用电压比较器的原理及作用介绍

合集下载

电压比较器的原理及作用介绍

电压比较器的原理及作用介绍

电压⽐较器的原理及作⽤介绍电压⽐较器是集成运放⾮线性应⽤电路,他常⽤于各种电⼦设备中,那么什么是电压⽐较器呢?它将⼀个模拟量电压信号和⼀个参考固定电压相⽐较,在⼆者幅度相等的附近,输出电压将产⽣跃变,相应输出⾼电平或低电平。

⽐较器可以组成⾮正弦波形变换电路及应⽤于模拟与数字信号转换等领域。

电压⽐较器的作⽤它可⽤作模拟电路和数字电路的接⼝,还可以⽤作波形产⽣和变换电路等。

利⽤简单电压⽐较器可将正弦波变为同频率的⽅波或矩形波。

简单的电压⽐较器结构简单,灵敏度⾼,但是抗⼲扰能⼒差,因此⼈们就要对它进⾏改进。

改进后的电压⽐较器有:滞回⽐较器和窗⼝⽐较器。

运放,是通过反馈回路和输⼊回路的确定“运算参数”,⽐如放⼤倍数,反馈量可以是输出的电流或电压的部分或全部。

⽽⽐较器则不需要反馈,直接⽐较两个输⼊端的量,如果同相输⼊⼤于反相,则输出⾼电平,否则输出低电平。

电压⽐较器输⼊是线性量,⽽输出是开关(⾼低电平)量。

⼀般应⽤中,有时也可以⽤线性运算放⼤器,在不加负反馈的情况下,构成电压⽐较器来使⽤。

简单的电压⽐较器结构简单,灵敏度⾼,但是抗⼲扰能⼒差,因此我们就要对它进⾏改进。

改进后的电压⽐较器有:滞回⽐较器和窗⼝⽐较器。

运放,是通过反馈回路和输⼊回路的确定“运算参数”,⽐如放⼤倍数,反馈量可以是输出的电流或电压的部分或全部。

⽽⽐较器则不需要反馈,直接⽐较两个输⼊端的量,如果同相输⼊⼤于反相,则输出⾼电平,否则输出低电平。

电压⽐较器输⼊是线性量,⽽输出是开关(⾼低电平)量。

⼀般应⽤中,有时也可以⽤线性运算放⼤器,在不加负反馈的情况下,构成电压⽐较器来使⽤。

可⽤作电压⽐较器的芯⽚:所有的运算放⼤器。

常见的有LM324 LM358 uA741 TL081\2\3\4 OP07 OP27,这些都可以做成电压⽐较器(不加负反馈)。

LM339、LM393是专业的电压⽐较器,切换速度快,延迟时间⼩,可⽤在专门的电压⽐较场合,其实它们也是⼀种运算放⼤器。

比较器工作原理及应用

比较器工作原理及应用

比较器工作原理及应用比较器通常由一个差分放大器和一个阈值电平产生器组成。

差分放大器接收两个输入信号:一个是待比较的信号,另一个是阈值电平。

差分放大器会将比较信号与阈值电平相减,输出一个差值。

如果差值为正值,则比较信号较大;如果差值为负值,则比较信号较小;如果差值为零,则说明两个信号相等。

根据差值的正负性,比较器会输出对应的逻辑电平。

比较器有许多不同的类型,其中最常见的类型是电压比较器、窗口比较器和比例比较器。

1.电压比较器:电压比较器是最基本的比较器类型,用于将两个输入电压进行比较,并将比较结果表示为高电平或低电平输出。

电压比较器通常用于比较模拟信号的大小,并将其转化为数字信号。

2.窗口比较器:窗口比较器是一种特殊的比较器,它可以比较一个输入信号是否在一个预定的范围内。

窗口比较器有两个阈值,用于定义一个上限和一个下限。

如果输入信号超出了这个范围,则比较器会输出一个逻辑电平表示超出范围。

3.比例比较器:比例比较器是一种特殊的比较器,用于比较两个输入信号的比例关系。

比例比较器通常用于模拟信号的比较,如音频信号的比较。

比较器在现代电子系统中有广泛的应用。

以下是一些比较器的应用领域:1.模数转换器:比较器常用于模数转换器(ADC)中,将模拟信号转换为数字信号。

模数转换器使用比较器来比较输入信号与参考电压的大小,并将比较结果表示为数字编码。

2.电压参考源:比较器可以用于生成稳定的参考电压。

通过比较输入信号与参考电压,比较器可以产生一个恒定的电压输出,用作系统中其他电路的参考电压。

3.触发器:比较器可以用于产生触发器信号,用于控制系统中的时钟和触发信号。

比较器可以比较输入信号与阈值电平,并在输入信号超过或低于阈值时产生一个触发信号。

4.门电路:比较器也可以用于实现门电路,如与门、或门和非门等。

比较器可以比较输入信号的大小,并产生一个逻辑电平作为输出。

总之,比较器是一种基本的电子设备,用于比较信号大小,并将结果表示为逻辑电平。

为什么电路中要使用比较器

为什么电路中要使用比较器

为什么电路中要使用比较器在电路设计中,比较器(Comparator)是一种非常重要的元件,它用于比较两个电压信号的大小。

在实际应用中,我们经常会遇到需要对电压进行比较的情况,比如判断电压是否达到某个设定值、比较两个电压信号的大小等。

而比较器正是为了满足这些需求而设计的。

本文将详细介绍为什么在电路中要使用比较器,以及比较器的原理和应用。

1. 比较器的作用及原理比较器是一种基础的电子元件,其作用是通过比较两个输入电压的大小并输出相应的信号。

比较器通常包含一个或多个放大器级联以及一个电平转换电路。

当其中一个输入电压大于另一个输入电压时,比较器输出高电平;反之,输出低电平。

比较器的原理基于放大器的开环特性,即放大器的输出与输入之间的关系不受反馈控制,可以实现较大的放大倍数。

比较器一般使用差动放大器的输出作为输入,通过放大信号之间的差异来实现比较功能。

2. 比较器的优点使用比较器在电路中有以下几个优点:2.1 提供准确的比较结果比较器能够快速、准确地比较输入信号的大小,输出相应的比较结果。

这对于需要实时判断电压大小的场合非常重要,比如电压检测、开关控制等。

通过比较器,我们可以在电路中实现对信号的精确控制。

2.2 具有高增益和低偏移电流比较器内部一般采用放大器级联,可以获得较高的增益,使得输入信号更容易被检测出来。

同时,比较器的输入级通常采用差动放大器结构,能够抑制共模干扰。

此外,比较器的输出具有较低的偏移电流,从而可以减少对电路整体性能的影响。

2.3 高速响应能力比较器的响应速度非常快,通常在纳秒级别。

这使得它在需要快速判断的应用中得到广泛应用,比如开关控制、脉冲测量等。

比较器能够在很短的时间内完成信号的比较,并将结果输出给其他部件。

3. 比较器的应用领域比较器在电路设计中的应用非常广泛,以下是一些常见的应用领域:3.1 电压检测比较器可以用于判断电压是否达到预设的阈值,并输出相应的信号进行处理。

例如,在电源管理中,我们可以使用比较器来监测电池电压是否低于一定的阈值,从而实现电池电量的监控和报警。

比较器工作原理及应用

比较器工作原理及应用

电压比较器以下简称比较器是一种常用的集成电路;它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等;本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器;什么是电压比较器简单地说, 电压比较器是对两个模拟电压比较其大小也有两个数字电压比较的,这里不介绍,并判断出其中哪一个电压高,如图1所示;图1a是比较器,它有两个输入端:同相输入端“+”端及反相输入端“-”端,有一个输出端Vout输出电平信号;另外有电源V+及地这是个单电源比较器,同相端输入电压VA,反相端输入VB;VA和VB的变化如图1b所示;在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB;在这种情况下,Vout的输出如图1c 所示:VA>VB时,Vout输出高电平饱和输出;VB>VA时,Vout输出低电平;根据输出电平的高低便可知道哪个电压大;如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1b所示,则Vout输出如图1d所示;与图1c比较,其输出电平倒了一下;输出电平变化与VA、VB的输入端有关;图2a是双电源正负电源供电的比较器;如果它的VA、VB 输入电压如图1b那样,它的输出特性如图2b所示;VB>VA时,Vout 输出饱和负电压;如果输入电压VA与某一个固定不变的电压VB相比较,如图3a所示;此VB称为参考电压、基准电压或阈值电压;如果这参考电压是0V地电平,如图3b所示,它一般用作过零检测;比较器的工作原理比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路;由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路;图4a由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF 为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB 及4个电阻的关系式为:Vout=1+RF/R1·R3/R2+R3VA-RF/R1VB;若R1=R2,R3=RF,则Vout=RF/R1VA-VB,RF/R1为放大器的增益;当R1=R2=0相当于R1、R2短路,R3=RF=∞相当于R3、RF开路时,Vout=∞;增益成为无穷大,其电路图就形成图4b的样子,差分放大器处于开环状态,它就是比较器电路;实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大;从图4中可以看出,比较器电路就是一个运算放大器电路处于开环状态的差分放大器电路;同相放大器电路如图5所示;如果图5中RF=∞,R1=0时,它就变成与图3b一样的比较器电路了;图5中的Vin相当于图3b中的VA;比较器与运放的差别运放可以做比较器电路,但性能较好的比较器比通用运放的开环增益更高,输入失调电压更小,共模输入电压范围更大,压摆率较高使比较器响应速度更快;另外,比较器的输出级常用集电极开路结构,如图6所示,它外部需要接一个上拉电阻或者直接驱动不同电源电压的负载,应用上更加灵活;但也有一些比较器为互补输出,无需上拉电阻;这里顺便要指出的是,比较器电路本身也有技术指标要求,如精度、响应速度、传播延迟时间、灵敏度等,大部分参数与运放的参数相同;在要求不高时可采用通用运放来作比较器电路;如在A/D变换器电路中要求采用精密比较器电路;由于比较器与运放的内部结构基本相同,其大部分参数电特性参数与运放的参数项基本一样如输入失调电压、输入失调电流、输入偏置电流等;比较器典型应用电路这里举两个简单的比较器电路为例来说明其应用;1.散热风扇自动控制电路一些大功率器件或模块在工作时会产生较多热量使温度升高,一般采用散热片并用风扇来冷却以保证正常工作;这里介绍一种极简单的温度控制电路,如图7所示;负温度系数NTC热敏电阻RT粘贴在散热片上检测功率器件的温度散热片上的温度要比器件的温度略低一些,当5V电压加在RT及R1电阻上时,在A点有一个电压VA;当散热片上的温度上升时,则热敏电阻RT的阻值下降,使VA上升;RT 的温度特性如图8所示;它的电阻与温度变化曲线虽然线性度并不好,但是它是单值函数即温度一定时,其阻值也是一定的单值;如果我们设定在80℃时应接通散热风扇,这80℃即设定的阈值温度TTH,在特性曲线上可找到在80℃时对应的RT的阻值;R1的阻值是不变的它安装在电路板上,在环境温度变化不大时可认为R1值不变,则可以计算出在80℃时的VA值;R2与RP组成分压器,当5V电源电压是稳定电压时电压稳定性较好,调节RP可以改变VB的电压电位器中心头的电压值;VB 值为比较器设定的阈值电压,称为VTH;设计时希望散热片上的温度一旦超过80℃时接通散热风扇实现散热,则VTH的值应等于80℃时的K值;一旦VA>VTH,则比较器输出低电平,继电器K吸合,散热风扇直流电机得电工作,使大功率器件降温;VA、VTH电压变化及比较器输出电压Vout的特性如图9所示;这里要说清楚的是在VA开始大于VTH时,风扇工作,但散热体有较大的热量,要经过一定时问才能把温度降到80℃以下;从图7可看出,要改变阈值温度TTH十分方便,只要相应地改变VTH值即可;VTH值增大,TTH增大;反之亦然,调整十分方便;只要RT确定,RT的温度特性确定,则R1、R2、RP可方便求出设流过RT、R1及R2、RP的电流各为0.1~0.5mA;2.窗口比较器窗口比较器常用两个比较器组成双比较器,它有两个阈值电压VTHH高阈值电压及VTHL低阈值电压,与VTHH及VTHL比较的电压VA输入两个比较器;若VTHL≤VA≤VTHH,Vout输出高电平;若VA<VTHL,VA>VTHH,则Vout输出低电平,如图10所示;图10是一个冰箱报警器电路;冰箱正常工作温度设为0~5℃,0℃到5℃是一个“窗口”,在此温度范围时比较器输出高电平表示温度正常;若冰箱温度低于0V或高于5℃,则比较器输出低电平,此低电平信号电压输入微控制器μC作报警信号;温度传感器采用NTC热敏电阻RT,已知RT在0℃时阻值为333.1kΩ;5℃时阻值为258.3kΩ,则按1.5V工作电压及流过R1、RT的电流约1.5 uA,可求出R1的值;R1的值确定后,可计算出0℃时的VA值为0.5V按图10中R1=665kΩ时,5℃时的VA值为0.42V,则VTHL=0.42V,VTHH=0.5V;若设R2=665kΩ,则按图11,可求出流过R2、R3、R4电阻的电流I=1.5V-0.5V/665kΩ=0.0015mA,按R4×I/=0.42V,可求出R4=280kΩ再按0.5V=R3+R40.0015mA,则可求出R3=53.3kΩ;本例中两个比较器采用低工作电压、低功耗、互补输出双比较器LT1017,无需外接上拉电阻;。

cmos电压比较器工作原理

cmos电压比较器工作原理

cmos电压比较器工作原理CMOS电压比较器作为一种常见的电子电路元件,广泛应用于模拟电路和数字电路中。

它主要用于比较两个电压信号的大小,并根据比较结果产生输出。

本文将详细介绍CMOS电压比较器的工作原理,从输入端、比较器电路、输出以及工作过程等方面加以说明,以帮助读者更好地理解和应用CMOS电压比较器。

一、输入端:CMOS电压比较器的输入端主要包括正向输入端(+IN)和反向输入端(-IN)。

+IN和-IN分别接收待比较的两个电压信号。

在比较器工作过程中,电压信号较大的输入端通常被连接为正向输入端,而电压信号较小的输入端则连接为反向输入端。

比较器根据这两个输入端的电压差异来判断两个输入信号的大小。

二、比较器电路:CMOS电压比较器的核心是比较器电路,它根据输入信号的电压差异来产生输出结果。

比较器电路一般由多个晶体管和电阻器组成。

例如,一个常见的CMOS电压比较器电路是由两个互补MOS(CMOS)晶体管构成,分别是P型MOS晶体管和N型MOS晶体管。

这两个晶体管通过控制电压的变化来实现电压比较和输出的切换。

CMOS电压比较器的输出主要有两种状态,即高电平和低电平。

输出根据输入信号的电压差异来切换状态。

当+IN电压大于-IN电压时,输出为高电平;当+IN电压小于-IN电压时,输出为低电平。

输出信号可被进一步使用于数字电路中的逻辑电路或模拟电路中的信号处理。

假设我们有一个CMOS电压比较器,输入端的+IN接收一个电压信号Vin=3V,而-IN接收一个电压信号Vin'=2V。

在这种情况下,比较器电路将根据这两个输入信号的差异来产生输出。

由于Vin大于Vin',所以比较器的输出为高电平。

如果Vin=2V,Vin'=3V,那么比较器的输出将会是低电平。

四、工作过程:CMOS电压比较器的工作过程可以分为下述几个步骤:1.输入阶段:输入信号通过正向和反向输入端输入到比较器电路中。

2.比较阶段:比较器电路根据输入信号的电压差异进行比较,并判断电压的大小关系。

集成运算放大器构成的电压比较器——厦门大学电子实验报告

集成运算放大器构成的电压比较器——厦门大学电子实验报告

实验十集成运算放大器构成的电压比较器一、实验目的1.掌握电压比较器的模型及工作原理2.掌握电压比较器的应用二、实验原理电压比较器主要用于信号幅度检测——鉴幅器;根据输入信号幅度决定输出信号为高电平或低电平;或波形变换;将缓慢变化的输入信号转换为边沿陡峭的矩形波信号。

常用的电压比较器为:单限电压比较器;施密特电压比较器窗口电压比较器;台阶电压比较器。

下面以集成运放为例,说明构成各种电压比较器的原理1.集成运算放大器构成的单限电压比较器:由于理想集成运放在开环应用时,A V→∞、R i→∞、R o→0;则当V i<E R时,V O=V OH;反之,当V i>E R时,V O=V OL;由于输出与输入反相,故称之为反相单限电压比较器;通过改变E R值,即可改变转换电平V T(V T≈E R);当E R=0时,电路称为“过零比较器”。

同理,将V i与E R对调连接,则电路为同相单限电压比较器。

2.集成运算放大器构成的施密特电压比较器:当V o=V OH时,V+1=VT+=R2R2+R3V OH+R3R2+R3E R;V T+称上触发电平;当V o=V OL时,V+2=V T−=R2R2+R3V OL+R3R2+R3E R;V T-称为下触发电平;回差电平:∆V T=V T+−V T−;当V i从足够低往上升,若V i>V T+时,则V o由V OH翻转为V OL;当V i从足够高往下降,若V i<V T-时,则V o由V OL翻转为V OH;三、实验仪器1.示波器1台2.函数信号发生器1台3.数字万用表1台4.多功能电路实验箱1台四、实验内容1.单限电压比较器:(1)按图1(a)搭接电路,其中R1=R2=10kΩ,E R由实验箱提供;(2)观察图1(a)电路的电压传输特性曲线电压传输特性曲线的测量方法:用缓慢变化信号(正弦、三角)作V I(V IP-P=15V.f=200Hz),将V I=接示波器X输入,V O接示波器Y输入,令示波器工作在外扫描方式(X-Y),观察电压传输特性曲线。

如何正确使用比较器实现电压比较

如何正确使用比较器实现电压比较比较器是一种常用的电子元件,可用于比较电压大小,并将结果以数字信号的形式输出。

在电路设计和控制系统中,正确使用比较器可以实现电压比较的功能,为我们提供准确的判断和控制依据。

本文将介绍如何正确使用比较器实现电压比较,并提供一些实际应用的案例。

1. 比较器基本原理比较器是一种可将输入电压与参考电压进行比较,并输出高低电平信号的电子元件。

一般而言,比较器有一个非反馈输入端和一个反馈输入端,通过比较两个输入端的电压大小,输出端将产生相应的电平信号。

当非反馈输入电压大于反馈输入电压时,输出端产生高电平信号;当反馈输入电压大于非反馈输入电压时,输出端产生低电平信号。

2. 使用比较器实现电压比较要正确使用比较器实现电压比较,需注意以下几个关键要点:2.1 选取合适的比较器在选择比较器时,需根据应用的具体要求来确定哪种类型的比较器最适合。

常见的比较器有开关型比较器和放大型比较器两种。

开关型比较器速度快,但精度相对较低,适用于一些简单的比较应用;放大型比较器精度高,但速度较慢,适用于较为复杂的比较和控制任务。

2.2 设置参考电压比较器需要一个参考电压来进行电压比较。

我们可以通过外部电阻分压,或使用内置的参考电压源来设置合适的参考电压。

根据应用需要,选择合适的参考电压值,并正确连接至比较器的反馈输入端。

2.3 连接输入信号将需要进行比较的电压信号连接至比较器的非反馈输入端。

注意,输入信号的电压范围应在比较器的工作电压范围之内,避免损坏比较器。

2.4 设置输出电平根据应用的需要,合理设置比较器的输出电平。

一般可通过连接一个电阻和电源,将输出引脚连接至所需的电平,用于后续的判断和控制。

3. 比较器实际应用案例比较器在实际应用中有着广泛的用途,以下是两个常见的比较器应用案例:3.1 温度控制系统比较器可用于温度控制系统中的温度检测和控制。

通过将传感器测得的温度信号与预设的温度阈值进行比较,当温度超过或低于设定值时,比较器输出相应的控制信号,触发温度控制装置进行相应的操作,以实现温度的控制和调节。

快来看看电压比较器的电路构成、原理框图及引脚功能

快来看看电压比较器的电路构成、原理框图及引脚功

首先,电压比较器它可用作模拟电路和数字电路的接口,其次还可以用作波形产生和变换电路等。

利用简单电压比较器可将正弦波变为同频率的方波或矩形波。

电压比较器是对输入信号进行鉴别与比较的电路,是组成非正弦波发生电路的基本单元电路。

常用的电压比较器有单限比较器、滞回比较器、窗口比较器、三态电压比较器等。

 电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。

电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):当”+”输入端电压高于”-”输入端时,电压比较器输出为高电平;当”+”输入端电压低于”-”输入端时,电压比较器输出为低电平;可工作在线性工作区和非线性工作区。

工作在线性工作区时特点是虚短,虚断;工作在非线性工作区时特点是跳变,虚断;由于比较器的输出只有低电平和高电平两种状态,所以其中的集成运放常工作在非线性区。

从电路结构上看,运放常处于开环状态,又是为了使比较器输出状态的转换更加快速,以提高响应速度,一般在电路中接入正反馈。

 电压比较器的原理框图及其引脚功能
 电压比较器内部含输入级、中间放大器和输出级电路,我们需要掌握的是输入端和输出端之间的关系,由此分析电路原理和找到故障检测方法。

如前述,运算放大器开环应用时,即为(不太精确的)电压比较器。

但放大器的比较特性并不理想,专业的设计和专业的性能需要由专业器件来保障,在应用到电压比较器的场所,大多还是采用专用的电压比较器。

其中,集电极开。

比较器的基本原理及应用

一、若ui从同相端输入
+
+
uo
ui
UR
uo
ui
0
+Uom
-Uom
UR
当ui < UR时 , uo = +Uom 当ui >UR时 , uo = -Uom
二、 若ui从反相端输入
uo
ui
0
+UOM
-UOM
+
+
uo
ui
三、过零比较器: (UR =0时)
+
+
uo
ui
uo
ui
0
+UOM
-UOM
ui
uo
t
t
10V
5V
0
0
2V

+
+
uo
R
R2
R1
ui

+
+
uo
R
R2
R1
ui
3、上行迟滞比较器
没加参考电压的 上行迟滞比较器
加上参考电压后的 上行迟滞比较器
设R1 =R2,则有:
当vI>VH时,vO1为高电平,D3导通;vO2为低电平, D4截止,vO= vO1。
当vI< VL时,vO2为高 电平,D4导通;vO1为低 电平,D3截止,vO= vO2
1. 虚短路不成立。 2. 输入电阻仍可以认为很大。 3. 输出电阻仍可以认为是0。
若有负反馈,则运放工作在线性区; 若无负反馈,或有正反馈,则运放工作在非线性区。
确定运放工作区的方法:判断电路中有无负反馈。
处于非线性状态运放的特点:
常用的幅度比较电路有电压幅度比较器、窗口比较器和具有滞回特性的施密特触发器。这些比较器的阈值是固定的,有的只有一个阈值,有的具有两个阈值。

比较器判断微小电压差异

比较器判断微小电压差异比较器判断微小电压差异比较器是一种广泛应用于电子电路中的器件,它可以用来判断两个电压的大小关系,并输出相应的逻辑信号。

在许多应用中,比较器被用来检测微小电压差异,即判断两个非常接近的电压值之间的大小关系。

本文将介绍比较器的工作原理、常见类型以及在微小电压差异判断中的应用。

一、比较器的工作原理比较器是由一个差分放大器和一组电压参考电路组成的。

其基本原理是将两个输入端的电压进行比较,然后输出一个逻辑电平,表示两者的大小关系。

差分放大器是比较器的核心部分,它由一个放大器和一个差分电路组成。

放大器将输入信号放大,并将放大后的信号与参考电压进行比较,产生输出信号。

二、常见的比较器类型1. 开环比较器开环比较器的输出是一个逻辑电平,表示输入电压的大小关系。

它具有高速度、高增益和低功耗的优点。

常见的开环比较器有晶体管比较器和运算放大器比较器。

晶体管比较器是最简单的一种比较器,它由一个PN结晶体管、电阻和电源组成。

它的输出电平取决于输入电压与参考电压的大小关系。

运算放大器比较器是使用运算放大器作为比较器的一种方法。

它可以通过负反馈调节增益,使输入电压与参考电压之间的微小差异得到放大,并产生高、低电平输出。

2. 闭环比较器闭环比较器具有更高的精确度和稳定性。

它通过反馈调节输入电阻,使得输入电压与参考电压之间的微小差异被放大,从而实现精确的比较。

常见的闭环比较器有零漂比较器和窗口比较器。

零漂比较器可以消除温度、工艺等因素引起的偏移,提高比较的准确性。

窗口比较器可以同时判断两个阈值范围内的电压信号,适用于多电平比较。

三、比较器在微小电压差异判断中的应用由于比较器具有高精度和高灵敏度的特点,它被广泛应用于对微小电压差异的判断。

1. 温度传感器温度传感器通过感知温度变化产生微小的电压差异,并利用比较器判断这些差异是否超过预设阈值,从而实现对温度变化的判断。

2. 压力传感器压力传感器同样可以通过感知微弱的压力变化产生微小电压差异,并利用比较器进行判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种常用电压比较器的原理及作用介绍
几种常用电压比较器的原理及作用介绍
电压比较器简称比较器,其基本功能是对两个输入电压进行比较,并根据比较结果输出高电平或低电平电压,据此来判断输入信号的大小和极性。

电压比较器常用于自动控制、波形产生与变换,模数转换以及越限报警等许多场合。

电压比较器通常由集成运放构成,与普通运放电路不同的是,比较器中的集成运放大多处于开环或正反馈的状态。

只要在两个输入端加一个很小的信号,运放就会进入非线性区,属于集成运放的非线性应用范围。

在分析比较器时,虚断路原则仍成立,虚短及虚地等概念仅在判断临界情况时才适应。

下面分别介绍几个种类电压比较器作用。

一、零电平比较器(过零比较器)
电压比较器是将一个模拟输入信号ui与一个固定的参考电压UR进行比较和鉴别的电路。

参考电压为零的比较器称为零电平比较器。

按输入方式的不同可分为反相输入和同相输入两种零电位比较器,如图1(a)、(b)所示
图1 过零比较器
(a)反相输入;(b)同相输入
通常用阈值电压和传输特性来描述比较器的工作特性。

阈值电压(又称门槛电平)是使比较器输出电压发生跳变时的输入电压值,简称为阈值,用符号UTH表示。

估算阈值主要应抓住输入信号使输出电压发生跳变时的临界条件。

这个临界条件
是集成运放两个输入端的电位相等(两个输入端的电流也视为零),即U+=U–。

对于图1(a)电路,U–=Ui, U+=0, UTH=0。

传输特性是比较器的输出电压uo与输入电压ui在平面直角坐标上的关系。

画传输特性的一般步骤是:先求阈值,再根据电压比较器的具体电路,分析在输入电压由最低变到最高(正向过程)和输入电压由最高到最低(负向过程)两种情况下,输出电压的变化规律,然后画出传输特性。

二、任意电平比较器(俘零比较器)
将零电平比较器中的接地端改接为一个参考电压UR(设为直流电压),由于UR的大小和极性均可调整,电路成为任意电平比较器或称俘零比较器。

图2 任意电平比较器及传输特性
(a)任意电平比较器;(b)传输特性
图3 电平检测比较器信传输特性
(a)电平检测比较器;(b)传输特性
电平电压比较器结构简单,灵敏度高,但它的抗干扰能力差。

也就是说,如果输入信号因干扰在阈值附近变化时,输出电压将在高、低两个电平之间反复地跳变,可能使输出状态产生误动作。

为了提高电压比较器的抗干扰能力,下面介绍有两个不同阈值的滞回电压比较器。

三、滞回电压比较器
滞回比较器又称施密特触发器,迟滞比较器。

这种比较器的特点是当输入信号ui 逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。

滞回比较器也有反相输入和同相输入两种方式。

UR是某一固定电压,改变UR值能改变阈值及回差大小。

以图4(a)所示的反相滞回比较器为例,计算阈值并画出传输特性
图4 滞回比较器及其传输特性
(a)反相输入;(b)同相输入
1,正向过程
正向过程的阈值为
形成电压传输特性的abcd段
2,负向过程
负向过程的阈值为
形成电压传输特性上defa段。

由于它与磁滞回线形状相似,故称之为滞回电压比较器。

利用求阈值的临界条件和叠加原理方法,不难计算出图4(b)所示的同相滞回比较器的两个阈值
两个阈值的差值ΔUTH=UTH1–UTH2称为回差。

由上分析可知,改变R2值可改变回差大小,调整UR可改变UTH1和UTH2,但不影响回差大小。

即滞回比较器的传输特性将平行右移或左移,滞回曲线宽度不变。

图5 比较器的波形变换
(a)输入波形;(b)输出波形
例如,滞回比较器的传输特性和输入电压的波形如图6(a)、(b)所示。

根据传输特性和两个阈值(UTH1=2V, UTH2=–2V),可画出输出电压uo的波形,如图6(c)所示。

从图(c)可见,ui在UTH1与UTH2之间变化,不会引起uo的跳变。

但回差也导致了输出电压的滞后现象,使电平鉴别产生误差。

图6 说明滞回比较器抗干扰能力强的图
(a)已知传输特性;(b)已知ui 波形;
(c)根据传输特性和ui波形画出的uo波形
四、窗口电压比较器
电平比较器和滞回比较器有一个共同特点,即ui单方向变化(正向过程或负向过程)时,uo只跳变一次。

只能检测一个输入信号的电平,这种比较器称为单限比较器。

双限比较器又称窗口比较器。

它的特点是输入信号单方向变化(例如ui 从足够低单调升高到足够高),可使输出电压uo跳变两次,其传输特性
如图7(b)所示,它形似窗口,称为窗口比较器。

窗口比较器提供了两个阈值和两种输出稳定状态可用来判断ui 是否在某两个电平之间。

图7 窗口比较器电路及传输特性。

相关文档
最新文档