一线三等角典型例题

一线三等角典型例题
一线三等角典型例题

(完整word版)几何模型:一线三等角模型.docx

一线三等角模型 一 . 一线三等角概念 “一线三等角” 是一个常见的相似模型, 指的是有 三个等角的顶点在同一条直线上构成的相似图形, 这个角可以是直角, 也可以是锐角或钝角。 不同地区对此有不同的称呼, “K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角” 。二 . 一线三等角的分类 全等篇 C D D C A P B A P B 锐角 直角 D D D C A P B 同侧 钝角 D A A B P P B A B P C C 相似篇 C 异侧 D C D C A P B A P B 锐角 直角 D D C A P B 同侧 钝角 D D A B P A B P A B P C C C 异侧 三、“一线三等角”的性质 1. 一般情况下,如图 3-1 ,由∠ 1=∠ 2=∠ 3,易得△ AEC ∽△ BDE. 2. 当等角所对的边相等时,则两个三角形全等 . 如图 3-1 ,若 CE=ED ,则△ AEC ≌△ BDE.

3.中点型“一线三等角” 如图 3-2,当∠ 1=∠2=∠3,且 D 是 BC 中点时,△ BDE∽△ CFD∽△ DFE. 4. “中点型一线三等角“的变式( 了解 ) 如图 3-3,当∠ 1=∠2 且BOC 901 BAC 时,点O是△ABC的内心.可以考虑构2 造“一线三等角”. 如图 3- 4“中点型一线三等角”通常与三角形的内心或旁心相关, BOC901 BAC 这是内心的性质,反之未必是内心. 2 在图 3-4(右图)中,如果延长BE 与 CF,交于点 P ,则点 D 是△ PEF 的旁心 . 5.“一线三等角”的各种变式(图 3-5 ,以等腰三角形为例进行说明) 图 3-5 其实这个第 4 图,延长 DC 反而好理解 . 相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题 四、“一线三等角”的应用 1.“一线三等角”应用的三种情况 . a.图形中已经存在“一线三等角”,直接应用模型解题; b.图形中存在“一线二等角”,不上“一等角”构造模型解题;

基本图形-一线三等角

基本图形:一线三等角,相似两边找 “一线三等角”这个基本图形性质虽然不同,就是可以得到一组相似三角形而已,但因为这组相似三角形的对应关系较难看出,因此根据这个基本图形先判断存在着一组相似三角形,就有其价值了。 例1:在等腰△ABC中,AB=AC,D是BC上的一点,作∠ADE=∠B,问:△ABD与△DCE相似吗?如果相似,请写出这组相似三角形顶点和边的对应关系。 讲评:从这个例子,我们可以提炼出如下基本图形:“三个相等的顶点在一直线上,就有两个三角形相似”这个结论。这就成为一个基本图形,简称“一线三等角”。 如图,当∠A=∠B=∠EDC时,就有△ADE∽△CDB; 其证明只要用到外角知识。“一线三等角”不能作为定理直接引用,因此在书写证明时,还得用外角知识重新证明。 数学上特别注意的是,这对相似三角形的对应关系不太“顺眼”,要把其中一个三角形转过一个角度后,才比较容易看出顶点的对应关系和对应边。比较好的记忆方法“逆时针比例法”:从图中的点E出发,沿逆时针沿外周绕,得比例EA:AD=DB:BC.

例2:在等边△ABC中,将角A翻折,使点A落在BC边的D点上,EF为折痕,求证:△BED∽△CDF.并写出对应线段比例式。 例3.在矩形ABCD中,AD=4,CD=5,点F在AD上,将角D沿CF翻折,使点D落在AB边的点E处,求 的值。 例4:如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=2,BC=8,∠MEN=∠B.∠MEN的顶点E在边BC上移动,一条边始终经过点A,另一边与CD交于点F,连接AF。设BE=,DF=,试建立关于的函数关系式,并写出函数定义域。

一线三等角模型、双垂直模型(自己总结)

如图,AB=12米,CA丄AB于点A , DB丄AB于点B,且AC=4米,点P从B向A运动, 每分钟走1米,点Q从B点向D运动,每分钟走2米,P、Q两点同时出发,运动几分钟后,△ CPA 与厶PQB全等? D C / / F - f I A p S 如图①所示,在△ ABC中,/ C=90 0,AC=BC,过点C在厶ABC外作直线MN,AM丄M N于点M , BN丄MN于点N . ⑴求证:MN=AM + BN . (2)如图②.若过点C直线MN与线段AB相交,AM丄MN于点M, BN丄MN于N ,(1)中的 结论是否仍然成立?说明理由. 图①图②

如图,已知/ B= / C=90 ° M是BC的中点,DM平分/ ADC. (1) 求证:AM平分/ DAB (2) 试说明线段DM与AM有怎样的位置关系? (3) 线段CD、AB、AD间有怎样的关系?直接写出结果 如图,△ ABE EDC , E 在BD 上, AB 丄BD ,垂足为 B , △ AEC 是等腰直角三角形吗 ? 为什么?

【练3】正方形ABCD,E是BC上一点,AE — EF,交/ DCH的平分线于点 F ,求证AE=EF 如图所示,在Rt ABC中,.ABC =90 ,点D在边AB上,使,过点D作EF _ AC,分别 交AC于点E,CB的延长线于点F。求证:AB=BF。( 8分) 如图(1),已知AB 丄BD,ED 丄BD,AB=CD,BC=DE, ⑴试判断AC与CE的位置关系,并说明理由. (2)若将CD沿CB方向平移得到图②③④⑤的情形,其余条件不变,此时第(1)问中AC与CE的位置关系还成立吗?结论还成立吗?请任选一个说明理由.

(完整版)高中数学必修4第一章知识点总结及典型例题,推荐文档

高中数学必修四 第一章 知识点归纳 第一:任意角的三角函数 一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角终边 相同的角的集合 } {|2,k k z ββπα=+∈ , 弧度制,弧度与角度的换算, 弧长l r α=、扇形面积2112 2 s lr r α==, 二:任意角的三角函数定义:任意角α的终边上任意取一点p 的坐标是(x ,y ),它与原点的距离是22 r x y =+(r>0),那么角α的正弦r y a =sin 、余弦r x a =cos 、正切x y a =tan ,它们都是以角为自变量,以比值为函数值的函数。 三:同角三角函数的关系式与诱导公式: 1.平方关系: 22sin cos 1 αα+= 2. 商数关系: sin tan cos α αα = 3.诱导公式——口诀:奇变偶不变,符号看象限。 正弦 余弦 正切 第二、三角函数图象和性质 基础知识:1、三角函数图像和性质 1-1 y=sinx -3π2 -5π2 -7π2 7π2 5π2 3π2 π2 -π2 -4π-3π -2π4π 3π 2π π -π o y x 1-1y=cosx -3π2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π -2π 4π 3π 2π π -π o y x

2、熟练求函数sin()y A x ω?=+的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五点法作 sin()y A x ω?=+简图:五点分别为: 、 、 、 、 。 3、图象的基本变换:相位变换:sin sin()y x y x ?=?=+

一线三等角典型例题

“ 一线三等角”模型在初中数学中的应用 一、“一线三等角”模型的提炼 例1、(2015 年·卷) (1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP. (2)探究:如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由. (3)应用:请利用(1)、(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5.点P 以每秒1 个单位长度的速度,由点 A 出发,沿边AB 向点 B 运动,且满足∠DPC=∠A.设点P 的运动时间为t (秒),当以D 为圆心,以DC 为半径的圆与A B 相切,求t 的值. 变式1 ( 2012 年) ( 1) 问题探究 如图6,分别以△ABC 的边AC 与边BC 为边,向△ABC 外作正方形ACD 1E 1 和正方形BCD 2E 2,过点C 作直线KH 交直线AB 于点H ,使∠AHK = ∠ACD 1 . 作 D 1M ⊥ KH,D 2N ⊥ KH,垂足分别为点M 、N . 试探究线段D 1M 与线段D 2N 的数量关系,并加以证明. ( 2) 拓展延伸 1 如图7,若将“问题探究”中的正方形改为正三角形,过点C 作直线K 1H 1 ,K 2H 2,分别交直线AB 于点H 1、H 2,使∠AH 1K 1 = ∠BH 2K 2 = ∠ACD 1 . 作D 1M ⊥K 1H 1,D 2N⊥K 2H 2,垂足分别为点M 、N . D 1M = D 2N 是否仍成立? 若成立,给出证明; 若不成立,说明理由. 2 如图8,若将① 中的“正三角形”改为“正五边形”,其他条件不变. D 1M = D 2N 是否仍成立? ( 要求: 在图8 中补全图形,注明字母,直接写出结论,不需证明)

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

一线三等角教案

相似三角形的判定---“一线三等角”

一、教学目标 1.学生会运用两组对应角分别相等的两个三角形为相似三角形的判定方法证明两个三角形相似。 2.学生经历观察、比较、归纳的学习过程,归纳出“一线三等角”图形的基本特征,并且能够在不同的背景中认识和把握基本图形。 3.学生在学习过程中感受几何直观图形对几何学习的重要性。 二、教学重点、难点 1、重点:运用判定方法解决“一线三等角”的相关计算与证明 2、难点:在不同背景中识别基本图形 三、教学方法:教师主导与学生合作探究相结合。 四、教学过程

四知识巩固: 1已知,如图,在矩形ABCE 中, D 为EC 上一点,沿线段AD 翻折,使得点 E 落在BC 上,若BC=12,BE ∶EC=2∶1.求AB 的长 A B C D E 借助此题,让学生感到在矩形中因为矩形四个角为直角的特点,容易和“一线三直角”基本图形建立联系。 本题融入了轴对称的变换,让题目更鲜活 教师引导学生观察图形, 找基本图形。 师生共同完成 2. 在平面直角坐标系中,A(0,1),B (2,0),AC ⊥AB,AC=3. 求点C 的坐标。 B A C 在坐标系中感受基本图形的作用。 引导学生分析如果要求出点c 的坐标应求那条线段的长?鼓励学生添加辅助线,构造 基本图形。 学生到黑板上完成。 五课堂小结: 知识:(1)判断相似三角形的方法(2)“一线三等角”的基本特征(3)“一线三等角”在不同背景中的应用 思想方法:转化思想。 通过小结让学生可以梳理一 下本节课所学知识。学生及时的小结为下一阶段的学习打下基础。 教师提问、补充。 学生回答。

最新函数三要素经典习题(含答案)

函数的三要素练习题 (一)定义域 1 、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 2 _ _ _; 定义域为________; [1,1]-; [4,9] 3、若函数(1)f x + (21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。1][,)2 +∞ 4、知函数()f x 的定义域为[]1,1-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。11m -≤≤ 5、求下列函数的定义域 (1)2|1|)43(43 2-+--=x x x y 解:(1)???-≠≠?≠-+≥-≤?≥--3 102|1|410432x x x x x x x 且或 ∴x ≥4或x ≤-1且x ≠-3,即函数的定义域为 (-∞,-3 )∪(-3,-1)∪[4,+∞] (2)y = {|0}x x ≥ (3)0 1(21)1 11y x x = +-++(二)解析式 1. 设X={x|0≤x ≤2},Y={y|0≤y ≤1},则从X 到Y 可建立映射的对应法则是( ) (A )x y 32= (B )2)2(-=x y (C )24 1x y = (D )1-=x y 2. 设),(y x 在映射f 下的象是)2 ,2(y x y x -+,则)14,6(--在f 下的原象是( ) (A ))4,10(- (B ))7,3(-- (C ))4,6(-- (D ))2 7,23(-- 3. 下列各组函数中表示同一函数的是 (A )x x f =)(与2)()(x x g = (B )||)(x x x f =与?????-=22)(x x x g )0()0(<>x x (C )||)(x x f =与33 )(x x g = (D )1 1)(2--=x x x f 与)1(1)(≠+=t t x g 4. 已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )

几何模型:一线三等角模型知识讲解

几何模型:一线三等 角模型

一线三等角模型 一.一线三等角概念 “一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。 二.一线三等角的分类 全等篇 同侧 锐角直角钝角 P 异侧 相似篇 A 同侧锐角直角钝角 异侧

三、“一线三等角”的性质 1.一般情况下,如图 3-1,由∠1=∠2=∠3,易得△AEC ∽△BDE. 2.当等角所对的边相等时,则两个三角形全等.如图 3-1,若 CE=ED ,则△AEC ≌△BDE. 3.中点型“一线三等角” 如图 3-2,当∠1=∠2=∠3,且 D 是 BC 中点时,△BDE∽△CFD∽△DFE. 4.“中点型一线三等角“的变式(了解) 如图 3-3,当∠1=∠2 且1 902 BOC BAC ∠=?+∠时,点 O 是△ABC 的内心.可以考虑构造“一线三等角”. 如图 3-4“中点型一线三等角”通常与三角形的内心或旁心相关, 1 902 BOC BAC ∠=?+∠这是内心的性质,反之未必是内心. 在图 3-4(右图)中,如果延长 BE 与 CF ,交于点 P ,则点 D 是△PEF 的旁心. 5.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明 ) 图 3-5 其实这个第 4 图,延长 DC 反而好理解.相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题 四、“一线三等角”的应用

一线三等角模型、双垂直模型[自己总结]

如图,AB=12 米,CA⊥AB 于点A,DB⊥ AB 于点B,且AC=4 米,点P 从 B 向 A 运动, 每分钟走1米,点Q从B点向D 运动,每分钟走2米,P、Q两点同时出发,运动几分钟 如图①所示,在△ABC 中,∠C=90°,AC=BC,过点 C 在△ABC 外作直线MN,AM⊥M N 于点M,BN⊥MN 于点N. (1)求证:MN=AM+BN. (2)如图②.若过点C 直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于N,(1)中的 结论是否仍然成立?说明理由. 图① 图②

如图,已知∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC. 1)求证:AM 平分∠DAB 2)试说明线段DM与AM有怎样的位置关系? 3)线段CD、AB、AD间有怎样的关系?直接写出结果。 如图,△ABE≌△EDC,E 在BD 上,AB⊥BD,垂足为B,△AEC 是等腰直角三角形吗?为什么?

练3】正方形ABCD,E 是BC上一点,AE ⊥EF,交∠DCH 的平分线于点F,求证AE=EF

交AC 于点E,CB 的延长线于点F。求证:AB=BF 。(8 分) 如图(1),已知AB⊥BD,ED⊥BD,AB=CD,BC=DE, (1)试判断AC与CE的位置关系,并说明理由. (2)若将CD沿CB方向平移得到图②③④⑤的情形,其余条件不变,此时第(1)问中AC与CE的位置关系还成立吗?结论还成立吗?请任选一个说明理由. 如图,在△ABC 中,AB=AC,DE 是过点A 的直线,BD⊥DE 于D,CE⊥DE 于点E;如图所示,在Rt ABC中,ABC = 90,

一线三等角模型

专题九:“一线三角型”模型的应用1如图,在△ ABC中,AB=AC P、M分别在BC AC边上, 且.APM ,AP=MP,求证:△ APB^A PMC 分析:证明两个三角形全等,找边、角的等量关系,根据已有的知识经验,学生很快能够解决。 2、如果把第1题中的等腰三角形改为等边三角形,如图, △ ABC为等边三角形,.APM =60 , BP=1,CM =?,求△ ABC的边长 3 AD//BC, AD 二3cm, BC 二7cm, 一B 二 3、如图,等腰梯形ABCD中, 60 , P为BC上一点(不与B C重合),连结AP,过P点作PM交DC于M,使得 APM "B。 (1)求证:△ ABP^A PCM (2)求AB的长; (3)在底边BC上是否存在一点P,使得DM:MC=5:3若存在, 求出BP的长;若不存在,请说明理由

4、如图,AB I BD,CD _ BD ,且 AB = 6cm,CD = 4cm, BD = 14cm , 问:在 BD 上是否存在P 点,使以P 、B 、A 为顶点的三角形与以P 、DC 为顶点的三角形相似?如果存在,求 BP 的长;如果不存在,请说明理由。 5、已知在梯形 ABCD 中, AD//BC, AD :: BC ,且 AD=5,AB=DC=2 (1) 如图a ,P 是AD 上的一点,满足.BPC- A ①求证:△ ABP^A DPC ②求AP 的长。 (2) 如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满 足.BPE W^A ,PE 交直线BC 于点E ,同时交直线DC 于点Q,那么: ①当点Q 在线段DC 的延长线上时,设AP 二x,CQ 二y ,求y 关于x 的函数解析式, 并写出函数自变量的取值范围; ②当CE=1时,求出AP 的长 6、正方形ABCD 边长为4, M N 分别是BC CD 上的两个动点, 当M 点在BC 上运动时,保持AM 和 MN 垂直,如图。 (1) 证明 Rt △ ABMh Rt △ MCN (2) 设BM =x ,梯形ABCN 勺面积为y ,求y 与x 之间的函数 关系 式;当M 点运动到什么位置时,四边形 ABCNS 积最大,并求出 占 ~~

一线三等角模型综合题解

【例1】已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG. (1)探索EG、CG的数量关系和位置关系并证明; (2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论; (3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.

【例2】如图,在梯形ABCD中,AD∥BC,AB=CD=BC=6,AD=3.点M为边BC的中点,以M为顶点作∠EMF=∠B,射线ME交腰AB于点E,射线MF交腰CD于点F,连接EF. (1)求证:△MEF∽△BEM; (2)若△BEM是以BM为腰的等腰三角形,求EF的长; (3)若EF⊥CD,求BE的长.

【例3】如图,在梯形ABCD 中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P 由B 出发沿 BD 方向匀速运动,速度为1cm/s;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s,交BD 于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题: (1)当t 为何值时,PE∥AB; (2)设△PEQ 的面积为y(cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t,使S△PEQ=25 2S△BCD?若存在,求出此时t 的值;若不存在,说明理由;(4)连接PF,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.

中考数学压轴题专项汇编专题一线三等角模型

专题17 一线三等角模型 破解策略 在直线AB 上有一点P ,以A ,B ,P 为顶点的∠1,∠2,∠3相等,∠1,∠2的一条边在直线AB 上,另一条边在AB 同侧,∠3两边所在的直线分别交∠1,∠2非公共边所在的直线于点C ,D . 1.当点P 在线段AB 上,且∠3两边在AB 同侧时. (1)如图,若∠1为直角,则有△ACP ∽△BP D . 321D B P A C (2)如图,若∠1为锐角,则有△ACP ∽△BP D . 3 C D P A 证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB , ∵∠1=∠2,∴△ACP ∽△BPD (3)如图,若∠1为钝角,则有△ACP ∽△BP D . 231D B P A C 2.当点P 在AB 或BA 的延长线上,且∠3两边在AB 同侧时. 如图,则有△ACP ∽△BP D . 32 1C P D B A 证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB , ∵∠1=∠2=∠PBD ,∴△ACP ∽△BPD 3.当点P 在AB 或BA 的延长线上,且∠3两边在AB 异侧时. 如图,则有△ACP ∽△BP D .

32 1C D B A P 证明:∵∠C =∠1-∠CPB ,∠BPD =∠3-∠CPB ,而∠1=∠3 ∴∠C =∠BP D . ∵∠1=∠2,∴∠PAC =∠DBP .∴△ACP ∽△BP D . 例题讲解 例1:已知:∠EDF 的顶点D 在△ABC 的边AB 所在直线上(不与点A ,B 重合).DE 交AC 所在直线于点M ,DF 交BC 所在直线于点N .记△ADM 的面积为S 1,△BND 的面积为S 2. (1)如图1,当△ABC 是等边三角形,∠EDF =∠A 时,若AB =6,AD =4,求S 1S 2的值; (2)当△ABC 是等腰三角形时,设∠B =∠A =∠EDF =α. ①如图2,当点D 在线段AB 上运动时,设AD =a ,BD =b ,求S 1S 2的表达式(结果用a ,b 和a 的三角函数表示). ②如图3,当点D 在BA 的延长线上运动时,设AD =a ,BD =b ,直接写出S 1S 2的表达式. N F C M E B D A F N M E B D A C F N D A B E M C 图1 图2 图3 解:(1)如图4,分别过点M ,N 作AB 的垂线,垂足分别为G ,H . H G A D B E M C F N 则S 1S 2= 1 2 MG AD 12 NH BD = 14 AD AM sin A BD BN sinB . 由题意可知∠A =∠B =60o,所以sin A =sin B =32 . 由“一线三等角模型”可知△AMD ∽△BDN . ∴ AM AD BD BN ,从而AM BN =AD BD =8,∴S 1S 2=12. (2)①如图5,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .

函数的三要素典型例题

函数定义域的求法及常见题型 一、函数定义域求法 (一)常规函数 函数解析式确定且已知,求函数定义域。其解法是根据解析式有意义所需条件,列出关于自变量的不等式或不等式组,解此不等式(或组),即得函数定义域。 例1.求函数y = 的定义域。 (二)抽象函数 1.有关概念 定义域:函数y=f(x)的自变量x 的取值范围,可以理解为函数y=f(x)图象向x 轴投影的区间;凡是函数的定义域,永远是指自变量x 的取值范围; 2.四种类型 题型一:已知抽象函数y=f(x)的定义域为[m,n],如何求复合抽象函数y=f(g(x))的定义域? 例题2.已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域 强化训练: 1.已知函数y=f(x)的定义域[-1,5],求函数y=f(3x-5)的定义域; 2.已知函数y=f(x)的定义域[1/2,2],求函数y=f(log 2x)的定义域; 3.已知(x)f 的定义域为[-2,2],求2(x 1)f -的定义域。 题型二:已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的定义域? 例题4.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域. 强化训练: 1.已知函数y=f(x 2-2x+2)的定义域[0,3],求函数y=f(x)的定义域. 2.已知函数y=f[lg(x+1)]的定义域[0,9],求函数y=f(x)的定义域.

题型三:已知复合抽象函数y=f(g(x))定义域[m,n],如何求复合抽象函数y=f(h(x))定义域的定义域? 例题5.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(3+x)的定义域. 强化训练: 1.已知函数y=f(x+1)的定义域[-2,3],求函数y=f(2x-1)的定义域. 2.已知函数y=f(2x)的定义域[-1,1],求函数y=f(log 2x)的定义域. 3. 已知f(x+1)的定义域为[-1/2,2],求f(x 2)定义域。 题型四:已知f(x)的定义域,求与f(x)相关四则运算型函数的定义域。 例6.已知f(x)的定义域为[-3,5],求φ(x )=f(-x)+f(2x+5)定义域。 强化训练: 1.已知f(x)的定义域为(0,5],求g(x)=f(x+a)f(x-a)定义域,其中-1﹤a ≦0。 二、与函数定义域相关的变形题型 (一)逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例7.已知函数的定义域为R ,求实数m 的取值范围。 例8.已知函数27 (x)43 kx f kx kx += ++的定义域是R ,求实数k 的取值范围。 (二)参数型 对于含参数的函数,求定义域时,必须对分母分类讨论。 例9.已知(x)f 的定义域为[0,1],求函数(x)(x )(x a)F f a f =++-的定义域。

基本图形-一线三等角

基本图形:一线三等角,相似两边找 “一线三等角”这个基本图形性质虽然不同,就就是可以得到一组相似三角形而已,但因为这组相似三角形得对应关系较难瞧出,因此根据这个基本图形先判断存在着一组相似三角形,就有其价值了。 例1:在等腰△ABC中,AB=AC,D就是BC上得一点,作∠ADE=∠B,问:△ABD与△DC E相似吗?如果相似,请写出这组相似三角形顶点与边得对应关系。 例2:在等边△ABC中,将角A翻折,使点A落在BC边得D点上,EF为折痕,求证:△BED∽△CDF、并写出对应线段比例式。 讲评:从这个例子,我们可以提炼出如下基本图形:“三个相等得顶点在一直线上,就有两个三角形相似”这个结论。这就成为一个基本图形,简称“一线三等角”。 如图,当∠A=∠B=∠EDC时,就有△ADE∽△CDB; 其证明只要用到外角知识。“一线三等角”不能作为定理直接引用,因此在书写证明时,还得用外角知识重新证明。 数学上特别注意得就是,这对相似三角形得对应关系不太“顺眼”,要把其中一个三角形转过一个角度后,才比较容易瞧出顶点得对应关系与对应边。比较好得记忆方法“逆时针比例法”:从图中得点E出发,沿逆时针沿外周绕,得比例EA:AD=DB:BC、 例3、在矩形ABCD中,AD=4,CD=5,点F在AD上,将角D沿CF翻折,使点D落在AB边得点E处,求得值. 例4:如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD= 2,BC=8,∠MEN=∠B、∠MEN得顶点E在边BC上移动, 一条边始终经过点A,另一边与CD交于点F,连接AF.设BE=, DF=,试建立关于得函数关系式,并写出函数定义域。 例5:如图,在RtABC中,∠C=90°,BC=6,AC=8,O 就是AB上一点,AO=4,P就是AC上动点,过点P做OP得垂线交 边BC于点Q,设AP=,CQ=,试求关于得函数解析式,并写出 定义域。

几何模型:一线三等角模型 (最终版)

初中几何模型之“一线三等角模型” 一.【一线三等角概念】 “一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。 二.【一线三等角的分类】

2.1 全等篇_同侧 A P A P 锐角直角钝角2.2 全等篇_异侧 P D P P 锐角直角钝角

2.3 相似篇_同侧 D C A B P P 锐角直角钝角2.4 相似篇_异侧 P D P P 锐角直角钝角

三、【性质】 1.相似,如图 3-1,由∠1=∠2=∠3,或者α=α 2=α3易得△AEC∽△BDE. 2.当等角所对的边相等时,则两个三角形全等.如下图,若 CE=ED,则△AEC≌△BDE.异侧结果同样。

3.中点型“一线三等角”——相似中多了一位兄弟 如图 3-2,当∠1=∠2=∠3,且 D 是 BC 中点时,△BDE∽△CFD∽△DFE. 4.“中点型一线三等角“的变式(了解) 如图 3-3,当∠1=∠2 且1902 BOC BAC ∠=?+∠时,点 O 是△ABC 的内心.可以考虑构造“一线三等角”.

5.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明) 图 3-5 四、【“一线三等角”的应用】 1.应用的三种情况. a.图形中已经存在“一线三等角”,直接应用模型解题; b.图形中存在“一线二等角”,构造“一等角”模型解题; c.图形中只有直线上一个角,构造“二等角”模型解题.

函数的三要素练习题

一、选择题 1.已知函数()()0f x x a x a a =+--≠,()()() 2200x x x h x x x x ?-+>?=?+≤??, 则()(),f x h x 的奇偶性依次为( ) A .偶函数,奇函数 B .奇函数,偶函数 C .偶函数,偶函数 D .奇函数,奇函数 2.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数, 则)2 52()23(2+ +-a a f f 与的大小关系是( ) A .)23(-f >)252(2++a a f B .)23(-f <)2 52(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)2 52(2++a a f 3.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( ) A .2a ≤- B .2a ≥- C .6-≥a D .6-≤a 4.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=, 则()0x f x ?<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或 5.已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于( ) A .2- B .4- C .6- D .10- 6.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f (x )图象上的是( ) A .(,())a f a -- B .(,())a f a - C .(,())a f a - D .(,())a f a --- 二、填空题 1.设()f x 是R 上的奇函数,且当[)0,x ∈+∞ 时,()(1f x x =, 则当(,0)x ∈-∞时()f x =_____________________。 2.若函数()2f x a x b =-+在[)0,x ∈+∞上为增函数,则实数,a b 的取值范围是 。 3.已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=_____。 4.若1()2 ax f x x +=+在区间(2,)-+∞上是增函数,则a 的取值范围是 。 5.函数4()([3,6])2 f x x x =∈-的值域为____________。

函数的概念经典例题

考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y=3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2y =3x; ③ A=R,B=R, 对应法则f :x →y=2x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①22x y +=2 1= ③ A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B. y=f (x )图像与直线x=a 没有交点 C. y=f (x )图像与直线x=a 最少有一个交点 D. y=f (x )图像与直线x=a 最多有一个交点 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例1. 下列哪个函数与y=x 相同( ) A. y=x B. y = C. 2 y = D.y=t 变式1.下列函数中哪个与函数y = ) A. y = B. y =- C. y =- D. y x = 变式2. 下列各组函数表示相等函数的是( ) A. 29 3 x y x -=- 与 3y x =+ B. 1y = 与 1y x =-

(完整版)几何模型:一线三等角模型

一线三等角模型 一.一线三等角概念 “一线三等角”是一个常见的相似模型, 上 构成的相似图形,这个角可以是直角, 不同的称呼, “K 形图”, 二?一线三等角的分类 全等篇 指的是有三个等角的顶点在同一条直线 也可 以是锐角或钝角。不同地区对此有 “弦图” 三、“一线三等角” 1. 一般情况下,如图 2?当等角所对的边相等时,则两个三角形全等 易得△ AE3A BDE. .如图 3-1,若 CE=ED 则厶 AE3A BDE. 锐角 同侧 异侧 相似篇 锐角 同侧 异侧 “三垂直”, 等,以下称为“一线三等角”。 的性质 3-1,由/ 1 = / 2=7 3,

A V A BOC ff 构造模型解题 在图3-4 造“一线三等角 如图3- 4 如图3-3,当/仁/ 2且 BOC 90 4?“中点型一线三等角“的变式 (了 中点时,△ BD 0A CFS A DFE. 阳3-1 3.中点型“一线三等角” 如图3-2,当/仁/ 2=7 3,且 D 是BC ^3-3 图 3^ “中点型一线三等角”通常与三角形的内心或旁心相关, 1 90 BAC 这是内心的性质,反之未必是内心 . 2 (右图)中,如果延长 BE 与CF ,交于点P ,则点D 是厶PEF 的旁心 -BAC 时,点0是厶ABC 的内心.可以考虑构 2 5.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明 图3-5 其实这个第4图,延长DC 反而好理解.相当于两侧型的,不延长理解,以为 是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进 行解题 四、“一线三等角”的应用 1.“一线三等角”应用的三种情况. a. 图形中已经存在“一线三等角”,直接应用模型解题; b. 图形中存在“一线二等角”,不上“一等

高中函数部分知识点及典型例题分析

智立方教育高一函数知识点及典型例题 一、函数的概念与表示 1、映射 (1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B. 注意点:(1)对映射定义的理解.(2)判断一个对应是映射的方法.一对多不是映射,多对一是映射2、函数 构成函数概念的三要素①定义域;②对应法则;③值域. 两个函数是同一个函数的条件:三要素有两个相同 例1、例2、}3 0| { }, 2 0| {≤ ≤ = ≤ ≤ =y y N x x M给出下列四个图形,其中能表示从集合M到集合N的函数关系的有( C ) A、 0个 B、 1个 C、 2个 D、3个 由题意知:M={x|0≤x≤2},N={y|0≤y≤3}, 对于图①中,在集合M中区间(1,2]的元素没有象,比如f( 3 2 )的值就不存在,所以图①不符合题意; 对于图②中,对于M中任意一个元素,N中有唯一元素与之对应,符合函数的对应法则,故②正确; 对于图③中,对于M中任意一个元素,N中有唯一元素与之对应,且这种对应是一一对应,故③正确; 对于图④中,集合M的一个元素对应N中的两个元素.比如当x=1时,有两个y值与之对应,不符合函数的定义,故④不正确 x x x x 1 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 y y y y 3 O O O O

二、函数的解析式与定义域 1、求函数定义域的主要依据: (1)分式的分母不为零; (2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零; (4)指数函数和对数函数的底数必须大于零且不等于1; 例1、y = 函数的定义域为 根号下的数必须为正数,又当底数为大于0小于1的数时,只有当真数大于0小于1时,才能保证根号下的数为正数。所以让0<4X 的平方-3X<1,解0<4X 的平方-3X 得X<0或3/4b=1 f(x)=(1-2^x)/(a+2^(x+1)) 又由f (1)= -f (-1)知a=2 (Ⅱ)解由(Ⅰ)知f(x)=(1-2^x)/(2+2^(x+1))=-1/2+1/(2^x+1) ,易知f(x) 在 正负无穷上为减函数。又因 f(x)是奇函数,从而不等式:f(t^2-2t)+f(2t^2-k)<0 等价于f(t^2-2t)<-f(2t^2-k)=f(k-2t^2) ,因f(x) 为减函数,由上式推得:t^2-2t>k-2t^2 .即对一切t ∈R 有:3t^2-2t-k>0 ,从而判别式=4+12k<0 ==>k<-1/3

相关文档
最新文档