第8章相量法

合集下载

第八章 相量法

第八章 相量法

ψ
0
ωt
Im , ω , ψ ——正弦量的三要素 正弦量的三要素 正弦量的
i(t)=Imcos(ω t+ψ) 二,正弦量的三要素 1, 幅值 (振幅, 最大值 m , 振幅, 振幅 最大值)I
i
ωT=2π π
ψ
0
ωt
2, 角频率ω : 反映正弦量变化的快慢. ω =d(ω t+ψ )/dt , 反映正弦量变化的快慢. 单位时间内变化的角度 单位: rad/s,弧度 秒 单位: ,弧度/秒 周期T 完成一个循环变化所需时间, 周期 : 完成一个循环变化所需时间,单位 s. . 频率f 每秒钟完成循环的次数,单位: 赫兹) 频率 : 每秒钟完成循环的次数,单位:Hz(赫兹 . 赫兹
T i 2 ( t ) Rdt R W交 = ∫0
周期电压如图所示.求其有效值U. 例 周期电压如图所示.求其有效值 . u(t)/V 2 1 0 1 2 3 4 5 6 t/s
根据有效值的定义, 解 根据有效值的定义,有
1 U= T =

T 0
u 2 ( t )dt
2 3 1 1 2 2 1 dt + ∫ 2 dt + ∫ 0 2 dt = 1.29 V ∫0 1 2 3
π
UL
I
相量图

U I= ωL
I
3,相量形式: ,相量形式: jω L
+
UL
U L = jωLI = jX L I
XL=ω L,称为感抗,单位为 (欧姆 欧姆) ,称为感抗,单位为 欧姆
-ቤተ መጻሕፍቲ ባይዱ
相量模型 4,感抗的物理意义 ,
U (1) 表示限制电流的能力; I = 表示限制电流的能力; ωL (2) 感抗和频率成正比 ω =0 直流(XL=0) , ω→∞开路; 感抗和频率成正比, 直流( →∞开路 开路; XL

电路原理 第八章_相量法

电路原理 第八章_相量法

复数 复数

孙惠英 shy@
上页
下页
返回
第8章
4、正弦量的相量表示法(续)

已知正弦量 220√ 2 cos ( ω t-35° ) 有效值相量 最大值相量 220/ -35° — 220√ 2 /-35°
已知 相量 10/45° and 正弦量的角频率ω 相应的正弦量 — 10 √ 2 cos( ωt + 45° )
0 ωt1
ωt2
ωt
φ
图8-5 用旋转矢量表示的正弦量
孙惠英 shy@
上页
下页
返回
第8章
4、正弦量的相量表示法 F = ⎪F⎪e j(ω t + ϕ )
ejθ = cosθ + jsinθ
设:有一复数
欧拉公式
F = ⎪F⎪ej(ωt + ϕ ) = ⎪F⎪cos(ωt + ϕ) + j⎪F⎪sin(ωt +ϕ) Re [F] = ⎪F⎪cos(ωt + ϕ ) Im [F] = ⎪F⎪sin(ωt + ϕ )
返回
第8章
三、旋转因子
/ϕ 旋转因子: e jϕ = 1 — A = ⎪A⎪ejα Aejϕ = ⎪A⎪ejαejϕ = ⎪A⎪ej(α+ϕ ) ejπ/2 = j1 e-jπ/2 = − j1
+j
Aejϕ
ϕ α
0
A
+1
e-jπ = − 1
孙惠英 shy@
上页
下页
返回
第8章
ϕ 12 = ϕ 1- ϕ 2 —— u1 超前于 u2 的相角 ϕ 21 = ϕ 2- ϕ 1 —— u2 超前于 u1 的相角

(完整版)第八章相量图和相量法求解电路

(完整版)第八章相量图和相量法求解电路

(完整版)第⼋章相量图和相量法求解电路第⼋章相量图和相量法求解电路⼀、教学基本要求1、掌握阻抗的串、并联及相量图的画法。

2、了解正弦电流电路的瞬时功率、有功功率、⽆功功率、功率因数、复功率的概念及表达形式。

3、熟练掌握正弦电流电路的稳态分析法。

4、了解正弦电流电路的串、并联谐振的概念,参数选定及应⽤情况。

5、掌握最⼤功率传输的概念,及在不同情况下的最⼤传输条件。

⼆、教学重点与难点1. 教学重点: (1).正弦量和相量之间的关系;(2). 正弦量的相量差和有效值的概念(3). R、L、C各元件的电压、电流关系的相量形式(4). 电路定律的相量形式及元件的电压电流关系的相量形式。

2.教学难点:1. 正弦量与相量之间的联系和区别;2. 元件电压相量和电流相量的关系。

三、本章与其它章节的联系:本章是学习第 9-12 章的基础,必须熟练掌握相量法的解析运算。

§8.1 复数相量法是建⽴在⽤复数来表⽰正弦量的基础上的,因此,必须掌握复数的四种表⽰形式及运算规则。

1. 复数的四种表⽰形式代数形式A = a +j b复数的实部和虚部分别表⽰为: Re[A]=a Im[A]=b 。

图 8.1 为复数在复平⾯的表⽰。

图 8.1根据图 8.1 得复数的三⾓形式:两种表⽰法的关系:或根据欧拉公式可将复数的三⾓形式转换为指数表⽰形式:指数形式有时改写为极坐标形式:注意:要熟练掌握复数的四种表⽰形式及相互转换关系,这对复数的运算⾮常重要。

2. 复数的运算(1) 加减运算——采⽤代数形式⽐较⽅便。

若则即复数的加、减运算满⾜实部和实部相加减,虚部和虚部相加减。

复数的加、减运算也可以在复平⾯上按平⾏四边形法⽤向量的相加和相减求得,如图8.2所⽰。

图 8.2(2) 乘除运算——采⽤指数形式或极坐标形式⽐较⽅便。

若则即复数的乘法运算满⾜模相乘,辐⾓相加。

除法运算满⾜模相除,辐⾓相减,如图8.3⽰。

图 8.3 图 8.4(3) 旋转因⼦:由复数的乘除运算得任意复数A 乘或除复数,相当于A 逆时针或顺时针旋转⼀个⾓度θ,⽽模不变,如图 8.4 所⽰。

相量法

相量法

▪幅值、初相、角频率可确定一个正弦量,称为 正弦量的三要素。
二、同频率正弦量的比较 例:
u1(t)=U1mcos(t+1)
u2(t)=U2mcos(t+2)
(1) 相位差:相角或相位之差,也称相位角差。 用表示, = (t+1) - (t+2) = 1 - 2 相位差在任何瞬间都是一个常数,即等于它们的 初相之差,而与时间无关。 相位差与计时起点的选择无关。
如图5-2(a)、(b)、(c)、(d)分别表 示两个正弦量同相、超前、正交、反相。
三、正弦电流、电压的有效值 1、有效值
周期量的有效值定义为:一个周期量和一个直 流量,分别作用于同一电阻,如果经过一个周 期的时间产生相等的热量,则这个周期量的有 效值等于这个直流量的大小。电流、电压有效 值用大写字母I、U表示。
部分别相加或相减。
复数的加减运算可以用平行四边形法则在复平 面上用作图法来进行。
(3)乘法运算 :用极坐标形式或指数形式来进行。 A• B ab(a b ) abe j(a b )
即:复数相乘,其模相乘,其辐角相加。 (4)除法运算 :用极坐标形式或指数形式来进行。
A/ B a / b(a b ) a / be j(a b ) 即:复数相除,其模相除,其辐角相减。 (5)旋转因子:复数ej称为旋转因子。
同理:
U
1 2
Um
0.707 U m
U m 2U
▪通常所说的正弦电压、电流的值均指有效值。
§8-3 相量法的基础
相量法就是用复数来表示正弦量,使描述正弦电 路的微分(积分)方程转化为代数形式的方程,而这 些方程在形式上与电阻电路的方程相类似,从而 使正弦激励下的电路的分析和计算大大简化。

电路(第五版).-邱关源原著-电路教案--第8章相量法

电路(第五版).-邱关源原著-电路教案--第8章相量法

电路(第五版).-邱关源原著-电路教案--第8章相量法第8章 相量法● 本章重点1、正弦量的两种表示形式;2、相量的概念;3、KVL 、KCL 及元件VCR 的相量形式。

● 本章难点1、 正确理解正弦量的两种表示形式的对应关系;2、 三种元件伏安关系的相量形式的正确理解。

● 教学方法本章是相量法的基础,对复数和正弦量两部分内容主要以自学为主,本章主要讲授相量法的概念、电路定律的相量形式以及元件V AR 的相量形式。

讲述中对重点内容不仅要讲把基本概念讲解透彻,而且要讲明正弦量的相量与正弦时间函数之间的对应关系;元件V AR 的相量形式与时域形式之间的对应关系,使学生加深对内容的理解并牢固掌握。

本章对元件的功率和能量这部分内容作了简单讲解,以便为下一章的学习打下基础。

本章共用4课时。

● 授课内容8.1复数1. 复数的三种表示bj a A += 直角坐标=θ∠r 极坐标 =θj re 指数形式θθθsin cos 22r b r a ab arctgb a r ==⇒=+=⇒直极极直θθsin cos jr r A += 三角表示形式欧拉公式:θθθsin cos j e j +=2. 复数的运算已知:11111θ∠=+=r jb a A ,22222θ∠=+=r jb a A求:212121,,A AA A A A ⋅±i()()212121b b j a a A A ±+±=±212121212121θθθθ+∠=+∠=⋅r r A A r r A A 8.2正弦量一、正弦量:随时间t 按照正弦规律变化的物理量,都称为正弦量,它们在某时刻的值称为该时刻的瞬时值,则正弦电压和电流分别用小写字母i 、u 表示。

周期量:时变电压和电流的波形周期性的重复出现。

周期T :每一个瞬时值重复出现的最小时间间隔,单位:秒(S ); 频率f : 是每秒中周期量变化的周期数,单位:赫兹(Hz )。

电路分析课件第八章相量法

电路分析课件第八章相量法

KVL:任意时刻,任一回路,U=0
三、受控源的相量形式
i1
I1
R
正弦电流
i 1 电路时:
R
1I1
本章小结:
所谓相量法,就是电压、电流用相量表示, RLC元件用阻抗、感抗、容抗表示,画出电路的相 量模型,利用KCL、KVL和欧姆定律的相量形式写 出未知电压、电流相量的代数方程加以求解,因此, 应用相量法应熟练掌握:
∴ i =46.2 2cos(314t–27º)A j I1
+1 I
相量图
I2
注意:
在分析正弦交流电路时字母的写法:
i — 瞬时值 I — 有效值 Im — 最大值 I — 有效值相量 Im— 最大值相量
三、不同频率的正弦量不能用相量法运算。
相量只含有正弦量的有效值(最大值)和初相 位的信息,不包含频率的信息,即:在运用相量 法分析正弦量时,默认为同频率。
将 I (或 U)定义为电流i (或电压u) 的相量,它含有 正弦量的振幅和相位的信息。
注意:
有一个正弦量便可以得到一个相量; 有一个相量也可以写出对应的正弦
量。两者是一一对应的关系,决不
是相等的关系。
u=220 2 cos(314t+45º)V
U=220 45ºV u U
I=50 –30ºA 一一对应 i =50 2 cos(ωt–30º)A i I
U 相量形式电路图
相量关系既反映了u、i 的有效 值关系又反映了相位的关系。
I U 相量图
2、电感
iL
u
若:i = 2 Icos(ωt+ψi )
则:u=L
di dt
=–
2 IωLsin(ωt+ψi )

电路分析相量法

电路分析相量法

量的相量乘以 jω ,即表示di/dt 的相量为
j I I( i 90o )
该相量的模为ωI ,辐角则超前原相量π/2 。
对 i 的高阶导数 dni/dtn ,其相量为 ( j )。n I
3)正弦量的积分
设 i 2I cos( t i ),则
idt Re[ 2Ie j t ] dt Re[ (
F1F2 | F1 | 1 | F2 | 2 | F1 || F2 | (1 2 )
可见复数的乘法运算使用指数形式或极坐标形式较为简便。
3)除法运算
a)代数形式
F1 F2
a1 a2
jb1 jb2
(a1 (a2
jb1 )(a2 jb2 )(a2
jb2 ) jb2 )
(a1a2
b1b2 ) j(a2b1 a22 b22
设 F1 a1 jb1 , F2 a2 jb2 ,则
F1 F2 (a1 jb1 ) (a2 jb2 ) (a1 a2 ) j(b1 b2 )
平行四边形法则:
+j F1 +F2 F1
F2 o
+1
+j F1
F2 o
F1-F2 +1
2)乘法运算 a)代数形式
F1F2 (a1 jb1 )(a2 jb2 ) (a1a2 b1b2 ) j(a1b2 a2b1 )
di d Re[ 2Ie j t ] Re[ d ( 2Ie j t )] Re[ 2( j I)e j t ]
dt dt
dt
Re[ 2 Ie ] j( ti 90o ) 2 I cos( t i 90o )
上式表明:
复指数函数实部的导数等于复指数函数导数的实部;

电路原理课件 第8章 相量法

电路原理课件 第8章  相量法

三. 相位差 :
两个同频率正弦量相位角之差。
i(t) 0
Im um
设 u(t)=Umcos(w t+ u)
2
i(t)=Imcos(w t+ i)
0
wt
则 相位差j : j = (w t+ u)- (w t+ i)
u- i
同频率正弦量的相位差等于它们的初相之差。 不同频率的两个正弦量之间的相位差不再是一个常数,而是 随时间变动。
j u与i正交; j u与i反相;
2
§8 - 3相量法的基础
1. 正弦量的相量表示
复函数 F F ej(wt)
没有物理意义
F cos(wt ) j F sin(wt Ψ )
若对F取实部:
Re[F] F cos(ωt Ψ ) 是一个正弦量,有物理意义。
对于任意一个正弦时间函数都可以找到唯一的与其对应的 复指数函数:
F e j
4、极坐标形式:
F F ej
=|F|
二 复数运算
(1)加减运算——代数形式
+j F2
若 F1=a1+jb1
F2=a2+jb2 O
则 F1±F2= (a1±a2) +j (b1±b2)
F= F1 +F1
F1 +1
+j
O - F2
F2 F1
F= F1 - F2 +1
(2) 乘除运算——指数形式或极坐标形式
⑶∫i2dt。
解: ⑴设 i i1 i2 2I cos(wt i ), 其相量为 I=I/Ψi
I I1 I2 10/600A+22/-1500A=(5+j8.66)A+(-19.05-j11)A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点
1. 正弦量与相量之间的联系和区别; 2. 元件电压相量和电流相量的关系。 主要是相位关系
是学习第 9~12 章的基础,必须 熟练掌握相量法的解析运算。
2013年7月5日星期五 2
2013年7月5日星期五
3
2013年7月5日星期五
4
2013年7月5日星期五
5
复数乘、除的图解
+j q2
F=F1F2
2013年7月5日星期五
i1
i p o 2p
3p
wt
对任一正弦量,初相可 以任意指定。但相位。 常取主值:|fi|≤180o
14
2. 同频率正弦量的相位差 ! 设:i1=Imcos(wt+fi1),u2=Umcos(wt+fu2) 即初相之差 相位差j12定义为:j12 = (wt+fi1)-(wt+fu2) =fi1-fu2 j12 (1)j12>0 ,称 i 超前 u , i1,u2 或 u 滞后 i ,表明 i 比 u i1 u 先达到最大值; wt (2)j12<0 ,称 u 超前 i , -p 或 i 滞后 u,表明 u 比 i 先达到最大值;
o p
2
2p
3p
j12
j12
改变计时起点,初相不同,但相位差不变! 相位差一般取主值,即j12 ≤| p |。
2013年7月5日星期五 15
i1,u2
i1,u2
i1
i2 Z
o
p
2p
wt
o
p
2p
wt
+ u2 -
j12=0,i1与u2同相
i1,u2
j12=180o,i1与u2反相
改设参考方向时, 该正弦量 的初相改变p,因此与其它 正弦量的相位差都改变p。 两个正弦量进行相位比较时 应满足同频率、同函数、同 符号,且在主值范围比较。
+j Aejq q qa o
A
+1
任意一个复数A=|A|ejqa乘以 ejq ,等于把A逆时针旋转q 角度,而模|A|保持不变。
e
p j 2
2
=j = -j
都是旋 转因子
e
-j p
e jp = -1
A×j = jA,等于把 A 逆时针旋转90o。 A = -jA,等于把 A j 顺 时针旋转90o。
则: i = Re[Im e j(wt+fi) ] = Re[Im e jfi e jwt ] . = Re[ Im e jwt ] 这是一个特殊的复数,其特点是辐角随时间变化。 . 其中, Im = Im e jfi 这是一个与时间无关的复数, 模是该正弦电流的振幅,辐角是初相。
2013年7月5日星期五 18
diL uL = L dt
微分性质
UL= L(jw) IL UL= jwL IL
.
.
.
.
+ . u UL . UL +j
. i IL LjwL
在L中,电压超前于电流90o !
或电流滞后于电压90o ! 有效值的关系: UL=wLIL UL = wL IL
fu
o
. IL
fi
+1
wL也具有电阻的量纲。并与频率 f 成正比!
第八章 相量法
内容提要 1.正弦量及其三要素、相位差的概念;
2.相量法的概念及其性质;
3.电路定律和元件VCR的相量形式。 . Im= 5∠45o A . Um o Z = . =20∠-45o W 45 Im . Um= 100∠0o V
2013年7月5日星期五 1
重点
1.正弦量和相量之间的关系; 2.正弦量的相量差和有效值的概念; 3. R、L、C各元件的电压、电流关系的相量形式; 4.电路定律的相量形式及元件的电压电流关系的 相量形式。
8
正弦量的时域表达式有两种形式 i = Imcos(wt+fi) i = Imsin(wt+fi) 也称为瞬时值表达式 分析时不可混用,以免发生相位错误。
采用的形式以教材为准:
i = Imcos(wt+fi) u = Umcos(wt+fu)
2013年7月5日星期五
9
1. 正弦量的三要素(以电流为例)
i = Imcos(wt + fi) = 2 I cos(wt + fi) (1)振幅Im、有效值I (要素之一) 正弦量变化过程中所能达到的最大幅度 ; 在放大器参数中有时用峰-峰值表达。
i Im -p o p 峰-峰值2Im
2p
wt
3p
-Im
正弦量的波形
2013年7月5日星期五 10
2013年7月5日星期五
2013年7月5日星期五
+j
. Um
fu fi
. Im +1
o
w
旋转相量的实 部等于正弦量
20
2013年7月5日星期五
21
2013年7月5日星期五
22
2013年7月5日星期五
23
2013年7月5日星期五
24
2013年7月5日星期五
25
引入相量的优点是
把时域问题变为复数问题; 把微积分方程的运算变为复数方程运算; 需要注意的是
7
2013年7月5日星期五
§8-2 正弦量
电路中按正弦规律变 化的电压或电流,统 称正弦量。 研究正弦电路的意义 是正弦交流电有很多 优点,使它应用广泛。 例如: ①可以根据需要,利 用变压器方便地把正 弦电压升高或降低;
2013年7月5日星期五
②电机、变压器等电气设 备,在正弦交流电下具 有较好的性能; ③正弦量对时间的导数、 积分、几个同频率正弦 量的加减,其结果仍是 同频率的正弦量,这不 仅使电路的分析计算变 得简单,而且其结果还 可以推广到非正弦周期 电流电路中。
11
需要注意的是
工程上说的正弦电压、电流一般指有效值,如 电网的电压等级、设备铭牌的额定值等。但绝 缘水平、耐压值指的是最大值。因此,在考虑 电器设备的耐压水平时应按最大值考虑。 在测量中,交流测量仪表指示的电压、电流读 数一般为有效值。 区分电压、电流的瞬时值 i、u ,振幅 Im、Um 和有效值 I、U 的符号。 另外注意IM(Imax)。
2013年7月5日星期五
17
1. 相量 正弦量的相量要追溯到欧拉公式: e jq = cosq + jsinq 则 e j(wt+fi)= cos(wt+fi)+ jsin(wt+fi) 若 q =wt+fi
根据叠加定理和数学理论,取实部或虚部进行分 析 求解,就能得到全部结果。 设: i = Im cos (wt+fi)
用相量表示的CCCS
2013年7月5日星期五
31
2013年7月5日星期五
32
2013年7月5日星期五
33
本章结束
2013年7月5日星期五
34
2013年7月5日星期五
19
正弦量与相量的关系是一种数学 变换关系。不是相等的关系!
正弦量→相量,可认为是正变换; 相量→正弦量,可认为是反变换。 . Im . . fi Im = Im Um 是 [Im e jfi e jwt ] 的复常数部分。 i = Imcos (wt+fi)
是 [Ime jfi e jwt] 的实部。 任意时刻,两者相对位置不 变。因此,可用不含旋转因 子ejwt的复数表示正弦量。
2013年7月5日星期五 29
2013年7月5日星期五
30
4. 受控源的相量表示 控制系数、g、r和都是常数,因此,根据相量 的比例性质,可以直接用与正弦量对应的相量表 示。 . .
+
ib ib + ube rbe
uce
-
+ Ib . Ube rbe -
Ib
+ . Uce -
-
用瞬时值表示的CCCS
相量法实质上是一种变换,通过把正弦量转化为相 量,而把时域里正弦稳态分析问题转为频域里复数 代数方程问题的分析; 相量法只适用于激励为同频正弦量的非时变线电路; 相量法用来分析正弦稳态电路。
2013年7月5日星期五
26
2013年7月5日星期五
27
2013年7月5日星期五
28
(2)电感元件
|F2|F1
+j F1 |F2|
F1
F1 q2 F= F 2 F2 q q2 q=q1-q2
1
o
F1 F2 q=q1+q2 q1 q2 +1
o
+1
乘: F1 的模被放 大|F2|倍,辐角逆 时针旋转q2 。
2013年7月5日星期五
除: F1 的模被缩 小|F2|倍,辐角顺 时针旋转q2 。
6
3. 旋转因子ejq 旋转因子 ejq =1∠q是一个模 等于1,辐角为q的复数。
2013年7月5日星期五
12
2013年7月5日星期五
13
(3) 相位角、初相角fi (要素之三) 反映正弦量的计时起 点,常用角度表示。
fi1
i i
fi
①相位角(wt+fi): 随时 o -p 间变化的角度, 单位: fi rad 或 (o) ② t=0时刻的相位角fi 称为初相角。 计时起点不同,初相位 不同。若正最大值发生 在计时起点之前,则初 相位为正,之后为负。
16
o
p
2p
wt
j12=90o,i1与u2正交
2013年7月5日星期五
§8-3 相量法的基础
在正弦稳态线性电路中,各支路的电压和电流 (响应)与电源(激励)是同频率的正弦量,因此应用 KCL、KVL分析正弦电路时,将遇到正弦量的加减 运算和积分、微分运算,在时域进行这些运算十分 繁复,通过借用复数表示正弦信号可以使正弦电路 分析得到简化 。 相量表示法的实质是用复数表示正弦量。是 求解正弦电流电路稳态响应的有效工具。
相关文档
最新文档