第22章二次函数单元测试题(含答案)
人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。
第二十二章《二次函数》单元测试卷含答案

一、选择题(每小题只有一个正确答案)
1.下列函数中,是二次函数的为()
A. B. C. D.
2.二次函数y=2(x﹣1)2+3的图象的对称轴是( )
A.x=1B.x=﹣1C.x=3D.x=﹣3
3.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )
A. B.8C.7D.9
12.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形( )
A.①②③B.①②④C.①③④D.②③④
10.已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是( )
A. B. C. D.
11.如图,抛物线 分别交x轴于A,B两点,与y轴交于点C,动点P从 出发,先到达x轴上的某点E,再到达抛物线对称轴上的某点F,最后运动到点C,求点P运动的最短路径长为
A. 或1B. 或1C. 或 D. 或
6.下列具有二次函数关系的是( )
A.正方形的周长y与边长xB.速度一定时,路程s与时间t
C.三角形的高一定时,面积y与底边长xD.正方形的面积y与边长x
7.给出下列四个函数:y=﹣2x,y=2x﹣1,y= (x>0),y=﹣x2+3(x>0),其中y随x的增大而减小的函数有( )
(1)求m的值及点B的坐标;
第二十二章 二次函数(单元测试)【解析版】-九年级数学上册同步备课系列(人教版)

二十二章二次函数(单元测试)一、单选题(每题3分,共30分)A .0abc <B .【详解】由图知,0a >,对称轴1x =时,0y a b c =++<,故=1x -时,0y a b c =-+>....a>,抛物线与y轴的交点得出【详解】解:A.由直线可知a<0,由抛物线开口向上,0合题意;.由直线可知a<0,由抛物线开口向下,,抛物线与y轴的交点得出0a>,故选项不符合题意;,由抛物线开口向上,A.45米B.10米【详解】解:以O点为坐标原点,AB的垂直平分线为设抛物线的解析式为y=ax2,二、填空题(每题4分,共20分)【详解】解:设p(x,三、解答题(16-18题每题4分,19题6分,20题7分,21、22题每题8分,23题9分,共50分)【详解】解:(1)函数y=2x2+x-15的图象如图:由图象可知x 1≈2.4,x 2≈-3.1;(2)函数y =3x 2-x -1的图象如图:由图象可知x 1≈0.8,x 2≈-0.4;21.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式【详解】解:∵抛物线经过点()1,0A -,()5,0B ,()0,5C ,∴设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,∴()()21545y x x x x =-+-=-++.∴该抛物线的函数关系式为245y x x =-++.22.二次函数y =ax 2+bx +c 的图象如图所示,经过(﹣1,0)、(3,0)、(0,﹣3).(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P 水平距离3m ,身高1.6m 的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【详解】(1)解:根据题意可知抛物线的顶点为()5,3.2,设抛物线的解析式为()25 3.2y a x =-+,将点()0,0.7代入,得0.725 3.2a =+,解得0.1a =-,∴抛物线的解析式为()20.15 3.2y x =--+,(2)由()20.15 3.2y x =--+,令 1.6y =,得()21.60.15 3.2x =--+,解得121,9x x ==,爸爸站在水柱正下方,且距喷水头P 水平距离3m ,∴当她的头顶恰好接触到水柱时,她与爸爸的水平距离为312-=(m),或936-=(m).24.如图,在平面直角坐标系中,抛物线2y ax x m =++(a ≠0)的图象与x 轴交于A 、C 两点,与y 轴交于点B ,其中点B 坐标为(0,-4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D 是直线AB 下方抛物线上一个动点,连接若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点P 为该抛物线对称轴上的动点,使得△详解】(1)解:将B (0,-4),C (2,得:4420m a m =-⎧⎨++=⎩,解得:412m a =-⎧⎪⎨=⎪⎩,∴抛物线的函数解析式为:212y x x =+(2)向下平移直线AB ,使平移后的直线与抛物线只有唯一公共点此时△ABD 的面积最大,∵21402x x +-=时,12x =,24x =-,。
人教新版九年级上册数学第22章 《二次函数》单元测试卷【含答案】

人教新版九年级上册数学第22章《二次函数》单元测试卷一.选择题1.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣32.函数y=(m﹣n)x2+mx+n是二次函数的条件是()A.m、n是常数,且m≠0B.m、n是常数,且m≠nC.m、n是常数,且n≠0D.m、n可以为任何常数3.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或34.若y=2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定5.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点6.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>a>c7.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)8.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣79.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.10.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.二.填空题11.若y=(2﹣m)是二次函数,且开口向上,则m的值为.12.如果函数是关于x的二次函数,那么k的值是.13.当m=时,函数y=(m﹣1)是关于x的二次函数.14.如果y=(m﹣2)是关于x的二次函数,则m=.15.抛物线y=ax2﹣3x+a2﹣1如图所示,则a=.16.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是.17.已知抛物线y=x2+4x+5的对称轴是直线x=.18.在正方形的网格中,抛物线y1=x2+bx+c与直线y2=kx+m的图象如图所示,请你观察图象并回答:当﹣1<x<2时,y1y2(填“>”或“<”或“=”号).19.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是.20.抛物线y=(x﹣2)2+3的顶点坐标是.三.解答题21.画出函数y=x2﹣2x﹣8的图象.(1)先求顶点坐标:(,);(2)列表x……y……(3)画图.22.函数是关于x的二次函数,求m的值.23.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?24.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?25.已知是x的二次函数,求出它的解析式.26.已知二次函数y=ax2+bx+c.(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.27.下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;(2)小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明.答案与试题解析一.选择题1.解:A、y=3x﹣1是一次函数,故A错误;B、y=3x2﹣1是二次函数,故B正确;C、y=(x+1)2﹣x2不含二次项,故C错误;D、y=x3+2x﹣3是三次函数,故D错误;故选:B.2.解:根据二次函数的定义可得:m﹣n≠0,即m≠n.故选:B.3.解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得a=4.故选:B.4.解:由y=2是二次函数,得m2﹣2=2,解得m=±2,故选:C.5.解:因为y=ax2形式的二次函数对称轴都是y轴,且顶点都在原点,所以它们的共同特点是:关于y轴对称的抛物线,有公共的顶点.故选:D.6.解:由函数图象已知a>0,c<0,∵﹣=﹣1,∴b=2a,∴b>a,∴b>a>c,故选:D.7.解:∵﹣1<0,∴函数的开口向下,图象有最高点,∵这个函数的顶点是(﹣1,2),∴对称轴是直线x=﹣1,故选:D.8.解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选:D.9.解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A 选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故D选项不合题意;故选:C.10.解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.二.填空题11.解:根据题意得,m2﹣3=2,解得m=±,∵开口向上,∴2﹣m>0,解得m<2,∴m=﹣.故﹣.12.解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故0.13.解:依题意可知m2+1=2得m=1或m=﹣1又因为m﹣1≠0∴m≠1∴当m=﹣1时,这个函数是二次函数.14.解:根据二次函数的定义:m2﹣m=2,m﹣2≠0,解得:m=﹣1,故﹣1.15.解:∵二次函数的图象过原点(0,0),代入抛物线解析式,得a2﹣1=0,解得a=1或a=﹣1,又∵抛物线的开口向下,故a<0,∴a=﹣1.16.解:观察图象可知,抛物线与x轴两交点为(﹣1,0),(2,0),y<0,图象在x轴的下方,所以答案是x<﹣1或x>2.17.解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故﹣2.18.解:根据图示知,①当x≤﹣1时,y2≤y1;②当﹣1<x<2时,y2<y1;③当x≥2时,y2≥y1;故<.19.解:由y=a(x+1)2+2可知对称轴x=﹣1,根据对称性,图象在对称轴左侧与x轴交点为(﹣3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0).20.解:y=(x﹣2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故(2,3)三.解答题21.解:(1)y=x2﹣2x﹣8=(x﹣1)2﹣9∴其顶点坐标为(1,﹣9)故1,﹣9(2)列表x…﹣2﹣101234…y…0﹣5﹣8﹣9﹣8﹣50…(3)画图:22.解:由题意可知解得:m=2.23.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.24.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.25.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.26.解:(1)当a=1,b=﹣2,c=1时,y=x2﹣2x+1=(x﹣1)2,∴该二次函数的顶点坐标为(1,0),对称轴为直线x=1,利用函数对称性列表如下:x…﹣10123…y…41014…在给定的坐标中描点,画出图象如下.(2)由y=ax2+bx+c是二次函数,知a≠0y=a(x2+x)+c=a[x2+x+()2]+c﹣a×()2=a(x+)2+∴该二次函数图象的顶点坐标为.27.解:(1)当0≤x≤4时,y=x+3;当x>4时,由图表可知y=(x﹣6)2+k,由函数图象可知,当x=4时,y=x+3=6,此时(4﹣6)2+k=6,解得k=2,所以,当x>4时,y=(x﹣6)2+2;(2)他说的错误.把y=3代入y=x+3中,得x+3=3,解得x=0,把y=3代入y=(x﹣6)2+2中,得(x﹣6)2+2=3,解得x=5或7,正确说法是:所输出y的值为3时,输入x的值为0或5或7.。
第22章《二次函数》单元测试卷(含答案)

二次函数单元测试卷一、选择题:(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A、y=(x-1)2+2B、y=(x+1)2+2C、y=(x-1)2-2D、y=(x+1)2-22、已知二次函数y=ax2的图象开口向上,则直线y=ax-1经过的象限是()A、第一、二、三象限B、第二、三、四象限C、第一、二、四象限D、第一、三、四象限3、将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A、y=(x+1)2+4B、y=(x-1)2+4C、y=(x+1)2+2D、y=(x-1)2+24、设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A、c=3B、c≥3C、1≤c≤3D、c≤35、已知二次函数y=a(x-2)2+c(a>0),当自变量x分别取、3、0时,对应的函数值分别:y1,y2,y,则y1,y2,y3的大小关系正确的是( )A、y3<y2<y1B、y1<y2<y3C、y2<y1<y3D、y3<y1<y26、已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是()A、有最小值0,有最大值3B、有最小值﹣1,有最大值0C、有最小值﹣1,有最大值3D、有最小值﹣1,无最大值7、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A、B、C、D、8、如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C 的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A、B、C、D、二、填空题(共5题;共20分)9、函数y=(x﹣1)2+3的最小值为 ________.10、已知二次函数,当时,y有最小值1,则a=________.11、如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为________ .12、抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是________ .13、老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:甲:函数的图象经过第一、二、四象限;乙:当x<2时,y随x的增大而减小.丙:函数的图象与坐标轴只有两个交点.已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数________.三、解答题(共6题;共56分)14、已知二次函数y=2x2﹣8x.(1)用配方法将y=2x2﹣8x化成y=a(x﹣h)2+k的形式;(2)求出该二次函数的图象与x轴的交点A,B的坐标(A在B的左侧);(3)将该二次函数的图象沿x轴向左平移2个单位,再沿y轴向上平移3个单位,请直接写出得到的新图象的函数表达式.15、已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.16、拱桥的形状是抛物线,其函数关系式为,当水面离桥顶的高度为m时,水面的宽度为多少米?17、抛物线y=-与y轴交于(0,3),⑴求m的值;⑵求抛物线与x轴的交点坐标及顶点坐标;⑶当x取何值时,抛物线在x轴上方?⑷当x取何值时,y随x的增大而增大?18、某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果公司想要在这段时间内获得2 250元的销售利润,销售单价应定为多少元?19、如图,二次函数的图象与x轴交于点A(-3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标:(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.答案解析一、单选题1、【答案】A【考点】二次函数图象与几何变换【解析】【分析】根据函数图象右移减、左移加,上移加、下移减,可得答案.【解答】将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=(x-1)2+2,故选:A.2、【答案】D【考点】二次函数的性质,一次函数的性质【解析】【分析】二次函数图象的开口向上时,二次项系数a>0;一次函数y=kx+b(k≠0)的一次项系数k>0、b<0时,函数图象经过第一、三、四象限.【解答】∵二次函数y=ax2的图象开口向上,∴a>0;又∵直线y=ax-1与y轴交于负半轴上的-1,∴y=ax-1经过的象限是第一、三、四象限.故选D.3、【答案】D【考点】二次函数的三种形式【解析】【分析】本题是将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式即可.【解答】y=x2-2x+3=x2-2x+1-1+3=(x-1)2+2.故选:D.【点评】二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).4、【答案】B【考点】二次函数的性质,二次函数与不等式(组),二次函数图象上点的坐标特征【解析】【分析】因为当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,所以函数图象过(1,0)点,即1+b+c=0①,由题意可知当x=3时,y=9+3b+c≤0②,所以①②联立即可求出c的取值范围.【解答】∵当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴函数图象过(1,0)点,即1+b+c=0①,∵当1≤x≤3时,总有y≤0,∴当x=3时,y=9+3b+c≤0②,①②联立解得:c≥3,故选B.5、【答案】B【考点】二次函数的性质,二次函数图象上点的坐标特征【解析】【分析】根据抛物线的性质,开口向上的抛物线,其上的点离对称轴越远,对应的函数值就越大,x取0时所对应的点离对称轴最远,x取时所对应的点离对称轴最近,即可得到答案.【解答】∵二次函数y=a(x-2)2+c(a>0),∴该抛物线的开口向上,且对称轴是x=2.∴抛物线上的点离对称轴越远,对应的函数值就越大,∵x取0时所对应的点离对称轴最远,x取时所对应的点离对称轴最近,∴y3>y2>y1.故选B.【点评】本题考查了二次函数图象上点的坐标特征.解题时,需熟悉抛物线的有关性质:抛物线的开口向上,则抛物线上的点离对称轴越远,对应的函数值就越大.6、【答案】C【考点】二次函数的性质,二次函数的最值【解析】【分析】根据函数图象自变量取值范围得出对应y的值,即是函数的最值.【解答】根据图象可知此函数有最小值-1,有最大值3.故选C.【点评】此题主要考查了根据函数图象判断函数的最值问题,结合图象得出最值是利用数形结合,此知识是部分考查的重点.7、【答案】C【考点】一次函数的图象,二次函数的图象【解析】【解答】解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx 来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.8、【答案】B【考点】二次函数的图象【解析】【分析】分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1。
第22章 二次函数 人教版数学九年级上册单元测试卷(含答案)

第二十二章 二次函数一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.函数y=-13x 2+3与y=-13x 2-2的图象的不同之处是( )A.对称轴B.开口方向C.顶点D.形状2.(2022·浙江湖州期中)已知抛物线y=(x-3)2+c 经过点A (2,0),则该抛物线与x 轴的另一个交点坐标为( )A.(3,0)B.(-4,0)C.(-8,0)D.(4,0)3.(2022·湖北鄂州梁子湖区期中)根据表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是( )x 00.511.52y=ax 2+bx+c-1-0.513.57A .0<x<0.5 B.0.5<x<1C.1<x<1.5D.1.5<x<24.(2022·北京西城区期中改编)若A (-1,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y=-(x-2)2+k 的图象上,则y 1,y 2,y 3的大小关系为( )A.y 1<y 2<y 3 B.y 1<y 3<y 2C.y 3<y 1<y 2 D.y 3<y 2<y 15.(2022·浙江温州期中)小杰把压岁钱500元按一年期存入银行,已知年利率为x ,一年到期后银行将自动把本金和利息再转存一年.设两年到期后,本利和为y 元,则y 与x 之间的函数关系式为( )A.y=500(x+1)2B.y=x 2+500C.y=x 2+500xD.y=x 2+5x6.(2021·广东广州番禺区期中)若二次函数y=x 2-6x+5,当2≤x ≤6时的最大值是n ,最小值是m ,则n-m=( )A.3B.5C.7D.97.[与一元二次方程综合]若二次函数y=ax 2-1的图象经过点(-2,0),则关于x 的方程a (x-2)2-1=0的根为( )A.x 1=0,x 2=4B.x 1=-2,x 2=6C.x 1=32,x 2=52D.x 1=-4,x 2=08.新风向新定义试题(2022·河南驻马店期中)定义:若两个函数图象与x 轴存在共同的交点,则这两个函数为“共根函数”.如y=x 2-4与y=(x+1)(x-2)的图象与x 轴的共同交点为(2,0),那么这两个函数就是“共根函数”.若y=2x 2-4x 与y=x 2-3x+m-1为“共根函数”,则m=( )A.1B.1或2C.1或3D.2或39.(2022·浙江绍兴期中)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论正确的是( )A .abc>0B .b-a>c C.3a>-cD.a+b<m (am+b )(m ≠1)10.(2021·河南模拟)如图,△ABC 和△DEF 都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合.现将△ABC 沿着直线l 向右移动,当点B 与F 重合时停止移动.在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图象大致为( )二、填空题(共5小题,每小题3分,共15分)11.(2022·北京西城区期中)已知y=(m+2)x |m|+2是y 关于x 的二次函数,那么m 的值为 .12.(2022·浙江湖州段考)将二次函数y=x 2的图象平移,使它经过点(2,0),则平移后所得图象对应的函数解析式可以是 .(写出一个即可)13.(2022·吉林长春宽城区期末)在平面直角坐标系中,将二次函数y=-x 2+2x+3的图象在x 轴上方的部分沿x 轴翻折,所得新函数的图象如图所示(实线部分).若直线y=b 与新函数的图象恰有3个公共点,则b 的值是 .(第13题) (第15题)14.(2022·安徽皖东南四校联考)飞机着陆后滑行的距离y (单位:m)与滑行时间t (单位:s)之间的函数解析式为y=60t-32t 2.则在飞机着陆滑行过程中,最后2s 滑行的距离是 m .15.(2021·四川绵阳涪城区)如图,抛物线y=53x 2-203x+5与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,在其对称轴上有一动点M ,连接MA ,MC ,AC ,则当△MAC 的周长最小时,点M 的坐标是 . 三、解答题(共6小题,共55分)16.(7分)(2022·江苏苏州姑苏区期中)把抛物线C 1:y=-x 2-2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C 2.(1)求抛物线C 2的解析式.(2)点P (a ,1)是否在抛物线C 2上?请说明理由.17.(8分)(2022·安徽安庆期中)某小区计划建一个矩形花圃,花圃的一边利用长为a 米的墙,另三边用总长为79米的篱笆围成,围成的花圃是如图所示的矩形ABCD,并在BC边上留有一扇1米宽的门.设AD边的长为x米,矩形花圃的面积为S米2.(1)求S与x之间的函数关系式.(不要求写出自变量x的取值范围)(2)若a=30,求S的最大值.18.(9分)新风向探究性试题(2022·河南南阳市第十二中学校月考)某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…-3-52-2-1012523…y (35)4m-10-10543…其中,m= .(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有 个交点,所以对应的方程x2-2|x|=0有 个实数根;②方程x2-2|x|=2有 个实数根.19.(10分)新风向探究性试题如图,在小明的一次投篮中,球出手时离地面高2米,与篮筐中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米.篮球运行的轨迹为抛物线,篮筐中心距离地面3米,通过计算说明此球能否投至篮筐中心.(不考虑篮球大小和篮球的反弹)探究一:若出手的角度、力度和高度都不变,则小明朝着篮球架再向前移动多少米后投篮能将篮球投至篮筐中心?探究二:若出手的角度、力度和高度都发生改变,但是抛物线的顶点位置及球出手时与篮筐中心的水平距离不变,则小明出手的高度需要增加多少米才能将篮球投至篮筐中心?20.(10分)(2022·浙江杭州外国语学校月考)某产品每件成本为25元,经过市场调研发现,这种产品在未来20天内的日销售量m(单位:件)是关于时间t(单位:天)的一次函数,调研所获的部分数据如表.时间t/天231020日销售量m/件96948060这20天中,该产品每天的售价y (单位:元/件)与时间t (单位:天)的函数解析式为y=14t+30(t 为正整数).(1)求m 关于t 的函数解析式.(2)这20天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的20天中,每销售一件商品就捐赠a 元(a<6)给希望工程,通过销售记录发现,这20天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求a 的取值范围.21.(11分)(2021·重庆大渡口区春招)如图,若抛物线y=x 2+bx+c 与x 轴相交于A ,B两点,与y 轴相交于点C ,直线y=x-3经过点B ,C.(1)求二次函数的表达式.(2)点P 是直线BC 下方抛物线上一动点,过点P 作PH ⊥x 轴于点H ,交BC 于点M ,连接PC.①线段PM 是否有最大值?如果有,求出最大值;如果没有,请说明理由.②在点P 运动的过程中,是否存在点M ,恰好使△PCM 是以PM 为腰的等腰三角形?如果存在,请求出点P 的坐标;如果不存在,请说明理由.第二十二章 二次函数答案1.C 对比函数y=-13x 2+3与y=-13x 2-2可知,两者的二次项系数相同,一次项系数均为0,所以两抛物线的开口方向相同、形状相同,对称轴也相同.因为抛物线y=-13x 2+3的顶点坐标为(0,3),抛物线y=-13x 2-2的顶点坐标为(0,-2),所以两者的顶点不同.2.D ∵抛物线y=(x-3)2+c 经过点A (2,0),∴(2-3)2+c=0,解得c=-1.∴抛物线的解析式为y=(x-3)2-1.令y=0,即(x-3)2-1=0.解得x=2或x=4.∴该抛物线与x 轴的另一个交点坐标为(4,0).优解:∵抛物线的对称轴为直线x=3,其中一个交点坐标为(2,0),∴由抛物线的对称性可知,另一个交点坐标为(4,0).3.B 4.B 二次函数y=-(x-2)2+k 的图象开口向下,对称轴为直线x=2,当抛物线开口向下时,到对称轴的距离越远的点对应的函数值越小.因为|-1-2|>|4-2|>|1-2|,所以y 1<y 3<y 2.故选B .另解:(直接代入法)将x=-1,1,4分别代入y=-(x-2)2+k ,得y 1=-9+k ,y 2=-1+k ,y 3=-4+k ,所以y 1<y 3<y 2.5.A6.D 原式可化为y=(x-3)2-4,可知二次函数的顶点坐标为(3,-4).因为2<3<6,所以最小值m=-4.当y=0时,x 2-6x+5=0,解得x 1=1,x 2=5.如图,当x=6时,y=36-36+5=5,即n=5.则n-m=5-(-4)=9.7.A 把(-2,0)代入二次函数y=ax 2-1,得4a-1=0,解得a=14,所以14(x-2)2-1=0,解得x 1=0,x 2=4.故选A .另解:因为二次函数y=ax 2-1的图象的对称轴为y 轴,所以根据二次函数图象的对称性,可得该图象也经过点(2,0),所以ax 2-1=0的根为-2或2.把二次函数y=ax 2-1的图象向右平移2个单位长度得到二次函数y=a (x-2)2-1的图象,所以关于x 的方程a (x-2)2-1=0的根为-2+2=0或2+2=4.8.C 令y=2x 2-4x=0,即2x (x-2)=0,解得x=0或x=2,∴函数y=2x 2-4x 与x 轴的交点为(0,0),(2,0).(分类讨论思想)当两个函数图象同时过点(0,0)时,则m-1=0,解得m=1;当两个函数图象同时过点(2,0)时,则4-6+m-1=0,解得m=3.9.B ∵抛物线开口向下,∴a<0.∵对称轴为直线x=1,∴-b2a =1,∴b=-2a ,b>0.由图象可知c>0,∴abc<0,故A 选项错误.当x=-1时,y=a-b+c<0,∴b-a>c ,故B 选项正确.∵b=-2a ,a-b+c<0,∴a+2a+c<0,即3a<-c ,故C 选项错误.当x=1时,y 的值最大,此时y 最大=a+b+c ;当x=m 时,y=am 2+bm+c ,∴a+b+c>am 2+bm+c (m ≠1),故a+b>am 2+bm ,即a+【注意】m ≠1的条件b>m (am+b ),故D 选项错误.10.A (分类讨论思想)当0<x<2时,如图(1),设AC 与DE 的交点为G ,易知△CEG 是等边三角形,∴y=S △CEG =12·x ·3x 2=34x 2,该段抛物线开口向上,对称轴为y 轴.当2<x<4时,如图(2),设AB 与DF 的交点为H ,BF=CE-2(CE-EF )=-CE+2EF=4-x ,易知△BFH 是等边三角形,∴y=S △BFH =12·(4-x )·3(4-x )2=34(x-4)2,该段抛物线开口向上,对称轴为直线x=4.特殊地,当x=2时,△ABC 与△DEF 完全重合,y 的值最大,为12×2×3=3.当x=0或4时,y=0.故选A . 图(1) 图(2)11.2 ∵y=(m+2)x |m|+2是y 关于x 的二次函数,∴|m|=2且m+2≠0,解得m=2.【易错】易忽略二次函数解析式的二次项系数不为0的情况12.y=x 2-4(或y=x 2-4x+4,答案不唯一) 设二次函数y=x 2的图象沿y 轴平移后得到y=x 2+b.∵经过点(2,0),∴0=4+b ,解得b=-4,∴沿y 轴平移后所得图象对应的函数解析式是y=x 2-4.设二次函数y=x 2的图象沿x 轴平移后得到y=(x-a )2,将点(2,0)代入,解得a=2,∴沿x 轴平移后所得图象对应的函数解析式是y=(x-2)2=x 2-4x+4.13.-4图解:(数形结合思想)如图,原二次函数y=-x 2+2x+3=-(x-1)2+4,∴顶点C (1,4),翻折后点C 的对应点为D (1,-4).当直线y=b 与新函数的图象恰有3个公共点时,直线y=b 过点D ,此时b=-4.14.6 因为y=60t-32t 2=-32(t-20)2+600,所以当t=20时,飞机着陆后滑行600m 才能停下来, t 的取值范围是0≤t ≤20.当t=18时,y=594,600-594=6(m),故在飞机着陆滑行过程中,最后2s 滑行的距离是6m .15.(2,53) (转化思想)如图,易知点A 与点B 关于抛物线的对称轴对称,连接CB 交抛物线的对称轴于点M ,则点M 即为所求点令53x 2-203x+5=0,解得x=1或3.令x=0,则y=5,故A (1,0),B (3,0),C (0,5),所以抛物线的对称轴为直线x=12(1+3)=2.设直线BC的解析式为y BC =kx+b ,则0=3k +b ,b =5,解得k =―53,b =5,故直线BC 的解析式为y BC =-53x+5.当x=2时,y BC =53,所以点M (2,53).16.【参考答案】(1)∵y=-x 2-2x+3=-(x+1)2+4,∴把抛物线C 1:y=-x 2-2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C 2:y=-(x+1-4)2+4-5,即y=-(x-3)2-1,(3分)∴抛物线C 2的解析式为y=-(x-3)2-1.(4分)(2)不在.(5分)理由:∵抛物线C 2的解析式为y=-(x-3)2-1,∴函数的最大值为-1.(6分)∵点P 的纵坐标为1>-1,∴点P (a ,1)不在抛物线C 2上.(7分)17.【参考答案】(1)AB 边长为79+1―x 2=(40-12x )米,根据题意得S=(40-12x )x=-12x 2+40x ,(3分)∴S 与x 之间的函数关系式为S=-12x 2+40x.(4分)(2)由(1)知,S=-12x 2+40x=-12(x-40)2+800,(5分)∵-12<0,∴当x ≤40时,S 随x 的增大而增大.∵x ≤a ,a=30,∴当x=30时,S 有最大值,最大值为750.(8分)18.【参考答案】(1)0(2分)解法提示:把x=-2代入y=x 2-2|x|,得y=0,所以m=0.(2)如图所示.(4分)(3)①函数y=x 2-2|x|的图象关于y 轴对称;②当x>1时,y 随x 的增大而增大.(答案不唯一)(6分)(4)①3 3(8分)②2(9分)19.【参考答案】∵抛物线的顶点坐标为(4,4),∴设抛物线的表达式为y=a (x-4)2+4.(2分)∵抛物线过点(0,2),∴2=16a+4,∴a=-18,∴y=-18(x-4)2+4,当x=7时,y=-98+4=238≠3,∴此球不能投至篮筐中心.(4分)探究一:设向前移动h 米,由题意可得y=-18(x-4-h )2+4,代入点(7,3),得3=-18(7-4-h )2+4,解得h 1=3-22,h 2=3+22(不合题意,舍去).即向前平移(3-22)米,可投至篮筐中心.(7分)探究二:设y=m (x-4)2+4.投至篮筐中心,即代入点(7,3),得3=m (7-4)2+4,解得m=-19,∴y=-19(x-4)2+4,当x=0时,y=209,209-2=29,即小明出手的高度要增加29米,可将篮球投至篮筐中心.(10分)20.【参考答案】(1)设m=kt+b (k ≠0),将(2,96)和(3,94)代入,得2k +b =96,3k +b =94,解得k =―2,b =100,(2分)∴m 关于t 的函数解析式为m=-2t+100.(3分)(2)设日销售利润为w 元,根据题意得w=(14t+30-25)(-2t+100).(4分)化简,得w=-12t 2+15t+500.(5分)∵-12<0,对称轴为直线t=-152×(―12)=15,∴当t=15时,w 最大,此时w=-12×152+15×15+500=612.5.答:第15天的日销售利润最大,为612.5元.(6分)(3)设每天扣除捐赠后的日销售利润为n 元.根据题意,得n=(14t+30-25-a )(-2t+100)=-12t 2+(15+2a )t+100(5-a ),(7分)∵-12<0,∴抛物线开口向下,对称轴为直线t=-15+2a2×(―12)=15+2a.∵要使每天扣除捐赠后的日销售利润随时间t 的增大而增大,∴15+2a ≥20,解得a ≥2.5.又a<6,∴2.5≤a<6.(9分)答:a 的取值范围是2.5≤a<6.(10分)21.【思路导图】【参考答案】(1)∵直线y=x-3经过点B ,C ,当x=0时,y=-3,当y=0时,x=3,∴B (3,0),C (0,-3).将B ,C 两点的坐标代入y=x 2+bx+c ,得9+3b +c =0,c =―3,解得c =―3,b =―2,故二次函数的表达式为y=x 2-2x-3.(3分)(2)设M (x ,x-3),则P (x ,x 2-2x-3).①线段PM 有最大值.(4分)PM=(x-3)-(x 2-2x-3)=-(x-32)2+94.∵-1<0,∴PM 有最大值.当x=32时,PM 最大为94.(6分)②存在.(7分)PM 2=(x-3-x 2+2x+3)2=(-x 2+3x )2,PC 2=x 2+(-3-x 2+2x+3)2=x 2+(2x-x 2)2,MC 2=(x-3+3)2+x 2=2x 2.当PM=PC 时,(-x 2+3x )2=x 2+(2x-x 2)2,解得x 1=2,x 2=0(舍去),∴P(2,-3).(8分)当PM=MC时,(-x2+3x)2=2x2,解得x1=3-2,x2=0(舍去),x3=3+2(舍去),∴P(3-2,2-42)综上,点P的坐标为(2,-3)或(3-2,2-42).(11分)。
人教版九年级数学第二十二章《二次函数》单元测试题(含答案)

人教版九年级数学第二十二章《二次函数》单元测试题(含答案)(时间:100分钟 总分:120分)一、选择题(每题3分,共24分)1.下列各式中,y 是关于x 的二次函数的是 ( )A .y =4x +2B .21y ax +=C .2354y x x +=﹣D .y =21x2.把抛物线22y x =-向上平移1个单位,向右平移2个单位,得到( )A .22(1)2y x =-+-B .22(2)2y x =-++C .22(2)1y x =--D .22(2)1y x =--+ 3.抛物线()2235y x =--的顶点坐标是 ( )A .(3,5)--B .(3,5)-C .(3,5)-D .(3,5)4.二次函数2y ax bx c =++(a ≠0)中x ,y 的部分对应值如下表: x … ﹣2 ﹣1 01 2 … y … 0 ﹣4 ﹣6 ﹣6 ﹣4 …则该二次函数图象的对称轴为 ( )A .y 轴B .直线x =12C .直线x =1D .直线x =325.抛物线21y x x =--经过点(m ,3),则代数式21m m --的值为( )A .0B .1C .2D .36.已知抛物线223y x x -=--过A (-2,1y ),B (-3,2y ),C (2,3y )三点,则y 1、y 2、y 3大小关系是 ( )A .123y y y >>B .213y y y >>C .132y y y >>D .321y y y >>7.已知函数y =a 2x ﹣2ax ﹣1(a 是常数,a ≠0),下列结论正确的是( )A .若a >0,则当x ≥1时,y 随x 的增大而减小B .若a <0,则当x ≤1时,y 随x 的增大而增大C .当a =1时,函数图像过点(﹣1,1)D .当a =﹣2时,函数图像与x 轴没有交点8.如图,抛物线y =ax 2+bx +1的顶点在直线y =kx +1上,对称轴为直线x =1,有以下四个结论:①ab <0,②b <13,③a =﹣k ,④当0<x <1时,ax +b >k ,其中正确的结论是 ( )A .①②③B .①③④C .①④D .②③二、填空题(每题3分,共24分)9.抛物线y =4(x ﹣3)2+7的对称轴是直线x =_____.10.抛物线221y x x =--与y 轴的交点的坐标为________.11.已知函数()212y x =--+,当1x >时,y 随x 的增大而______(填写“增大”或“减小”).12.已知抛物线2y x bx c =++的部分图像如图所示,则方程20x bx c ++=的解是___________13.已知二次函数26y x x k =--的图象与x 轴有两个不同的交点,求k 的取值范围______.14.如图,过点D (1,3)的抛物线y =-x 2+k 的顶点为A ,与x 轴交于B 、C 两点,若点P 是y 轴上一点,则PC +PD 的最小值为____.15.已知二次函数2y ax bx c ++=的图像如图所示,则当0≤x ≤3时,函数值y 的取值范围是______.16.如图,点A 、B 的坐标分别为 ()1,4 和 ()4,4,抛物线2()y a x m n =++的顶点在线段AB 上,与x 轴交于C ,D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标的最大值为____.三、解答题(每题8分,共72分)17.已知二次函数y =x 2+bx +c ,当x =1时y =3;当x =﹣1时,y =1,求这个二次函数的解析式.18.已知二次函数223y x x =--.(1)将223y x x =--化成2()y a x h k =-+的形式;(2)写出该二次函数图象的顶点坐标.19.如图,抛物线的顶点为C (1,9),与x 轴交于A ,B (4,0)两点.(1)求抛物线的解析式;(2)抛物线与y 轴交点为D ,求BCD S △.20.已知二次函数2224y x x k =++-与x 轴有两个交点.(1)求实数k 的取值范围.(2)若此二次函数有最小值3-,求k 的值.21.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x 元,平均月销售量为y 件.(1)求出y 与x 的函数关系式.(2)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?22.平面直角坐标系xOy 中,已知抛物线y =2x +bx +c 经过(﹣1,2m +2m +1)、(0,2m +2m +2)两点,其中m 为常数.(1)求b 的值,并用含m 的代数式表示c ;(2)若抛物线y =2x +bx +c 与x 轴有公共点,求m 的值;(3)设(a ,1y )、(a +2,2y )是抛物线y =2x +bx +c 上的两点,请比较2y ﹣1y 与0的大小,并说明理由.23.如图,在平面直角坐标系中,抛物线2y ax bx =+(a≠0)经过原点,并交x轴正半轴于点A.已知OA=6,且方程29ax bx +=恰好有两个相等的实数根.(1)求该抛物线的表达式;(2)若将图象在x 轴及其上方的部分向右平移m 个单位交于点P ,B ,1B 是该图象两个顶点,若1PBB 恰好为等腰直角三角形,求m 的值.24.如图,抛物线213222y x x =-++与x 轴交于点A 、点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)求直线BD 的解析式;(3)当点P 在x 轴上运动时,直线l 交BD 于点M ,试探究m 为何值时,使得以C 、Q 、M 、D 为顶点的四边形是平行四边形.25.已知抛物线2y ax bx =+过点A (1,4)、B (3-,0),过点A 作直线AC ∥x 轴,交抛物线于另一点C ,在x 轴上有一点D (4,0),连接CD .(1)求抛物线的表达式;(2)若在抛物线上存在点Q ,使得CD 平分∠ACQ ,请求出点Q 的坐标;(3)在直线CD 的下方的抛物线上取一点N ,过点N 作NG ∥y 轴交CD 于点G ,以NG 为直径画圆在直线CD 上截得弦GH ,问弦GH 的最大值是多少?参考答案1.C .2.D .3.C .4.B .5.D .6.A .7.B .8.B .9.3.10.(01)-,.11.减小.12.11x =-或23x =13.9k >-.14.3215.13y -≤≤16.8.17.解:将点(1,3),(﹣1,1)代入函数解析式得:1311b c b c ++=⎧⎨-+=⎩ ,解得11b c =⎧⎨=⎩ ;故此函数的解析式为y =x 2+x +1.18.解:(1)223y x x =--,2214y x x =-+-,2(1)4y x=--;(2)∵二次函数顶点式为2(1)4y x=--,∴二次函数图象的顶点坐标为(14),-.19.(1)解:∵抛物线的顶点为C(1,9),∴设抛物线的解析式为y=a(x-1)2+9,∵抛物线与x轴交于点B(4,0),∴a(4-1)2+9=0,解得:a=-1,∴抛物线的解析式为y=-(x-1)2+9=-x2+2x+8;(2)解:过点C作CE⊥y轴于点E,∵抛物线与y轴交点为D,∴D(0,8),∵B(4,0),C(1,9),∴CE=1,OE=9,OD=8,OB=4,∴S△BCD= S梯形OBCE-S△ECD-S△OBD=12(1+4)×9-12×1×1-12×4×8=6.20.(1)解:∵二次函数与x轴有两个交点,∴Δ0>,即224(24)0k -->, 解得52k <.(2)解:2224y x x k =++-,整理得:2(1)25y x k =++-,∵10>,∴1x =-时,y 有最小值25k -,∵此二次函数有最小值3-,∴253k -=-,解得1k =.21.(1)解:∵单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元,设销售单价为x 元,∴3060x ≤≤, 平均月销售量为y 件,则602080220010x y x -=⨯+=-+, ∴2200y x =-+()3060x ≤≤;(2)解:设销售这种童装每月获得的利润为W ,根据题意得()30450W x y =--()30(2200)450x x =--+-222606450x x =-+-()32652000x =--+3060x ≤≤,20-<,∴W 随x 增大而增大,∴当x =60时,W 最大,最大为()22606520001950-⨯-+=(元),答:当销售单价为60元时,销售这种童装每月获得的利润最大,最大为1950元.22.(1)∵抛物线y =x 2+bx +c 经过(﹣1,m 2+2m +1)、(0,m 2+2m +2)两点,∴2212122b c m m c m m ⎧-+=++⎨=++⎩, ∴2222b c m m =⎧⎨=++⎩, 即:b =2,c =222m m ++,(2)由(1)得y =22222x x m m ++++,令y =0,得222x x m +++2m +2=0,∵抛物线与x 轴有公共点,∴∆=4﹣4(2m +2m +2)≥0,∴()21m +≤0,∵()21m +≥0,∴m +1=0,∴m =﹣1;(3)由(1)得,y =22222x x m m ++++,∵(a ,1y )、(a +2,2y )是抛物线的图象上的两点,∴221222y a a m m =++++,()()22222222y a a m m ++++++=,∴()()222221222222[]22y y a a m m a a m m +++++++++=-+⎡⎤-⎣⎦ =4(a +2)当a +2≥0,即a ≥﹣2时,210y y -≥,当a +2<0,即a <﹣2时,210y y -<.23.(1)解:6OA =,()6,0A ∴,将()6,0A 代入2y ax bx =+得:3660a b +=,解得6b a =-,26y ax x a ∴-=,方程29ax bx +=恰好有两个相等的实数根, ∴这个方程根的判别式2360b a =+∆=,即236360a a +=, 解得1a =-或0a =(不符题意,舍去), 则抛物线的解析式为26y x x =-+.(2)解:抛物线()22639y x x x =-+=--+向右平移m 个单位后的抛物线的解析式为()239y x m =---+,()()13,9,3,9B B m ∴+,1BB m ∴=, 1PBB 恰好为等腰直角三角形,∴只能是1190,BPB BP B P ∠=︒=, 如图,过点P 作1PH BB ⊥于点H ,1122m PH BH BB ∴===, 3,922m m P ⎛⎫∴+- ⎪⎝⎭, 将点3,922m m P ⎛⎫+- ⎪⎝⎭代入抛物线()239y x =--+得:2339922m m ⎛⎫-+-+=- ⎪⎝⎭, 解得2m =或0m =(不符题意,舍去), 即m 的值为2.24.(1)令y =0,则有:2132022x x -++=,解方程得:11x =-,24x =,根据图形可知:点A 的坐标为(-1,0),B 点坐标为(4,0),令x =0,则有2132222y x x =-++=,则C 点坐标为:(0,2),即点A 的坐标为(-1,0),B 点坐标为(4,0),C 点坐标为:(0,2);(2)∵C 点坐标为:(0,2),点C 与点D 关于x 轴对称,∴D 点坐标为:(0,-2),设直线BD 的解析式为y kx b =+,∵B 点坐标为(4,0),D 点坐标为:(0,-2),∴402k b b +=⎧⎨=-⎩,解得122k b ⎧=⎪⎨⎪=-⎩, ∴直线BD 的解析式为122y x =-,即直线BD 的解析式为122y x =-;(3)∵C 点坐标为:(0,2),D 点坐标为:(0,-2),∴CD =2-(-2)=4,∵根据题意有:MQ ⊥x 轴,CD ⊥x 轴,∴CD QM ∥,即当CD =QM 时,即可得以点C 、D 、M 、Q 四点围成的四边形是平行四边形, ∵P 点坐标为:(m ,0),则根据题意可知,点Q 、点P 、点M 三点的横坐标均为m ,又∵点M 在直线122y x =-上,点Q 在抛物线213222y x x =-++上, ∴设M 点坐标为:1,22m m ⎛⎫- ⎪⎝⎭,Q 点坐标为:213,222⎛⎫-++ ⎪⎝⎭m m m , ∴2213112242222MQ m m m m m ⎛⎫=-++--=-++ ⎪⎝⎭, 当CD =QM 时,即2142m m -++=4时,以点C 、D 、M 、Q 四点围成的四边形是平行四边形,分情况讨论:当24124m m -++=时,即有2102m m -+=,解得:m =2或者m =0,当m =0时,CD 与QM 重合不符合题意,舍去,即此时m =2,满足要求;当24124m m -++=-时,即有21802m m -++=, 解得:117m =+或者117m =-,综上所述:满足条件的m 值为:2,117+,117-.25.(1)∵抛物线2y ax bx =+过点A (1,4)、B (3-,0),∴4930a b a b +=⎧⎨-=⎩,解得13a b =⎧⎨=⎩,∴抛物线的表达式为23y x x =+;(2)当y =4时,234x x +=,解得14x =-,21x =,∴C 点的坐标为(4,4)C -, ∵A (1,4),∴1(4)5AC =--=,∵D (4,0),∴()()2241045AD =-+-=,过点C 作CE ∥AD ,交x 轴于E ,交二次函数于点Q ,如图1,∵CE ∥AD ,AC ∥ED ,∴四边形CEDA 是平行四边形,∵5AC AD ==,∴四边形CEDA 是菱形,∴CD 平分∠ACQ ,∴5ED AD ==,∴(1,0)E -,设直线CE 的解析式为y mx n =+,∴044m n m n -+=⎧⎨-+=⎩,解得4343m n ⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线CE 的解析式为4433y x =--,联立直线CE 与抛物线表达式成方程组,得:244333y x y x x⎧=--⎪⎨⎪=+⎩,解得1144x y =-⎧⎨=⎩,221389x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∴18(,)39Q --; (3)设直线CD 的表达式为y kx c =+,将(4,4)C -,(4,0)D 代入得:4440k c k c -+=⎧⎨+=⎩,解得:122k c ⎧=-⎪⎨⎪=⎩,∴直线CD 的表达式为122y x =-+,设2(,3)N t t t +,则1(,2)2G t t -+,∴222177812(3)2()22416NG t t t t t t =-+-+=--+=-++,∵10<-,∴当74t =-时,NG 取得最大值,最大值为8116,以NG 为直径画⊙O ',取GH 的中点F ,连接O F ',则O F CD '⊥,如图2所示,∵直线CD 的表达式为122y x =-+,NG ∥y 轴,O F CD '⊥,∴tan ´12GF GO F O F '∠==,∴22512G G F O =+',∴2552G GH GF '===,∴弦GH 的最大值为58181516=。
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试题含答案

第二十二章《二次函数》单元检测题题号 一 二 三总分 19 20 21 22 23 24分数1.下列y 关于x 的函数中,属于二次函数的是( ) A .y=x ﹣1B .y=-1xC .y=(x ﹣1)2﹣x 2D .y=﹣2x 2+12.把二次函数y =﹣14x 2﹣x +3用配方法化成y =a (x ﹣h )2+k 的形式时,应为( )A .y =﹣14(x ﹣2)2+2 B .y =﹣14(x ﹣2)2+4 C .y =﹣14(x +2)2+4 D .y =﹣(12x ﹣12)2+3 3.二次函数()2273y x =-+的图象的顶点坐标是( ) A .()7,3B .()7,3-C .()7,3-D .()7,3--4.二次函数与x 轴的交点个数是( ) A .0 B .1 C .2 D .35.将抛物线y =x 2﹣2x +3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( ) A .y =(x ﹣1)2+4 B .y =(x ﹣4)2+4 C .y =(x +2)2+6D .y =(x ﹣4)2+66.已知二次函数y=kx 2﹣6x ﹣9的图象与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1B .k >﹣1且k ≠0C .k ≥﹣1D .k ≥﹣1且k ≠07.将抛物线y =﹣3x 2平移后得到抛物线y =﹣3x 2﹣2,对此平移叙述正确的是( )A .向上平移2个单位B .向下平移2个单位C .向左平移2个单位D .向右平移2个单位8.如下表是二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值,由此可221y x x =-+以判断该二次函数的图象与x轴()x…﹣1 0 1 2 …y… 4 ﹣0.5 ﹣2 ﹣0.5 …A.只有一个公共点B.有两个公共点,分别位于y轴的两侧C.有两个公共点,都位于y轴同侧D.没有公共点9.已知二次函数y=ax2+bx﹣3(a>0)的图象与x轴的交点A的坐标为(n,0),顶点D的坐标为(m,t),若m+n=0,则t的值为()A.﹣7 B.﹣6 C.﹣5 D.﹣410.如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L2,则图中两个阴影部分的面积和为()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分) 9抛物线y=3x2+6x+11的顶点坐标为.10已知二次函数y=x2﹣2x+2,当x时,y随x的增大而增大.11已知二次函数y=(x+1)(x﹣a)的对称轴为直线x=2,则a的值是.14.抛物线y=x2﹣k的顶点为P,与x轴交于A、B两点,如果△ABP是正三角形,那么k= .15.把y=2x2﹣6x+4配方成y=a(x﹣h)2+k的形式是.16.如图,这是二次函数y=x2﹣2x﹣3的图象,根据图象可知,函数值小于0时x的取值范围为.17.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为.18.已知抛物线y=ax2+bx+c的图像如图所示,下列结论①a﹣b+c<0;②b2﹣4ac>0;③b<1;④2a+b>0;⑤a+c+1>0.正确的是.三.解答题(共46分,19题6分,20 ---24题8分)19. 已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?20. 已知抛物线的解析式是y=x2﹣(k+2)x+2k﹣2.(1)求证:此抛物线与x轴必有两个不同的交点;(2)若抛物线与直线y=x+k2﹣1的一个交点在y轴上,求该二次函数的顶点坐标.21.在平面直角坐标系中,有抛物线y=x2+1,已知点A(0,2),P(m,n)是抛物线上一动点,过O、P的直线交抛物线于点D,若AP=2AD,求直线OP的解析式.22. 如图是抛物线y=-x2+bx+c的部分图象,其中A(1,0),B(0,3).(1)求抛物线的解析式;(2)结合图象,写出当y<3时x的取值范围.23.为方便教师利用多媒体进行教学,某学校计划采购A,B两种类型的激光翻页笔.已知购买2支A型激光翻页笔和4支B型激光翻页笔共需180元;购买4支A型激光翻页笔和2支B型激光翻页笔共需210元.(1)求A,B两种类型激光翻页笔的单价.(2)学校准备采购A,B两种类型的激光翻页笔共60支,且A型激光翻页笔的数量不少于B型激光翻页笔数量的2倍,请设计出最省钱的购买方案,并说明理由.24.阅读材料,解答问题.例:用图象法解一元二次不等式:x2﹣2x﹣3>0解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.答案解析一、选择题:题号 1 2 3 4 5 6 7 8 9 10 答案 D C A B B C B B D B11已知二次函数y=(x+1)(x﹣a)的对称轴为直线x=2,则a的值是.【考点】二次函数的性质.【专题】二次函数图象及其性质;应用意识.【答案】见试题解答内容【分析】先将题目中的函数解析式化为一般形式,然后根据对称轴x=,即可求得相应的a的值.【解答】解:∵二次函数y=(x+1)(x﹣a)=x2+(﹣a+1)x﹣a,它的对称轴为直线x=2,∴﹣=2,解得,a=5,故答案为:5.12二次函数y=ax2+bx+c的图象如图所示,则关于x的不等式ax2+bx+c>0的解集为.【考点】二次函数与不等式(组).【专题】用函数的观点看方程(组)或不等式;应用意识.【答案】x>1或x<﹣3.【分析】通过函数图象和二次函数与一元二次不等式的关系直接写出结论.【解答】解:由函数图象可得,∵抛物线开口向上,与x轴的交点为(﹣3,0)和(1,0),∴关于x的不等式ax2+bx+c>0的解集为:x>1或x<﹣3.故答案为:x>1或x<﹣3.13已知二次函数y=x2+2x+n,当自变量x的取值在﹣2≤x≤1的范围内时,函数的图象与x轴有且只有一个公共点,则n的取值范围是.【考点】二次函数的性质;抛物线与x轴的交点.【专题】二次函数图象及其性质;运算能力;推理能力.【答案】n=1或﹣3≤n<0.【分析】先确定抛物线的对称轴为直线x=﹣1,若函数的图象与x轴有且只有一个公共点,利用函数图象,当x=﹣1,y=0且x=1,y≥0时,在﹣2≤x≤1的范围内时,抛物线与x轴有且只有一个公共点,即1+2+n≥0且4﹣4+n <0,解不等式组即可.【解答】解:抛物线的对称轴为直线x=﹣=﹣1,若抛物线与x轴有一个交点,则当x=﹣1,y=0;当x=1,y≥0时,在﹣2≤x≤1的范围内时,抛物线与x轴有且只有一个公共点,即1+2+n≥0且4﹣4+n<0,解得﹣3≤n<0;所以,n的取值范围是n=1或﹣3≤n<0.故答案为n=1或﹣3≤n<0.14.【分析】根据抛物线y=x2﹣k的顶点为P,可直接求出P点的坐标,进而得出OP 的长度,又因为△ABP是正三角形,得出∠OPB=30°,利用锐角三角函数即可求出OB 的长度,得出B 点的坐标,代入二次函数解析式即可求出k 的值. 【解答】解:∵抛物线y=x 2﹣k 的顶点为P , ∴P 点的坐标为:(0,﹣k ),∴PO=K ,∵抛物线y=x 2﹣k 与x 轴交于A 、B 两点,且△ABP 是正三角形, ∴OA=OB ,∠OPB=30°, ∴tan30°=OP OB =kOB, ∴OB=33k , ∴点B 的坐标为:(33k ,0),点B 在抛物线y=x 2﹣k 上, ∴将B 点代入y=x 2﹣k ,得: 0=(33k )2﹣k , 整理得:32k ﹣k=0,解方程得:k 1=0(不合题意舍去),k 2=3. 故答案为:3.【点评】此题主要考查了二次函数顶点坐标的求法,以及正三角形的性质和锐角三角函数求值问题等知识,求出A 或B 点的坐标进而代入二次函数解析式是解决问题的关键.15.解:y =2x 2﹣6x +4=2(x 2﹣3x +)﹣2×+4=2(x ﹣)2﹣. 即y =2(x ﹣)2﹣. 故答案为y =2(x ﹣)2﹣.16.如图,这是二次函数y=x2﹣2x﹣3的图象,根据图象可知,函数值小于0时x的取值范围为﹣1<x<3 .【分析】根据函数图象和二次函数的性质可以直接写出函数值小于0时x的取值范围.【解答】解:由图象可知,抛物线与x轴的两个交点时(﹣1,0),(3,0),抛物线开口向上,∴函数值小于0时x的取值范围为﹣1<x<3,故答案为:﹣1<x<3.【点评】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.17.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为y=(60﹣x)(300+20x).【分析】根据题意可以列出相应的函数关系式,本题得以解决.【解答】解:由题意可得,y=(60﹣x)(300+20x),故答案为:y=(60﹣x)(300+20x).【点评】本题考查由实际问题列二次函数关系式,解答本题的关键是明确题意,列出相应的函数关系式.18. ①②④⑤三.解答题19. 解:(1)依题意得∴∴m=0;(2)依题意得m 2﹣m ≠0, ∴m ≠0且m ≠1.20. (1)此抛物线与x 轴必有两个不同的交点;(2)(32,﹣94). 21.【答案】解:∵P (m ,n )是抛物线y =x 2+1上一动点,∴m 2+1=n ,∴m 2=4n -4,∵点A (0,2),∴AP ===n ,∴点P 到点A 的距离等于点P 的纵坐标,过点D 作DE ⊥x 轴于E ,过点P 作PF ⊥x 轴于F ,∵AP =2AD ,∴PF =2DE ,∴OF =2OE ,设OE =a ,则OF =2a ,∴×(2a )2+1=2(a 2+1),解得a =,∴a 2+1=×2+1=,∴点D 的坐标为(,),设OP 的解析式为y =kx ,则k =,解得k =,∴直线OP 的解析式为y =x .【解析】根据点P 在抛物线上用n 表示出m 2,再利用勾股定理列式求出AP ,从而得到点P 到点A 的距离等于点P 的纵坐标,过点D 作DE ⊥x 轴于E ,过点P 作PF ⊥x 轴于F ,根据AP =2AD 判断出PF =2DE ,得到OF =2OE ,设OE =a ,表示出OF =2a ,然后代入抛物线解析式并列出方程求出a 的值,再求出点D 的坐标,最后利用待定系数法求一次函数解析式解答.22. 解:(1)∵函数的图象过A (1,0),B (0,3), ∴⎩⎨⎧0=-1+b +c ,3=c , 解得⎩⎨⎧b =-2,c =3.故抛物线的解析式为y =-x 2-2x +3.(2)抛物线的对称轴为直线x =-1,且当x =0时,y =3,∴当x =-2时,y =3,故当y<3时,x的取值范围是x<-2或x>0.23.为方便教师利用多媒体进行教学,某学校计划采购A,B两种类型的激光翻页笔.已知购买2支A型激光翻页笔和4支B型激光翻页笔共需180元;购买4支A型激光翻页笔和2支B型激光翻页笔共需210元.(1)求A,B两种类型激光翻页笔的单价.(2)学校准备采购A,B两种类型的激光翻页笔共60支,且A型激光翻页笔的数量不少于B型激光翻页笔数量的2倍,请设计出最省钱的购买方案,并说明理由.【考点】二元一次方程组的应用;一元一次不等式的应用;一次函数的应用.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;一次函数及其应用;应用意识.【答案】(1)购买一支A型激光翻页笔需要40元,购买一支B型激光翻页笔需要25元;(2)当购买A型激光翻页笔40支,则购买B型激光翻页笔20支时最省钱.【分析】(1)设购买一支A型激光翻页笔需要a元,购买一支B型激光翻页笔需要b元,根据“购买2支A型激光翻页笔和4支B型激光翻页笔共需180元;购买4支A型激光翻页笔和2支B型激光翻页笔共需210元”,即可得出关于a,b的二元一次方程组,解之即可得出结论;(2)设购买A型激光翻页笔x支,则购买B型激光翻页笔(60﹣x)支,根据“A型激光翻页笔的数量不少于B型激光翻页笔数量的2倍”列不等式求出x的取值范围;设购买两种类型的激光翻页笔的总费用为w元,根据题意得出w与x的关系式,再根据一次函数的性质解答即可.【解答】解:(1)设购买一支A型激光翻页笔需要a元,购买一支B型激光翻页笔需要b元,根据题意,得,解得,答:购买一支A型激光翻页笔需要40元,购买一支B型激光翻页笔需要25元;(2)设购买A型激光翻页笔x支,则购买B型激光翻页笔(60﹣x)支,设购买两种类型的激光翻页笔的总费用为w元,根据题意,得x≥2(60﹣x),解得x≥40,根据题意,可得w=40x+25(60﹣x)=15x+1500,∵15>0,且w是x的一次函数,∴w随x的增大而增大,∴当x=40时,w取最小值,此时60﹣x=20,答:当购买A型激光翻页笔40支,则购买B型激光翻页笔20支时最省钱.24.阅读材料,解答问题.例:用图象法解一元二次不等式:x2﹣2x﹣3>0解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.【考点】图象法求一元二次方程的近似根.【专题】阅读型.【答案】见试题解答内容【分析】(1)由x2﹣2x﹣3=0得x1=﹣1,x2=3,抛物线y=x2﹣2x﹣3开口向上,y>0时,图象在x轴的上方,此时x<﹣1或x>3;(2)仿照(1)的方法,画出函数y=x2﹣1的图象,找出图象与x轴的交点坐标,根据图象的开口方向及函数值的符号,确定x的范围.【解答】解:(1)x<﹣1或x>3;(2)设y=x2﹣1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣1=0,解得x1=﹣1,x2=1.∴由此得抛物线y=x2﹣1的大致图象如图所示.观察函数图象可知:当x<﹣1或x>1时,y>0.∴x2﹣1>0的解集是:x<﹣1或x>1.。