA,△△ADB△△CEA,△BDAE =ABAC=k;(2)成立,证明如下:如图2,△△BDA=△BAC=α,△△DBA+△BAD=△BAD+△CAE=180°−α,△△DBA=△CAE,△△ABD=△CAE,△BDA=△CEA△△ADB△△CEA,△BDAE =ABAC=k;(3)①过点G作GM∥AE交AI的延长线于点M,连接EM △四边形AGFC是矩形,△△GAC=90°又AH△BC△△AHC=90° △△5+△CAH=△4+△CAH=90°△△5=△4△△BDE=△AHB=90°△△2+△BAH=△1+△BAH=90°△△2=△1又GM∥AE△△3=△2△△3=△1△△ABC△△GMA【点睛】此题主要考查相似三角形的判断与性质综合,解题的关键是根据题意找到相似三角,ABC 是等腰直角三角形,直线l 过点C ,AM l ⊥,BN l ⊥,垂足分别为M ,N .求证:AMC CNB △≌△;[尝试应用](2)如图2,AC BC =,90ACB ∠=︒,N ,B ,E 三点共线,CN NE ⊥,45E ∠=︒,1CN =,2BN =.求AE 的长;[拓展创新](3)如图3,在DCE 中,45CDE ∠=︒,点A ,B 分别在DE ,CE 上,AC BC =,90ACB ∠=︒,若1tan 2DCA ∠=,直接写出AE AD 的值为 .在AMC和△△()AMC CNB AAS≌2)如图2AM NH⊥于M,由(1)可知:BCN CAM△≌△,△2CM BN==,1CN AM==,)可知:AMC BNC≌,45DAM DFN=∠=∠=a,△32AF a=,BCN BFH∽△,等腰直角三角形的性质等知识,添加恰当辅助线构造全等三角形或相似三角形是本题的关键.8.(2022·黑龙江齐齐哈尔·三模)数学实践课堂上,张老师带领学生们从一道题入手,开始研究,并对此题做适当变式,尝试举一反三,开阔学生思维.(1)原型题:如图1,AB BD ⊥于点B ,CD BD ⊥于点D ,P 是BD 上一点,AP PC =,AP PC ⊥,则ABP △≌△________,请你说明理由.(2)利用结论,直接应用:①如图2,四边形ABCD 、EFGH 、NHMC 都是正方形,边长分别为a 、b 、c ,A 、B 、N 、E ,F 五点在同一条直线上,则CBN △≌△________,c =________(用含a 、b 的式子表示).②如图3,四边形ABCD 中,AB DC ,AB BC ⊥,2AB =,4CD =,以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ∠=︒,则圆心O 到弦AD 的距离为________.(3)弱化条件,变化引申:如图4,M 为线段AB 的中点,AE 与BD 交于点C ,45DME A B ∠=∠=∠=︒,且DM 交AC 于点F ,ME 交BC 于点G ,连接FG ,则AMF 与BGM 的关系为:________,若AB =3AF =,则FG =________.5即可证明∽AMF BGM ,即可求出△AB DC ∥,AB BC ⊥△90B C ∠=∠=︒ △90AOD ∠=︒△90AOB DOC +=︒∠∠在AOB 和△Rt AOB 中,Rt AOD △中,12AD OE ⨯⨯=10=△圆心解:AMF 与BGM 的关系为:相似,45︒△AMD AFM +∠∠△∽AMF BGM △AM BG 45︒△90ACB ∠=︒△AC 84433=-=△FG FC =本题考查了全等三角形的判定和性质、x 轴上,C 、D 、E 分别是AB 、OB 、OA 上的动点,且满足BD =2AC ,DE ∥AB ,连接CD 、CE ,当点E 坐标为 时,△CDE 与△ACE 相似.【分析】因为DE ∥AB 得到∠DEC =∠ACE ,所以△CDE 与△ACE 相似分两种情况分类讨论.【解答】解:∵DE ∥AB ,∴∠DEC ACE ,△ODE ∽△OBA ,∴△ODE 也是等边三角形,则OD =OE =DE ,设E (a ,0),则OE =OD =DE =a ,BD =AE =4﹣a .∵△CDE 与△ACE 相似,分两种情况讨论:①当△CDE ∽△EAC 时,则∠DCE =∠CEA ,∴CD ∥AE ,∴四边形AEDC 是平行四边形,∴AC =a ,,∵BD =2AC ,∴4﹣a =2a ,∴a =.∴E ;②当△CDE ∽△AEC 时,∠DCE =∠EAC =60°=∠B ,∴∠BCD +∠ECA =180°﹣60°=120°,又∵∠BDC +∠BCD =180°﹣∠B =120°,∴∠BCD +∠ECA =∠BDC +∠BCD , ∴∠ECA =∠BDC ,∴△BDC ∽△ACE ,∴,∴BC =2AE =2(4﹣a )=8﹣2a , ∴8﹣2a +2=4,∴a =.∴.综上所述,点E 的坐标为或.【点评】本题主要考查相似三角形,考虑分类讨论是本题的关键.10.(2022•广东中考模拟)(1)模型探究:如图1,D 、E 、F 分别为ABC ∆三边BC 、AB 、AC 上的点,且B C EDF α∠=∠=∠=,BDE ∆与CFD ∆相似吗?请说明理由.(2)模型应用:ABC ∆为等边三角形,其边长为8,E 为边AB 上一点,F 为射线AC 上一点,将AEF ∆沿EF 翻折,使点A 落在射线CB 上的点D 处,且2BD =.①如图2,当点D 在线段BC 上时,求AE AF的值; ②如图3,当点D 落在线段CB 的延长线上时,求BDE ∆与CFD ∆的周长之比.【答案】(1)~∆∆BDE CFD ,见解析;(2)①57AE AF =;②BDE ∆与CFD ∆的周长之比为13. 【分析】(1)根据三角形的内角和得到BED CDF ∠=∠,即可证明;(2)①设AE x =,AF y =,根据等边三角形的性质与折叠可知DE AE x ==,DF AF y ==,60EDF A ∠=∠=,根据三角形的内角和定理得BED CDF ∠=∠,即可证明~∆∆BDE CFD ,故BD BE DE CF CD FD ==,再根据比例关系求出AE AF的值; ②同理可证~∆∆BDE CFD ,得BD BE DE CF CD FD ==,得28810x x y y -==-,再得到13x y =,再根据相似三角形的性质即可求解.【详解】解(1)~∆∆BDE CFD ,理由:B C EDF α∠=∠=∠=,在BDE ∆中,180B BDE BED ∠+∠+∠=,180180BDE BED B α∴∠+∠=-∠=-,180BDE EDF CDF ∠+∠+∠=,180180BDE CDF EDF α∴∠+∠=-∠=-,BED CDF ∴∠=∠,B C ∠=∠,~BDE CFD ∴∆∆;(2)①设AE x =,AF y =,ABC ∆是等边三角形,60A B C ∴∠=∠=∠=,8AB BC AC ===,由折叠知,DE AE x ==,DF AF y ==,60EDF A ∠=∠=,在BDE ∆中,180B BDE BED ∠+∠+∠=,180120BDE BED B ∴∠+∠=-∠=, 180120BDE BED B ∠+∠=-∠=,180BDE EDF CDF ∠+∠+∠=,180120BDE CDF EDF ∴∠+∠=-∠=,BED CDF ∴∠=∠,60B C ∠=∠=,~BDE CFD ∴∆∆,BD BE DE CF CD FD∴==, 8BE AB AE x =-=-,8CF AC AF y =-=-,6CD BC BD =-=2886x x y y -∴==-,()()2868y x y x y x ⎧=-⎪∴⎨=-⎪⎩,105147x y ∴==,57AE AF ∴=; ②设AE x =,AF y =,ABC ∆是等边三角形, 60A ABC ACB ∴∠=∠=∠=,8AB BC AC ===,由折叠知,DE AE x ==,DF AF y ==,60EDF A ∠=∠=,在BDE ∆中,180ABC BDE BED ∠+∠+∠=,180120BDE BED ABC ∴∠+∠=-∠=, 180BDE EDF CDF ∠+∠+∠=,180120BDE CDF EDF ∴∠+∠=-∠=,BED CDF ∴∠=∠,60ABC ACB ∠=∠=,120DBE DCF ∴∠=∠=,~BDE CFD ∴∆∆,BD BE DE CF CD FD ∴== 8BE AB AE x =-=-,8CF AF AC y =-=-,10CD BC BD =+=,28810x x y y -∴==-,2(8)10(8y x y x y x =-⎧∴⎨=-⎩,13x y ∴=. ~BDE CFD ∆∆.BDE ∴∆与CFD ∆的周长之比为13DE x DF y ==. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知等边三角形的性质及相似三角形的判定与性质.11.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在ABC 中,90ACB ∠=︒,AC BC =,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:ADC CEB △≌△.(1)探究问题:如果AC BC ≠,其他条件不变,如图②,可得到结论;ADC CEB △∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x =与直线CD 交于点()2,1M ,且两直线夹角为α,且3tan 2α=,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD中,3AB=,5BC=,点E为BC边上—个动点,连接AE,将线段AE绕点E顺时针旋转90︒,点A落在点P处,当点P在矩形ABCD外部时,连接PC,PD.若DPC△为直角三角形时,请你探究并直接写出BE的长.415NF OF NO△△ADC=90°,△△ADC+△PDC=180°,△A 、D 、P 共线,90△△ABE△△EFP12.(2022·山东青岛·九年级期中)【模型引入】我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很迅速地联想,从而借助已有经验,迅速解决问题.【模型探究】如图,正方形ABCD中,E是对角线BD上一点,连接AE,过点E作EF△AE,交直线CB于点F.(1)如图1,若点F在线段BC上,写出EA与EF的数量关系并加以证明;(2)如图2,若点F在线段CB的延长线上,请直接写出线段BC,BE和BF的数量关系.【模型应用】(3)如图3,正方形ABCD中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH△AE于F,过H作HG△BD于G.则下列结论:①AF=FH;②△HAE=45°;③BD=2FG;④△CEH的周长为8.正确的结论有个.(4)如图4,点E是正方形ABCD对角线BD上一点,连接AE,过点E作EF△AE,交线段BC于点F,交线段AC于点M,连接AF交线段BD于点H.给出下列四个结论,①AE=EF;=CF;③S△AEM=S△MCF;④BE=DE;正确的结论有个.【模型变式】(5)如图5,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN△DM,垂足为M,交△CBE的平分线与点N,求证:MD=MN(6)如图6,在上一问的条件下,连接DN交BC于点F,连接FM,则△FMN和△NMB之间有怎样的数量关系?请给出证明.【拓展延伸】(7)已知△MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,且满足OB>OA.点C在线段OA的延长线上,且AC=OB.如图7,在线段BO 上截取BE,使BE=OA,连接CE.若△OBA+△OCE=β,当点B在射线OM上运动时,β的大小是否会发生变化?如果不变,请求出这个定值;如果变化,请说明理由.(8)如图8,正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF△ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF 于点N,若点F是AB边的中点,则△EDM的面积是.。

(完整版)几何模型:一线三等角模型

(完整版)几何模型:一线三等角模型

一线三等角模型一.一线三等角概念“一线三等角”是一个常见的相似模型, 上构成的相似图形,这个角可以是直角, 不同的称呼,“K 形图”, 二•一线三等角的分类 全等篇指的是有三个等角的顶点在同一条直线 也可以是锐角或钝角。

不同地区对此有 “弦图”三、“一线三等角” 1. 一般情况下,如图2•当等角所对的边相等时,则两个三角形全等 易得△ AE3A BDE..如图 3-1,若 CE=ED 则厶 AE3A BDE.锐角同侧异侧相似篇 锐角同侧异侧“三垂直”,等,以下称为“一线三等角”。

的性质3-1,由/1 = / 2=7 3,AVABOCff构造模型解题在图3-4造“一线三等角如图3- 4 如图3-3,当/仁/ 2且 BOC 90 4•“中点型一线三等角“的变式(了中点时,△ BD 0A CFS A DFE.阳3-13.中点型“一线三等角”如图3-2,当/仁/ 2=7 3,且 D 是BC^3-3图 3^“中点型一线三等角”通常与三角形的内心或旁心相关,1 90BAC 这是内心的性质,反之未必是内心 .2(右图)中,如果延长 BE 与CF ,交于点P ,则点D 是厶PEF 的旁心-BAC 时,点0是厶ABC 的内心.可以考虑构 25.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明图3-5其实这个第4图,延长DC 反而好理解.相当于两侧型的,不延长理解,以为 是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进 行解题 四、“一线三等角”的应用 1.“一线三等角”应用的三种情况.a. 图形中已经存在“一线三等角”,直接应用模型解题;b. 图形中存在“一线二等角”,不上“一等c.图形中只有直线上一个角,不上“二等角”构造模型解题•体会:感觉最后一种情况出现比较多,尤其是压轴题中,经常会有一个特殊角或指导该角的三角函数值时,我经常构造“一线三等角”来解题•2.在定边对定角问题中,构造一线三等角是基本手段,尤其是直角坐标系中的张角问题,在x 轴或y轴(也可以是平行于x轴或y轴的直线)上构造线三等角解决问题更是重要的手段•3.构造一线三等角的步骤:找角、定线、构相似在DC的延长銭上截取CE= —, CD的延怅:規上藪取DF= —>贝I」mZAEP= t3nZPFB= t3M J»JZAEP= ZPFH= a= ZAPR ,所1^APAlw ABPF .在CP上蔵取CE= —, 1£ DP蒙取DF=—,则tmZAEC= tanZBFD=taDGiWlZAEC= ZBFD= a= ZA?B^^iPAE«iBPF ・坐标系中,要讲究“线”的特殊性如图3-6,线上有一特殊角,就考虑构造同侧型一线三等角当然只加这两条线通常是不够的,为了利用这个特殊角导线段的关系,过C、D两点作直线I的垂线是必不可少的。

专题 相似三角形一线三等角模型(学生版)

专题 相似三角形一线三等角模型(学生版)

专题04相似三角形重要模型-一线三等角模型相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。

模型1.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1图2图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.是边A.3B.5C.2D.1B (1)如图2,在53⨯个方格的纸上,小正方形的顶点为格点、边长均为1,AB 为端点在格点的已知线段.请用三种不...同连接格点.....的方法,作出以线段AB 为等联线、某格点P 为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt APC △中,90A ∠=,AC AP >,延长AP 至点B ,使AB AC =,作A ∠的等联角CPD ∠和PBD ∠.将APC △沿PC 折叠,使点A 落在点M 处,得到MPC ,再延长PM 交BD 的延长线于E ,连接CE 并延长交PD 的延例5.(2022·浙江·嘉兴一中一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC 中,∠ACB =90°,AC =BC ,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:△ADC ≌△CEB .(1)探究问题:如果AC ≠BC ,其他条件不变,如图②,可得到结论;△ADC ∽△CEB .请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y =12x 与直线CD 交于点M (2,1),且两直线夹角为α,且tanα=32,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD 中,AB =4,BC =5,点E 为BC 边上一个动点,连接AE ,将线段AE 绕点E 顺时针旋转90°,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC ,PD .若△DPC 为直角三角形时,请你探究并直接写出BE 的长.例6.(2023·浙江·九年级专题练习)在Rt ABC 中,90BAC ∠=︒,2AB AC ==,点D 在BC 所在的直线上运动,作45ADE ∠=︒(A 、D 、E 按逆时针方向).(1)如图,若点D 在线段BC 上运动,DE 交AC 于E .①求证:ABD DCE △△∽;②当ADE V 是等腰三角形时,求AE 的长;(2)如图,若点D 在BC 的延长线上运动,DE 的反向延长线与AC 的延长线相交于点E ',是否存在点D ,使ADE '△是等腰三角形?若存在,求出线段CD 的长度;若不存在,请简要说明理由;(3)若点D 在BC 的反向延长线上运动,是否存在点D ,使ADE V 是等腰三角形?若存在,写出所有点D 的位置;若不存在,请简要说明理由.上一点,轴9,23A.()9,3B.()3.(2023·湖南长沙·九年级专题练习)如图,在矩形4.(2021·浙江台州·中考真题)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=_____.分别在边6.(2022秋·安徽淮北·九年级校考阶段练习)如图,在四边形分别在线段AD、DC上(点E与点A、CD=,在BC边上取中点E,连接DE,过点E 8.(2023·山东烟台·九年级统考期末)如图,在正方形ABCD中,4做EF ED⊥与AB交于点G,与DA的延长线交于点F.(1)求证:BEG CDE△∽△;(2)求AFG的面积.⊥交AB于点M,9.(2023·上海·九年级假期作业)在矩形ABCD中,3AB=,4=AD,点E是边AD上一点,EM EC∠=∠.(1)求证:AE是AM和AN的比例中项;(2)当点N在线段AB的延点N在射线MB上(如图),且ANE DCE长线上时,联结AC,且AC与NE互相垂直,求MN的长.的两个等腰直角三角形,(3)【拓展探究】在整个运动过程中,请直接写出N点运动的路径长,及CN的最小值.312.(2023·广东深圳·九年级校考阶段练习)如图,在ABC 中6cm AB AC ==,8cm BC =,点E 是线段BC 边上的一动点(不含B 、C 两端点),连接AE ,作AED B ∠=∠,交线段AB 于点D .(1)求证:BDE CEA△∽△(2)设BE x =,AD y =,请求y 与x 之间的函数关系式.(3)E 点在运动的过程中,ADE V 能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由.13.(2023春·广东深圳·八年级校考期中)【操作发现】如图1,在边长为1个单位长度的小正方形组成的网格中,ABC 的三个顶点均在格点上.①请按要求画图:将ABC 绕点A 顺时针方向旋转90︒,点B 的对应点为点B ',点C 的对应点为点C ',连接BB ';②在①中所画图形中,AB B '∠=______︒.【问题解决】如图2,在Rt ABC △中,190BC C =∠=︒,,延长CA 到D ,使1CD =,将斜边AB 绕点A 顺时针旋转90︒到AE ,连接DE ,求ADE ∠的度数.【拓展延伸】如图3,在四边形ABCD 中,AE BC ⊥,垂足为E ,BAE ADC ∠=∠,1BE CE ==,3CD =,2=AD AB ,求BD 的长.14.(2023·浙江·九年级专题练习)在平面直角坐标系中,O 为坐标原点,直线AB 与y 轴交于点A ,与x 轴交于点B ,2OA =,AOB 的面积为2.(1)如图1,求直线AB 的解析式.(2)如图2,线段OA 上有一点C ,直线BC 为2(0)y kx k k =-<,AD y ⊥轴,将BC 绕点B 顺时针旋转90︒,交AD 于点D ,求点D 的坐标.(用含k 的式子表示)(3)如图3,在(2)的条件下,连接OD ,交直线BC 于点E ,若345ABC BDO ∠-∠=︒,求点E 的坐标.九年级专题练习)某数学兴趣小组在学习了尺规作图、等腰三角形和相似三角形的有关知识后,在BC=.点E是线段AD上的动点(点E不与18.(2022·湖南郴州·中考真题)如图1,在矩形ABCD中,4AB=,6⊥,交AB于点F.点A,D重合),连接CE,过点E作EF CE∽;(1)求证:AEF DCE⊥,垂足为G,连接AG.点M是线段BC的中点,连接GM.(2)如图2,连接CF,过点B作BG CF①求AG GM+的最小值;②当AG GM+取最小值时,求线段DE的长.。

2024中考数学总复习冲刺专题:《一线三等角模型》通用版

2024中考数学总复习冲刺专题:《一线三等角模型》通用版

《一线三等角模型》一、教材分析“一线三等角”是指三个相等角的顶点在同一直线上,其中两个角的一边与该直线重合,第三个角的两边均不与直线重合,这样会形成一组全等或相似三角形.根据等角的度数,此模型可分为锐角一线三等角、直角一线三等角和钝角一线三等角.“一线三等角”模型本质上是一个重要的基本几何模型,数学模型是对客观事物的空间形式和数量关系的表现形式,初中阶段的“一线三等角”模型是利用方程或函数等来表示数量之间的关系或变化规律.它一般不单独出现,通常与其他特殊图形结合,如等腰三角形、等边三角形、矩形、正方形,以及与翻折、坐标系结合等,从而考查这些图形的性质.因此“一线三等角”模型可以出现在选择题、填空题的最后一题,也可以出现在解答题的几何证明、综合题中,是一个使用频率高、综合性较强的模型.平时的训练中,需要提升自己的模型思想,提炼问题的基本图形,利用基本图形的性质特点来突破考题,在具体分析过程中,也要结合数形结合思想,如根据题干信息提炼图形的结构特点,然后结合图形,采用代数运算的方式探求深层信息,促进信息的融合、转化.二、核心素养分析2022年版义务教育数学课程标准希望学生在初中阶段形成模型观念、数据观念;数学学科核心素养也提到数学抽象和直观想象,逻辑推理和运算能力,数学模型和数据分析.因此在数学学习中,我们有必要及时归纳一些数学模型.“一线三等角”问题的核心思想就是模型思想,关键的解题途径是能从复杂图形中分离出此模型,把握基本图形并建立方程或函数,帮助我们塑造模型观念,增强数学能力,提高解题技巧,提升数学核心素养.三、学情分析本次教学设计的授课对象为九年级学生,学生已有与本课时内容相关的知识基础如下:①全等三角形的性质与判定;②相似三角形的性质与相似;③三角函数;④二元一次方程(组).本课程适用于对中考几何题有一定解决能力并有待提升综合能力的学生,弥补和改善学生漏听或未听懂这部分知识的不足,旨在促进学生深入理解方法和思想,从复杂图形中分离出基本数学模型,对解决问题有化繁为简的效果.四、教学任务分析1.课堂教学目标(1)知识与技能:探索“一线三等角”的基本特征,并且能够在不同背景中认识和把握基本图形,能利用“一线三等角”模型解决相关计算和证明问题;能够构造“一线三等角”模型,解决较为复杂的几何问题.(2)过程与方法:通过观察分析,大胆猜想,探索“一线三等角”基本图形,培养学生合作交流、逻辑推理的能力;让学生在解决相关问题时感受几何基本模型对几何学习的重要性.(3)情感态度与价值观:在学习活动中积累对数学的兴趣,培养与同学的交往、合作意识,在动手动脑的过程中发展想象力,体会模型思想、转化思想、分类讨论思想和数形结合思想;提高解题技巧,提升数学核心素养.2.教学重点和难点(1)教学重点①识别“一线三等角”模型的基本特征,并应用“一线三等角”模型解决相关问题;②构造“一线三等角”模型,解决复杂的几何问题.(2)教学难点构造“一线三等角”模型,并解决较为复杂的几何问题.五、具体教学过程设计1、概述:引导学生回顾一线三等角模型的基本分类:1)全等篇:条件:∠1=∠CPD=∠2,结论:△ACP ≅△BPD 1)全等篇:条件:∠1=∠CPD=∠2,结论:△ACP ≅△BPD同侧锐角直角钝角异侧2)相似篇:条件:∠1=∠CPD=∠2,结论:△ACP∽△BPD同侧锐角直角钝角222111122222211111异侧3)一线三等角模型(变异型)图1图2图3①特殊中点型:条件:如图1,当∠1=∠2=∠3,且D是BC中点时.结论:△BDE∽△CFD∽△DFE.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.2、模块一三角齐见,模型自现——图形中已经存在“一线三等角”,直接应用模型解题.(一)典例精讲例1.如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为________.222111例1图例2图2.如图,△ABC中,∠B=∠C=30°,∠DEF=30°,且点E为边BC的中点.将∠DEF绕点E旋转,在旋转过程中,射线DE与线段AB相交于点P,射线EF与射线CA相交于点Q,连结PQ.(1)如图1,当点Q 在线段CA 上时,①求证:△BPE ∽△CEQ ;②线段BE ,BP ,CQ 之间存在怎样的数量关系?请说明理由;(2)当△APQ 为等腰三角形时,求BPCQ的值.3、模块二模型隐藏,及时添补——模型隐藏,及时添补,图形中存在“一线二等角”,补上“一等角”构造模型解题;图形中只有直线上一个角,补上“二等角”构造模型解题.(一)知识铺垫找角、定线、构相似如果直线上只有1个角,该角通常是特殊角(30°、45°、60°),就考虑构造同侧型一线三等角,当然只加这两条线通常是不够的,为了利用这个特殊角与线段的关系,过C、D 两点作直线l 的垂线是必不可少的.两条垂线通常情况下是为了“量化”的需要。

专题02 全等模型-一线三等角(K字)模型(解析版)

专题02 全等模型-一线三等角(K字)模型(解析版)

专题02全等模型--一线三等角(K 字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握。

模型1.一线三等角(K 型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。

【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B ∠=∠=∠+CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE⇒≅ 例1.(2023·江苏·八年级假期作业)探究:如图①,在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD m ⊥于点D ,CE m ⊥于点E ,求证:ABD CAE ≌ .应用:如图②,在ABC 中,AB AC =,,,D A E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠.求出,DE BD 和CE 的关系.拓展:如图①中,若10DE =,梯形BCED 的面积______.【答案】探究:证明过程见详解;应用:DE BD CE =+,理由见详解;拓展:50【分析】探究:90BAC ∠=︒,AB AC =,可知ABC 是等腰直角三角形,BD m ⊥,CE m ⊥,可知90BDA AEC ∠=∠=︒,可求出BAD ACE ∠=∠,根据角角边即可求证;应用:AB AC =,,,D A E 三点都在(1)如图①,若AB AC ⊥,则BD 与AE 的数量关系为___________,CE 与AD 的数量关系为(2)如图②,判断并说明线段BD ,CE 与DE 的数量关系;(3)如图③,若只保持7BDA AEC BD EF cm ∠=∠==,,点A 在线段DE 上以2cm/s 的速度由点例3.(2022·陕西七年级期末)(1)【问题发现】如图1,△ABC与△CDE中,∠B=∠E=∠ACD=90°,AC=CD,B、C、E三点在同一直线上,AB=3,ED=4,则BE=_____.(2)【问题提出】如图2,在Rt△ABC 中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积.(3)【问题解决】如图3,四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD面积为12且CD的长为6,求△BCD的面积.【答案】(1)7;(2)S△BCD=8;(3)S△BCD=6.【分析】(1)∠B=∠E=∠ACD=90°,据同角的余角相等,可得∠ACB=∠D,由已知条件可证△ABC≌△CED,运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于E .(1)当115BDA ∠=︒时,EDC ∠=_____︒,BAD ∠=_____︒,AED =∠_____︒;点D 从B 向C 运动时,BDA ∠逐渐变_____(填“大”或“小”);(2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE V 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数,若不可以,请说明理由.【答案】(1)25,25,65,小(2)当2DC =时,ABD DCE ≌△△,理由见解析;(3)当BDA ∠的度数为110︒或80︒时,ADE V 的形状是等腰三角形.【分析】(1)先求出ADC ∠的度数,即可求出EDC ∠的度数,再利用三角形的外角性质即可求出AED ∠的度数,根据点D 从B 向C 运动时,BAD ∠逐渐增大,而B ∠不变化,180B BAD BDA ∠+∠+∠=︒,即可得到答案;(2)根据全等三角形的判定条件求解即可;(3)先证明当ADE V 时等腰三角形,只存在AD ED =或AE DE =两种情况,然后分这两种情况讨论求解即可;【详解】(1)解:∵115BDA ∠=︒,∴18011565ADC ∠=︒-︒=︒,∵40ADE ∠=︒,∴25EDC ADC ADE ∠︒=∠-∠=,∵ADC ADE EDC B BAD ∠=∠+∠=∠+∠,∴25BAD EDC ∠=∠=︒,∴65AED EDC C ︒∠=∠+∠=;∵点D 从B 向C 运动时,BAD ∠逐渐增大,而B ∠不变化,180B BAD BDA ∠+∠+∠=︒,∴点D 从B 向C 运动时,BDA ∠逐渐变小,故答案为:25,25,65,小;(2)解:当2DC =时,ABD DCE ≌△△,理由:∵40B C ∠=∠=︒,∴140DEC EDC ∠+∠=︒,又∵40ADE ∠=︒,∴140ADB EDC ∠+∠=︒,∴ADB DEC ∠=∠,又∵2AB AC ==,∴()AAS ABD DCE ≌△△;(3)解:当BDA ∠的度数为110°或80°时,ADE V 的形状是等腰三角形,理由:∵40C ADE ∠=∠=︒,AED C EDC ∠=∠+∠,∴AED ADE ∠>∠,∴当ADE V 时等腰三角形,只存在AD ED =或AE DE =两种情况,模型2.一线三等角(K 型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。

初中数学解题模型专题讲解9---一线三等角模型

初中数学解题模型专题讲解9---一线三等角模型

初中数学解题模型专题讲解专题9 一线三等角模型“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形。

这个角可以是直角,也可以是锐角或者钝角。

对于“一线三等角”,有的地区叫“K型图”,也有的地区叫“M型图”。

的起源“一线三等角”的起源一线三等角”DE 绕 A 点旋转,从外到内,从一般位置到特殊位置.下面分几种类型讨论:——““一线三直角一线三直角”””——一、直角形一线三等角”直角形““一线三等角ADB ∽△CEACEA结论:△ADB“一线三等角锐角形“二、锐角形结论结论::△ADB ∽△CEA ∽△CAB三、钝角形钝角形““一线三等角结论结论::△ADB ∽△CEA ∽△CAB下面总结几种常考类型下面总结几种常考类型::类型一 三角齐见三角齐见,,模型自现类型一概述以上两例都是典型的建,因此降低了试题的起法本质一 致,均为利用考查学生在图形变换过学能力和思想.典型的“一线三等角”试 题,由于模型的题的起 点. 两道题虽涉及不同的图形变为利用模型构建比例式解决问题. 两道题变换过程中的观察理解、直观感知、推理模型的框架已搭图形变换,但解两道题都 着重推理转化等数类型二 隐藏局部隐藏局部,,小修小补类型二概述上述两道题虽分别以四明显: 均将原有 “一线要求学生理性地从图形征,挖掘蕴含在图中的几的综合考查, 提升了学类型三 一角独处一角独处,别以四边形和一次函数为命题背景,但图形一线三等角”模型中的一角进行了隐藏从图形的角度进行思考与联想,发现其中最中的几何模 型.两道题均较好地体现了对升了学生思维的层次性和灵活性. ,两侧添补但图形的共性较隐藏,而这就其中最本质的特现了对“四基”类型三概述上述几道题虽呈现的背模型于图形之中.题中框架的基础,更是学生质上都是考查学生利用了学生对数学本质属性现的背景不同,但都蕴 知识技能、思想方题中的 “特殊角”是解题的关键,也是是学生解题思路的来源与“脚手架”.生利用模型进行数学思考的能力,同时也有质属性的把握情况.思想方法、数学也是搭建模型 这几道题实时也有效地检测类型四 线角齐藏线角齐藏,类型四概述本题实质上以图形的旋愿,促使学生在模拟图殊角,展开适当的联想建模型框架。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是等腰三角形?若存在,请写出 P点的坐标;若不存在,请说明 理由.
2013一调23题
(11分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点
C的坐标为(6,0).抛物线y=x2+bx+c经过A、C两点,与AB边交
于点D.
(Ⅰ)求抛物线的解析式;

(Ⅱ)动点P从C出发,沿线段CB向终点B运动,同时动点Q从
一个特殊图形的应用——一线三等角模型
考试过程中学生若能遇到自己平时非常熟悉的题 型,快速找到解决问题的突破口,就能减轻思维量, 提高做题速度,缓解考试紧张情绪,取得理想的成绩 。因此,平时教学中模型的渗透就非常重要。
一线三等角解题理念: 有边相等证全等; 没边相等证相似.
建立模型
2013一调13 如图,在平面直角坐标系中,直线y= -2x+2与 x轴、 y轴分别相交于点A、B,四边形ABCD是正方形,曲线在第一象限经 过点D.则________.
(1)求证:梯形ABCD是等腰梯 形;
(2)动点P、Q分别在线段BC和 MC上运动,且∠MPQ=60°保持 不变.设PC=x,MQ=y求y与x的 函数关系式.
(2)设△AOE与△FOB的面积分别为S1 ,S2,求证:S1=S2; (3)记△OEF的面积为S. ①求出S与k的函数关系式并写出自变量k 的取值范围; ②以OF为直径作⊙N,若点E恰好在⊙N 上,请求出此时△OEF的面积S. (4)当点F在BC上移动时,△OEF与 △ECF的面积差记为S,求当k为何值时, S有最大值,最大值是多少?Leabharlann (1)求该抛物线的解析式;

(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合)
,过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点
E.

①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式
,并求出l的最大值;

②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动
E
H
F
A M
N
B
GC
图4
E
P
jA
B
P
模型应用
(2012南充)19.矩形ABCD中,AB=2AD,E为AD的中点. EF⊥EC交AB于点F.连接FC.
(1)求证:△AEF∽△DCE; (2)求tan∠ECF的值.
AF
B
E
D
C
已知:在矩形AOBC中,OB=3,OA=2. 分别以OB、OA所在直线为x轴和y轴,建 立如图所示的平面直角坐标系.若点F是 边BC上的一个动点(不与B、C重合), 过F点的反比例函数(k>0)的图象与边 交于点E. (1)直接写出线段AE、BF的长(用含k 的代数式表示);
,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直
接写出对应的点P的坐标.
模型拓展 一线三锐角
B
j
O
A
D
B
P
E C
B P
E C
模型应用
.如图,已知RtΔABC中,∠BAC=90°,AB=AC=2,点D在BC上运 动(不能到达B,C),过D作∠BAC=45°,DE交AC于E.
(1)求证:ΔABD∽ΔDCE; (2)设BD=x,AE=y,求y关于x得函数关系式,并写出自变量x得取
值范围;
. (3)当ΔADE是等腰三角形时,求AE的长
A
E
BD
C
模型应用
(2012湖北天门、仙桃、潜江、江汉油田10分)△ABC 中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B
(1)如图(1)当射线DN经过点A时,DM交AC边于点E ,不添加辅助线,写出图中所有与△ADE相似的三角形.
jA
足分别为P、Q. 试探究
EP与FQ之间的数量关
系,并证明你的结论.
B
P
(3)拓展延伸

如图4,△ABC中,AG⊥BC于点G,分别以AB、
AC为一边向△ABC外作矩形ABME和矩形ACNF,射线
GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF
之间的数量关系,并说明理由.
(5)请探索:是否存在这样的点E,使 得将△CEF沿EF对折后,C点恰好落在 OB上?若存在,求出点E的坐标;若不存 在,请说明理由.
3.如图,已知y1=k1x+k1( k1≠0)与反比例函数 (k2≠0)的 图象交于点A、C,其中A点坐标 (1,1). (1)求反比例函数的解析式; (2)根据图象写出在第一象限 内,当取何值时,y1<y2? (3)若一次函数y1=k1x+k1与x 轴交于B点,连接OA,求 △AOB的面积: (4)在(3)的条件下,在坐 标轴上是否存在点P,使△AOP
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转, DM,DN分别交线段AC,AB于E,F点(点E与点A不重 合),不添加辅助线,写出图中所有的相似三角形,并证 明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的
面积等于△ABC的面积的
1 4
时,求线段EF的长.
已知如图,在梯形ABCD中, AD∥BC,AD=2,BC=4,点M 是AD的中点,△MBC是等边三角 形.
B
y
C
D B
D
OA
x
O
A
E
2013一调22题
C'
D
CD
C' C
C
A
B A' A
B
D
A(A')
B
图1
图2
(2)问题探究
如图3,△ABC中, E
P
AG⊥BC于点G,以A
Q
F
为直角顶点,分别以
A
AB、AC为直角边,向
△ABC外作等腰 Rt△ABE和等腰 Rt△ACF,过点E、F
B
G
图3
E
C
P
作射线GA的垂线,垂
若存在,请直接写出所有y 符合条件的点Fy 的l 坐标;否则请说明理由.
A
D
B
A
D
B
Q
P
O
Cx
O
Cx
D 到 DM 的距离 = 0.00厘米 mDM = 4.22厘米 mQN = 4.22厘米
y
A
D
B
Q
P
O
Cx
yl
A
D
B
O 备用图
Cx
l
M
D
F
N
Q
(2011河南)23. (11分)如图,在平面直角坐标系中,直线与抛物 线交于A、B两点,点A在x轴上,点B的横坐标为-8.
A出发,沿线段AC向终点C运动,速度均为每秒1个单位长度,连接
PQ,设运动时间为t秒,△CPQ的面积为S.

(1)求S关于t的函数表达式,并求出t为何值时,S取得最大值


(2)当S最大时,从以下①、②中任选一题作答,若两题都做只
以第①题计分.
①在抛物线y=x2+bx+c的对称轴l上,是否存在点F,使△FDQ为直角 三角形,
相关文档
最新文档