磁场小结
大学物理-磁学习题课和答案解析

2. 均匀磁场的磁感应强度 B 垂直于半径为r的圆面.今
4. 如图,在面电流线密度为 j 的均匀载流无限大平板附近, 有一载流为 I 半径为 R的半圆形刚性线圈,其线圈平面与载流 大平板垂直.线圈所受磁力矩为 ,受力 0 0 为 .
μ
5、(本题3分) 长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体 中有等值反向均匀电流I通过,其间充满磁导率为μ的均匀磁介 质.介质中离中心轴距离为r的某点处的磁场强度的大小H I =________________ ,磁感强度的大小B =__________ . I 2 r 2 r
B (A) B (B) √ R B x (D) O 圆筒 电流 O x
B
0 I (r R) 2r
(r R)
O B
R
x O (C) x O
B
(E)
B0
O
R
R
x
R
x
2、(本题3分)一匀强磁场,其磁感强度方向垂直于纸面(指 向如图),两带电粒子在该磁场中的运动轨迹如图所示,则 (A) 两粒子的电荷必然同号. (B) 粒子的电荷可以同号也可以异号. (C) 两粒子的动量大小必然不同. (D) 两粒子的运动周期必然不同.
(C) B dl B dl , BP BP 1 2
(D) B dl B dl , BP1 BP2
L1 L2
L1
L2
L1
L2
[ ]
5.有一矩形线圈 AOCD ,通以如图示方向的电流 I,将它置 于均匀磁场 B 中,B 的方向与X轴正方向一致,线圈平面与X 轴之间的夹角为 , 90 .若AO边在OY轴上,且线圈可 绕OY轴自由转动,则线圈 (A)作使 角减小的转动. (B)作使 角增大的转动. (C)不会发生转动. (D)如何转动尚不能判定.
单边界和双边界有界磁场

§3.6 带电粒子在匀强磁场中的运动
有界磁场分析基本方法:
1.定圆心,画轨迹
已知两个速度方向: 可分别做垂线,其交点是圆心。 已知入射方向和出射点的位置: 过入射点作入射方向的垂线, 连接入射点和出射点,作中垂线, 交点是圆心。
O
V M P O M P V
V0
2.找半径: 求时间: 2m t= T qB
入射角1500时
300 2m 5m t 360 qB 3qB
入射角1800时
2m t T qB
例1:如图所示,在y<0的区域内存在匀强磁场, 磁场方向如图,磁感应强度为B。一带正电的粒 子以速度v从O点射入磁场,入射方向在xoy平面 内,与x轴正向的夹角为θ。若粒子射出磁场的位 置与O点的距离为L,求该粒子的比荷q/m。
几何关系求半径 公式求半径
q T qm qB 2
带电粒子在直线边界磁场中的运动
小结:当带电粒子从同一边界入射、出射时,速度 与边界夹角相同 ——对称性
入射角300时
60 2m m t 360 qB 3qB
入射角900时
180 2m m t 360 qB qB
例2:长为L的水平极板间,有垂直纸面向内的匀强磁 场,如图所示,磁场强度为B,板间距离也为L,板不 带电,现有质量为m,电量为q的带负电粒子(不计重 力),从左边极板间中点处垂直磁场以速度v平行极板 射入磁场,欲使粒子不打在极板上,则粒子入射速度 v 应满足什么条件?
m -q
v
L
B
L
vபைடு நூலகம்
R1
O
思考:如图所示,一束电子以速度v垂直射入磁 感应强度为B、宽度为d的匀强磁场,穿透磁场 时的速度与电子原来入射方向的夹角为30°。 求: e (1)电子的质量m v (2)电子在磁场中的运动时间t
大学物理 稳恒磁场

第十一章稳恒磁场磁场由运动电荷产生。
磁场与电场性质有对称性,学习中应注意对比.§11-1 基本磁现象磁性,磁力,磁现象;磁极,磁极指向性,N极,S极,同极相斥,异极相吸。
磁极不可分与磁单极。
一、电流的磁效应1819年,丹麦科学家奥斯特发现电流的磁效应;1820年,法国科学家安培发现磁场对电流的作用。
二、物质磁性的电本质磁性来自于运动电荷,磁场是电流的场。
注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。
§11-2 磁场磁感强度一、磁场磁力通过磁场传递,磁场是又一个以场的形式存在的物质。
二、磁感强度磁感强度B 的定义:(1)规定小磁针在磁场中N 极的指向为该点磁感强度B 的方向。
若正电荷沿此方向运动,其所受磁力为零。
(2)正运动电荷沿与磁感强度B 垂直的方向运动时,其所受最大磁力F max 与电荷电量q 和运动速度大小v 的乘积的比值,规定为磁场中某点磁感强度的大小。
即:qvF B max=磁感强度B 是描写磁场性质的基本物理量。
若空间各点B 的大小和方向均相等,则该磁场为均匀磁场....;若空间各点B 的大小和方向均不随时间改变,称该磁场为稳恒磁场....。
磁感强度B 的单位:特斯拉(T)。
§11-3 毕奥-萨伐尔定律 一、毕-萨定律电流元: l Id电流在空间的磁场可看成是组成电流的所有电流元l Id 在空间产生元磁感强度的矢量和。
式中μ0:真空磁导率, μ0=4π×10-7NA 2 dB 的大小: 20sin 4rIdl dB θπμ=d B 的方向: d B 总是垂直于Id l 与r 组成的平面,并服从右手定则.一段有限长电流的磁场: ⎰⎰⨯==l l r r l Id B d B 304πμ二、应用1。
一段载流直导线的磁场 )cos (cos 42100θθπμ-=r IB 说明:(1)导线“无限长":002r I B πμ=(2)半“无限长”: 00004221r I r IB πμπμ==2.圆电流轴线上的磁场 磁偶极矩232220)(2x R R IB +=μ讨论:(1)圆心处的磁场:x = 0 RIB 20μ=;(2)半圆圆心处的磁场: RIR I B 422100μμ==(3)远场:x >>R ,引进新概念 磁偶极矩0n IS m =则: m xB 3012πμ=3.载流螺线管轴线上的磁场)cos (cos 2120ββμ-=nIB讨论:(1)“无限长”螺线管:nI B 0μ=(2)半“无限长”螺线管:nI B 021μ=例:求圆心处的B .§11-4 磁通量 磁场的高斯定理 一、磁感线作法类似电场线。
《磁场》教案-最新公开课

《磁场》●教学目标一、知识目标1.知道磁体周围存在磁场.2.知道磁感线可用来形象地描述磁场,知道磁感线的方向是怎样规定的.3.知道地球周围有磁场及地磁场的南、北极.二、能力目标通过感知磁场的存在,提高学生分析问题和抽象思维能力,使学生认识磁场的存在,渗透科学的思维方法.三、德育目标通过感知磁场的存在,知道磁感线和地磁场,使学生养成良好的科学态度和求是精神,帮助学生树立探索科学的志向.●教学重点知道什么是磁场、磁感线、地磁场●教学难点磁场和磁感线的认识.●教学方法实验法、讨论法.●教具准备条形、蹄形磁体,铁、钴、镍片,铁屑,钢针,投影仪,投影片,挂图,微机,大头针,铁架台,细线,有关磁性材料的实物,图片(有些实验器材可布置学生自己准备),小磁针.●课时安排1课时●教学过程一、创设情境,引入新课[师]上节课我们已经认识了磁体的许多磁现象,下面我们把磁针拿到一个磁体的附近,它会怎么样?为什么会这样?先猜猜,再做,最后讨论,说出结论.同学们通过猜和做后,热烈地讨论,可能提出“场”(预习结果,可学生说不清什么叫场).[生甲]小磁针偏转,不再指南北了.[生乙]拿开磁体,小磁针恢复了原来的指向.[生丙]小磁针受到了磁体的吸引力.[生丁]小磁针受到了磁场力的作用.[师]两位同学一位说小磁针受到磁体的吸引力,一位说小磁针受到磁场的力的作用,到底是哪个?小磁针和磁体并未接触.我们看屏幕(用微机展示关于磁场的课件,在磁场周围时隐时现一些小人,小人都说:“我们是场,是我对磁针发生了作用,但你们看不见,摸不着我.”)我们知道了“场”.那么,虽然看不见、摸不着,我们却可以根据它所表现出来的性质来认识它,能举出例子吗?学生们在讨论:[生甲](通过讨论)风是空气流动形成的.[生乙]电流使灯丝发光.[师]现在我们认识了场,谁来说什么是磁场?[生甲]磁体周围存在着一种物质,它对放入其中的磁体产生磁力的作用.(二)磁场[板书]1.磁场[板书][师]现在我们把条形磁体用布包上,判断它的磁极.[生甲]把条形磁体悬挂起来,指南的是南极,指北的是北极.[生乙]拿小磁针靠近条形磁铁的一端,与小磁针北极相吸的是南极,另一端是北极.[师]同学们的办法很好,那么我们把小磁针放到磁体周围将会是什么样?学生们把小磁针放在条形磁体和蹄形磁体周围,观察并讨论.[生甲]小磁针不指南北,指不同的方向.[师]从实验中我们感觉磁场好像很复杂,看投影[课本图—6],为了形象地描述磁场,在物理学中,把小磁针静止时北极所指的方向定为那点磁场的方向,那么,我们可以在磁场中放入许多小磁针,它们的分布情况和北极所指的方向就可以形象直观地显示出磁场的分布情况,我们用铁屑代替小磁针来做做看.说出你是怎么做的?观察到什么?[生甲]在一块玻璃板上均匀地撒一些铁屑,然后把玻璃板放在条形磁体和蹄形磁体上,轻敲玻璃板,观察铁屑的分布.[生乙]观察到铁屑在磁场的作用下转动,最后有规则地排列成一条条曲线.[师]铁屑的分布情况可以显示磁场的分布情况,因此我们可以仿照铁屑的分布情况,在磁体的周围画一些曲线,用来方便、形象地描述磁场的情况,科学家把这样的曲线叫做磁感线.你们思考讨论一下,磁感线是什么?怎样理解它?2.磁感线(magnetic induction line)[板书][生甲](讨论得出)在磁体周围画一些带箭头的曲线,使任一点的曲线方向都跟该点小磁针北极所指的方向一致,它们可以方便、形象地描述磁场,这样的曲线叫磁感线.[生乙]磁感线只是帮助我们描述磁场,是假想的,实际并不存在.[生丙]磁感线在磁体周围的整个空间里.[生丁]磁感线实际不存在,而磁场存在.[师]同学们回答得非常好,说明同学们真正理解了磁感线.既然可以用磁感线描述磁场,磁场又有方向,那么我们看课本图—7条形磁体和蹄形磁体的磁场分布,说出磁感线应该从N极指向S极,还是应该相反?并标出图—8.[磁场方向是小磁针N极所指的方向,它总是从磁体N极出发到磁体S极]教师巡回检查学生们标的情况.[师]同学们都标出来了.我们认识了磁场并知道磁场的方向和用磁感线描述磁场分布情况.你们还有什么疑问吗?[生甲]为什么指南针能指南北?[生乙]地理的南极和北极是不是在我们指的南北方?[生丙]地理的两极和地磁的两极一致吗?[师]要想知道这些我们来看屏幕(展示课件,显示地磁场的存在和地磁感线的指向及分布,说明地磁场的情况,并介绍地磁场的有关史料),看完后回答上述问题.[生甲]地球周围存在着磁场——地磁场.[生乙]地磁场的形状跟条形磁体的磁场很相似.[生丙]地理的两极和地磁的两极并不重合.[生丁]地磁场使小磁针指南北.[生戊]地磁场北极在地理南极附近,地磁南极在地理北极附近,所以小磁针南极指南、北极指北.(三)地磁场(geomagnetic field)[板书][师]磁有磁性,地球有磁性我们都知道了,可生活中有些磁性材料,如磁卡、录音带、钢、铁,它们原本没有磁性,它们在磁体与电流的作用下会获得磁性,这种现象叫磁化.(四)磁化(magnetization)[板书]三、小结本节课我们知道了什么是磁体、磁极、磁场、磁感线和地磁场.四、布置作业动手动脑学物理:①②③④参考答案:1.磁体周围的磁感线总是从N极出发到S极,磁场方向是小磁针N极所指的方向.2.地球上指南针静止时N极所指的是地理的北方;地球的地磁北极位于地理南极附近;因为磁体周围磁场方向总是从N极到S极,因此图—9的下端是地磁北极,上端是地磁南极.而指南针静止时,N极总是指向北方,指南针N极指的方向和磁感线方向相同.因此,图—9的下端是地磁北极,它应该位于地理南极附近.3.指北的那端是N极.这个实验难点是按扣在针尖上的平衡问题.也可以把经过磁化的铁钉(或缝衣针等物体)放在小块塑料泡沫(或小纸船)里,让它浮在水面上,铁钉一定是指向南北方向.4.磁体的应用有很多,如磁钉、磁性门吸、铅笔盒、擦外层玻璃用的刷子等等.五、板书设计磁场1.磁场2.磁感线3、地磁场。
磁现象磁场教学设计+反思

同名磁极互相排斥,异名磁极互相吸引。
演示实验:用条形磁铁使铁棒磁化。
5.磁化:使原来没有磁性的物体获得磁性的过程叫做磁化。
(二)磁场视频播放用铁屑演示条形磁体和蹄形磁体磁场。
磁场:在磁体周围存在着一种物质,能够使小磁针偏转。
但是我们却看不见、摸不着,这样的物质叫做磁场。
磁感线:在磁体周围画一些带箭头的曲线,使任一点的曲线方向都跟该点小磁针北极所指的方向一致,它们可以方便、形象地描述磁场,这样的曲线叫磁感线。
磁感线只是帮助我们描述磁场,是假想的,实际并不存在。
(三)地磁场地球周围存在着磁场----地磁场,地磁场的形状跟条形磁体的磁场很相似。
但是地理的两极和地磁的两极并不重合,地磁场北极在地理南极附近,地磁南极在地理北极附近,世界上最早记述这一现象的人是我国宋代学者沈括,所以小磁针南极指南、北极指北,就是地磁场的作用。
验的能力,会通过实验得出正确结论。
学生观看视频,讨论,交流,发表见解。
利用模型法研究磁体的磁场。
对磁场和磁感线的总结,加深对磁场的认识。
通过对指南针的分析、地磁场的介绍,再次强化对情感态度和价值观的培养课堂小结学习了本节课的内容,学生应该掌握的知识点有:1.四个概念:磁性、磁体、磁极、磁化2.一个规律:同名磁极相互排斥、异名磁极相互吸引。
3.理解磁场,明确磁感线的作用。
4.地磁场的磁感线分布,指南针指南原理。
学生自主归纳,总结并记忆。
培养学生总结归纳的能力。
《磁现象磁场》教学反思本节课的设计思路,分三部分进行,磁现象、磁场、地磁场。
第一部分磁现象,由于学生在小学科学中已经接触到了许多的磁现象,对磁现象并不陌生,在讲授这部分内容时,我采用了一段动画海尔兄弟引入新课,可以边看动画,边提出问题,一起让学生思考、回答、总结。
有些问题小学时没有遇到的,也有的知识在学生的头脑中只是有印象,缺乏理论系统地归纳和整理。
再和学生一起进行探究,再得出结论。
由于时间关系,这部分课堂上不能讲授时间太长。
第二部分内容磁场。
圆形磁场中的几个典型问题

圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与Oa 的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于Ox 轴的速度v从y轴上的a点射人如图3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。
认识磁场
ቤተ መጻሕፍቲ ባይዱ
三、几种磁体磁场的磁感线
广附物理
四、电流磁场的磁感线 直线电流的磁场(右手安培定则)
以导线上任意点为圆心的多组同 心圆,越向外越稀疏,磁场越弱
广附物理
直线电流的磁场(右手安培定则)
广附物理
环形电流的磁场(右手安培定则)
广附物理
环形电流的磁场(右手安培定则)
内部磁场比外部强,磁感线越向外越稀疏
磁感线特点:
1、方向:切线、 小磁针N极受力、 小磁针静止时N极的指向
2、外部N→S,内部S→N,闭合。 3、疏密——强弱 4、不相交,不相切非真实存在
广附物理
3.2 认识磁场
广大附中物理科 黄健仪
一、磁场
1.磁体周围空间存在磁场。 2.电流的磁效应—奥斯特实验
广附物理
[回顾]怎样“看见”电场——电场线
广附物理
类比推理
电场线
放入检验电荷
方向——正电荷受力方向; 电场线切线方向
“+”出“-”入、不闭合
强弱——疏密
不相交、不相切、、非真实存在
磁感线
广附物理
广附物理
通电螺线管的磁场(右手安培定则)
N
·
广附物理
通电螺线管的磁场(右手安培定则)
N
-
+
广附物理
内部为匀强磁场,且比外部强,方向由S指向N, 外部类似条形磁铁,由N指向S
广附物理
小结
1、能产生磁场的物体; 2、磁场的物质性; 3、几种磁体的磁感线 4、电流的磁感线——右手安培定则
广附物理
二、磁感线特点
电场线
放入检验电荷
磁感线
放入小磁针
方向——正电荷受力方向; 电场线切线方向
磁场教案5篇
磁场教案优秀5篇作为一名专为他人授业解惑的人民教师,就不得不需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么应当如何写教案呢?它山之石可以攻玉,以下内容是本文范文为您带来的5篇《磁场教案》,亲的肯定与分享是对我们最大的鼓励。
电流的磁场教案篇一教学要求:1、知道磁场对电流存在力的作用,知道通电导体在磁场中受力方向与电流方向,以及磁感线方向有关系。
改变电流方向,或改变磁感线方向,导体的受力方向随着改变。
能说明通电线圈在磁场中转动的道理。
2、知道通电导体和通电线圈在磁场中受力而运动,是消耗了电能,得到了机械能。
3、培养、训练学生观察能力和从实验事实中,归纳、概括物理概念与规律的能力。
教学过程一、引人新课首先做直流电动机通电转动的演示实验,接着提出问题:电动机为什么会转动?要回答这个问题,还得请同学们回忆一下奥斯特实验的发现——电流周围存在着磁场,并通过磁场对磁体发生作用,即电流对磁体有力的作用,再让我们逆向思索,磁体对电流有无力的作用呢?即磁体通过其磁场对电流有无力的作用呢?现在就让我们共同沿着这一逆向思索所形成的猜想,设计实验,进行探索性的研究。
板书:四、研究磁场对电流的作用二、演示实验板书:1、实验研究:1、介绍实验装置的同时说明为什么选择这些实验器材,渗透实验的设计思想。
2、用小黑板或幻灯出示观察演示实验的记录表格,如下:3、按照实验过程,把课本1、2两个实验,用边演示,边指导观察,边提出问题的方式,连续完成。
要求学生完成观察演示实验的记录和思考回答表中的问题:“通电铜棒在磁场中,运动的原因是什么?”这样做,一是引导学生发现磁场对电流也存在力的作用,二是进一步巩固、深化力的概念。
4、对学生通过观察,归纳概括出的结果,要做小结:(板书小结如下)通电导体在磁场中受到力的作用,力的方向与电流方向、磁感线方向是相互垂直的、不论是改变电流方向,还是改变磁场方向,都会改变力的方向三、应用板书:2、实验结论的应用:1、出示线圈在磁场中的演示实验装置,并提出问题让学生思考:应用上面实验研究的结论,分析判断通电的线圈在磁场中会发生什么现象?2、出示方框线圈在磁场中的直观模型,并用小黑板或幻灯片把模型的平面图展示出来,以助学生思考。
大学物理 恒定磁场
26
测载流子电性 — 半导体类型
8.5 载流导线在磁场中受力
一、一段载流导线上的力——安培力 I 2 1个电子 受力 f qv B 1 N个电子受力 d F Nq v B 电流元 I d l B
N n d V nS d l
不对 q 做功。
v
q
B
v
B
F qE qv B
15
二、带电粒子在均匀磁场中运动
1)运动方向与磁场方向平行
Fm qv B
Fm qvBsinθ
θ 0 F 0
q
v
B
带电粒子作匀速直线运动
16
二、带电粒子在均匀磁场中运动
3)运动方向沿任意方向
v // v cos v v sin
mv sin 半径: R qB 2R 周期:T v
v
q
+
v
v// h
B
匀速圆周运动与匀速直线运动的合成 运动轨迹为螺旋线
2 m qB
2 m 螺距: h Tv // v cos qB
18
(3)地磁场内 的范艾仑辐射带
22
23
四、霍耳效应
现象:导体中通电流 I ,磁 场B 垂直于I ,在既垂直于 I ,又垂直于B 的方向出现 电势差 U 霍耳电压UH
B
h
V
+ v - - -q- - -
F
I
b
原因: 载流子q,漂移速度 v
Fm qv B
25
霍耳系数
1 RH ne
大学物理Ⅱ稳恒磁场知识点3
稳恒磁场小结1、磁感应强度 B 描写磁场大小和方向的物理量2、磁通量mΦ:穿过某一曲面的磁力线根数。
定义:θφcos ⋅⋅=⋅=⎰⎰⎰⎰S B S B d d ss m单位:韦伯, Wb nˆ NIS S NI P m == 3、磁矩m :描写线圈性质的物理量。
定义:单位:安培·米2方向:与电流满足右手定则。
一、基本概念n I二、磁感应强度B的计算20ˆ4rr l d I B d ⨯=πμ1)载流直导线的磁场aI B πμ20=)cos (cos 4210θθπμ-=aI B 无限长直导线的磁场1 利用毕萨定律求B PlId rθB1θIa P2θ二、磁感应强度B的计算20ˆ4rr l d I B d ⨯=πμ2)圆电流轴线上的磁场232220)(2x R R I B +=μ在圆弧电流圆心处:πθμ220R I B =在圆电流圆心处:RI B 20μ=1利用毕萨定律求B IB⊗θI⊗B l I d ROPxBiLI 1I 2I 3∑-=12I I Ii应用:分析磁场对称性;选定适当的安培环路。
各电流的正、负:I 与L呈右手螺旋时为正值;反之为负值。
⎰∑=⋅LIl d B 0μ2 利用安培环路定理计算磁场 B⎰∑=⋅LI l d B 0μ 1)、密绕长直螺线管内部nIB 0μ=rIN B πμ20=2) 螺绕环内部3)圆柱载流导体内部r < R 区域圆柱载流导体外一点r > R 区域r R IB 202πμ=rI B πμ20=4)圆柱面载流导体内部r < R 区域圆柱载流导体外一点r > R 区域I B μ0==B20 ˆ4rr v q B ⨯= πμ3 运动电荷的磁场Pqv+rθ大小 20 sin 4rv q B θπμ=三、两个重要定理1、磁场中的高斯定理0=⋅=Φ⎰⎰S m S d B2、磁场中的环路定理⎰∑=⋅LIl d B 0μ(1)磁场是“无源场”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 NI B 2r 0
内 外
B 0 nI 2
板上下两侧为均匀磁场
R1、R2 R1 R2
N n 2R1
b
a
.........
B 0 nI
c
d
电场、磁场中典型结论的比较
电荷均匀分布 长直线 电流均匀分布
E 2 0 r
E0
0 I B 2r
0 q r B 4 r 3
4)运动电荷产生的磁场
2.磁通量
m s B dS
3.磁场方程 1)磁场高斯定理
2)安培环路定理
B d l 0 Ii
l
S B dS 0旋)
n S
4.载流线圈的磁矩 m NISen 5.电磁相互作用 1)安培定律 df Idl B
0 Idl er dB 4 r 2
载流导线的磁场
S B dS 0
B dB
2、安培环路 定理 B d l 0 I
L
磁 感 应 线
磁场 对电流元 的作用 安培定律 F L Idl B dF Idl B
稳恒磁场小结
1.磁场的计算
1)毕奥---萨伐尔定律 2)电流产生磁场 0 Idl r B 3 4 r 3)安培环路定理
0 Idl r dB 3 4 r
微观叠加 B d B B Bi 场叠加 l B dl 0 I i
本章一些重要的结论
1. 直电流的磁场
0 I B (cos 1 cos 2 ) 4a
•无限长载流直导线
2
I
0 I B 2a
•半无限长载流直导线 B 0 I 4a
1
B
•直导线延长线上
B0
a
P
2. 圆电流轴线上某点的磁场
大小: B
0 IR 2
2( R x )
A D
C I1
I2
a
b
B
1115题图
i
电场有保守性,它是 保守场,或有势场
磁场没有保守性,它是 非保守场,或无势场
1 E ds qi s 0
电力线起于正电荷、 止于负电荷。 静电场是有源场
B dS 0
S
磁力线闭合、 无自由磁荷 磁场是无源场
电偶极子
类 比
磁偶极子
I
q l
P ql
B0
长 直 圆 柱 面
长 直 圆 柱 体
内 外
内
外
E 2 0 r r E 2 2 0 R E 2 0 r
0 I B 2r 0 Ir B 2R 2 0 I B 2r
静电场
E dl 0
比较
?
磁 场
B dl 0 I i
2 2 32
I
R
x
B
P x
0 I
2R
方向: 右手螺旋法则
(1) 载流圆环圆心处的 B 圆心角 2
(2) 载流圆弧 圆心角
0 I B 2 R 2 4R
0 I
3. 长直载流螺线管
5. 环行载流螺线管
0 nI B 0
内 外
4. 无限大载流导体薄板
q
S
n
m ISen
0 m B 3 2 r
0 m B 4 r 3
pe 在轴延长线上某点 1 E 2 0 r 3
例题
1 如图所示,一根无限长直导线,通有电流I, 中部一段弯成圆弧形,求图中P点磁感应强度的大小。
1112 题图
2电流均匀地流过宽为b的无限长平面导体薄板,电流为I, 沿板长方向流动。求在薄板平面内,距薄板一边为b的P点处 的磁感应强度。
I b · P
b
1110题图
3
一根同轴电缆由半径为R 的长圆柱形导线和套在它外面 1 内半径为R ,外半径为 R 的同轴导体圆筒组成,如图所示, 2 3 传导电流I沿导线向上流去,由圆筒向下流回,在它们的 截面上电流都是均匀分布的,求同轴电缆内外各处的 磁感应强度大小的。
4 如图所示,在竖直放置的长直导线AB附近,有一水平 放置的有限长直导线CD,C端到长直导线的距离为a, CD长为b,若AB中通以电流I 1 ,CD中通以电流I 2 求导线CD受的安培力的大小。
磁场对 载流线 圈作用
磁场 对载流 导体的 作用
运动电荷的磁场 磁通量 0 q er B 4 r2 S B dS
磁场对 磁感应 运动电 强度 荷作用 mB Fm M F q B m B NISen q
2)磁场对载流导线的安培力
I
3)磁场对载流线圈的作用力矩 M m B 4)磁场对运动电荷的洛仑兹力 F q B
f l Idl B
真空中的磁场 电流的磁场 电流元的磁场 毕--萨定律 磁场的描述 基本方程 1、高斯定理 磁场对电流的作用