人教版七年级数学上册第一章数轴篇
初中数学人教七年级上册第一章有理数数轴 PPT

※分数和小数也可以用数轴上的点表示,如从原点向 右3.5个单位长度的点表示小数3.5,从原点向左 个单位 长度的点表示分数
共同归纳
(1)数轴的三要素:原点、正方向、单位长度. (2)数轴的规范画法:是条直线,数字在下,字母在上.
-3 -2 -1 0 1 2 3
动手画一个数轴,然后进行交流讨论. 思考: 1.数轴的规范画法. 2.数轴必须满足什规范画法: 3
2
2
3.5 -4 -3 -2 -1 0 1 2 3 4
1、画一条水平直线,在直线上取一点0,叫原点;
2、通常规定直线上从原点向右(或上)的方向为正方 向,从原点向左(或下)的方向为负方向;
正确地画出一条数轴的方法可概括为:
一画
二找
三定
四取
-3 -2 -1 0 1 2 3
课堂练习 判断下图中所画的数轴是否正确?如不正确,指出错在哪里?
(1) 错
(2) 错
2
(3) 错
(4)
错
1 -1
(5)
错
1
(6) 对
01
(7) 错
-2 -1 1
(8) 错
-1-2-3 0 1 2 3
(9) 错
例题演示
课堂练习
1.写出数轴上点A、B、C、D、E所表示的数:
EB
AC D
A:0 C:1 E:-3
B:-2 D:2.5
巩固练习
2.借助数轴回答下列问题: (1)写出到原点的距离小于3的整数 ±1,±2,0.
-3 -2 -1 0 1 2 3
2024年秋季新人教版七年级数学上册教学课件 第一章 有理数 1.2.2数轴

任务一:创设情境,导入新课
2.你知道5 ℃和-10 ℃哪个温度高吗?-10 ℃和-20 ℃呢?为什么?
提示: (1)从5 ℃和-10 ℃表示的意义判断; (2)从温度计上直观观察;
3.如果温度计足够长,你能找到80 ℃和—100 ℃吗?它们哪个温度高? 引导: (1)如果温度计足够长,我们可以在温度计上找到所有的温度,并能直 观地比较温度的高低;
任务三:认识数轴,体验数轴的作用。 2.请画一条数轴。
提醒:规定了原点、正方向和单位长度的直线叫数轴。
数轴三要素: 原点、
正方向、 单位长度。
任务三:认识数轴,体验数轴的作用。
3.(教材P10例2)画出数轴,并在数轴上表示下列各数:
3 , -4 , 4 ,0.5 , 5 ,-1 2
提示: 口述确定点的方法(方向、距离), 如:表示-4的点在原点左边,
任务二:探索数轴的形成过程
2.思考:怎样简明地表示电线杆、槐树、柳树、交通标志杆与汽车站牌的相对位置
关系(方向、距离)?
规定(1)点O表示数0; (2)线段OA=1米,即一个单位长度; (3)点O右边的点表示正数,点O左边 的点表示负数;
任务二:探索数轴的形成过程 3.如图,将温度计旋转后水平放置,与上图相比,你有什么发现?
归纳: (1)数轴上每一个点都表示一个数(不一定是有理数); (2)有理数由两部分组成:符号+距离
任务四:尝试练习,巩固内化 解答教材P11练习1、2、3、4
任务五:课堂小结,形成体系
今天我们从温度计和“道路情境”抽象出了数轴,数轴上的每一个点都表示一个 数,而每一个有理数也都可以用数轴上的一个点表示,这是数与图形的奇妙结合。
数轴
布置作业: 教材P17习题1.2,第2、6题
1.2.2 人教版七年级上册数学 第一章《有理数》数轴 专题训练含答案及解析

简单1、在数轴上,一点从原点开始,先向右移动2个单位,再向左移动3个单位后到达终点,这个终点表示的数是()A.-1 B.1 C.5 D.-5 【分析】根据向右移动用加,向左移动用减进行计算,列式求解即可.【解答】根据题意,0+2-3=-1,∴这个终点表示的数是-1.故选A.2、在数轴上表示数-3,0,2.5,0.4的点中,不在原点右边的有()A.0个B.1个C.2个D.3个【分析】根据2.5,0.4是正数,在原点右边,-3是负数,在原点左边,0在在原点,即可求得答案.【解答】∵2.5,0.4是正数,在原点右边,-3是负数,在原点左边,0在在原点,∴不在原点右边的有:-3和0.故选C.3、如图所示,数轴上A、B两点所表示的有理数的和是()A.3 B.2 C.1 D.-1 【分析】根据图示找出点A、B所表示的有理数,然后求它们的和即可.【解答】根据图示知,数轴上A、B两点所表示的有理数是-3和2,所以它们的和为:(-3)+2=-1;故选C.4、已知数轴上的A点到原点的距离是2,那么在数轴上到A点的距离是3的点所表示的数有()A.1个B.2个C.3个D.4个【分析】本题要先对A点所在的位置进行讨论,得出A点表示的数,然后分别讨论所求点在A的左右两边的两种情况,即可得出答案.【解答】∵数轴上的A点到原点的距离是2,∴点A可以表示2或-2.(1)当A表示的数是2时,在数轴上到A点的距离是3的点所表示的数有2-3=-1,2+3=5;(2)当A表示的数是-2时,在数轴上到A点的距离是3的点所表示的数有-2-3=-5,-2+3=1.故选D.5、在数轴上,点M表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N,则点N表示的数是___________.【分析】根据数轴上左加右减的原则进行解答即可.【解答】数轴上表示-2的点先向右移动4.5个单位的点为:-2+4.5=2.5;再向左移动5个单位的点为:2.5-5=-2.5.故答案为:-2.5.6、如果数轴上点A所对应的有理数是−112,那么数轴上距A点5个单位长度单位的点所对应的有理数是多少?【分析】设距A点5个单位长度单位的点所对应的有理数是x,再根据数轴上两点间的距离公式求出x的值即可.【解答】设距A点5个单位长度单位的点所对应的有理数是x,则1152x+=,解得72x=或132x=-.答:数轴上距A点5个单位长度单位的点所对应的有理数是72或132-.简单题1.如图:下面给出的四条数轴中画得正确的是()A.B.C.D.【分析】根据数轴的三要素来判断数轴是否正确.数轴三要素:原点,正方向,单位长度.【解答】A、没有原点,故错误;B、三要素完整,故正确;C、0的左边应该是负数,右边是正数,故错误;D、单位长度不一致,故错误.故选B.2. 下列说法正确的是()A.有原点、正方向的直线是数轴B.数轴上两个不同的点可以表示同一个有理数C.有些有理数不能在数轴上表示出来D.任何一个有理数都可以用数轴上的点表示【分析】根据数轴的定义及意义,依次分析选项可得答案.【解答】根据题意,依次分析选项可得,A、根据数轴的概念,有原点、正方向且规定了单位的直线是数轴,A错误;又由实数与数轴上的点是一一对应的,故B、C均错误;D、实数与数轴上的点是一一对应的,即任何一个有理数都可以用数轴上的点表示,正确;故选D.3. 在数轴上,原点右边的点表示()A.正数B.负数C.整数D.非负数【分析】在数轴上,原点右边的数是正数,原点左边的数是负数,原点表示0,根据以上内容选出即可.【解答】在数轴上,原点右边的数是正数,故选A.4. 设a是一个负数,则数轴上表示数-a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【分析】根据数轴的相关概念解题.【解答】因为a是一个负数,则-a是一个正数,二者互为相反数,-a在原点的右边.故选B.5.数轴上找不到既不表示正数也不表示负数的点.A.正确B.错误解答:原点既不表示正数,也不表示负数,它表示0.故选B.6.所有的有理数都可以用数轴上的点来表示.A.正确B.错误解答:有理数与数轴上的点是一一对应的.故选A.7.数轴上表示—a的点一定在原点的左边.A.正确B.错误解答:当a为负数时,—a就是正数,这时表示的点就在原点的右边.故选B.难题1. 数轴上,对原点性质表述正确的是()A.表示0的点B.开始的一个点C.数轴中间的一个点D.它是数轴上的一个端点【分析】理解原点是表示0的点,由此分析即可得出正确选项.【解答】在数轴上,我们把原点定义为表示0的点.故选A.2. 下列结论正确的个数是()①规定了原点、正方向和单位长度的直线叫数轴;②同一数轴上的单位长度都必须一致;③有理数都可以表示在数轴上;④数轴上的点都表示有理数.A.0 B.1 C.2 D.3【分析】根据数轴的定义对各小题进行逐一判断即可.【解答】①符合数轴的定义,故本小题正确;②同一数轴上的单位长度都必须一致是数轴的特点,故本小题正确;③有理数都可以表示在数轴上,故本小题正确;④数轴上的点都表示实数,故本小题错误.故选D.3. 数轴上原点及原点左边的点表示的数是()A.负整数B.正整数C.负数D.负数和0 【分析】根据数轴的特点进行解答即可.【解答】∵数轴上右边的数总比左边的大,∴原点左边的点表示的数都小于0,∴原点左边的点表示的数是负数;∴数轴上原点及原点左边的点表示的数是负数和0;故选D.4.下列语句:1.数轴上的点只能表示整数;2.数轴是一条线段;3.数轴上的一个点只能表示一个数;4.数轴上找不到既不表示正数又不表示负数的点。
人教版七年级数学上册:第一章有理数1.2.2数轴(教案)

-理解数轴上的对称性,尤其是关于原点的对称。
-掌握数轴上两点间距离的计算方法。
-理解数轴上的相反数和绝对值概念。
-解决与数轴相关的复杂问题。
举例:难点在于让学生理解数轴上对称性的概念,如-3和3在数轴上是关于原点对称的。同时,解释数轴上两点间距离的计算,如点A表示数-2,点B表示数5,点A和点B之间的距离是7个单位长度。此外,帮助学生理解一个数的相反数在数轴上的位置关系,以及绝对值表示的几何意义。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解数轴的基本概念。数轴是一个直线,用来表示有理数,它有三个要素:原点、正方向和单位长度。数轴是数学中非常重要的工具,它帮助我们直观地理解数的大小和相对位置。
2.案例分析:接下来,我们来看一个具体的案例。比如,气温的变化可以用数轴来表示,零上温度在原点右侧,零下温度在原点左侧,这样我们可以清楚地看到温度的升降。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用尺子在教室内创建一个数轴,并标出不同的有理数位置。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数轴在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
学生小组讨论的环节,让我看到了学生们思维的火花。他们能够从不同的角度看待问题,提出各种有趣的见解。但我也意识到,我需要更好地引导他们,将讨论聚焦于数轴的核心概念和应用上,避免讨论偏离主题。
总的来说,今天的课堂让我认识到,教学过程中需要关注每一个学生的个体差异,因材施教,充分调动他们的学习积极性。在今后的教学中,我将不断总结经验,努力提高教学效果,让数学课堂变得更加生动有趣。
人教版七年级数学上册 1.2.2 数轴 说课稿

七年级数学上“数轴”说课稿一:教材分析:《数轴》是七年级数学上册第一章第二节“有理数”中第二课时内容。
本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。
数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。
二:教学目标:根据新课标的要求及七年级学生的认知水平我制定的教学目标如下:1. 使学生理解数轴的三要素,会画数轴;2. 能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示;3. 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。
三:教学重难点:教学重点:正确理解数轴的概念和有理数在数轴上的表示方法;教学难点: 建立有理数与数轴上的点的对应关系(数与形的结合)四、教法学法1.说教法:我主要以“三疑三探教学模式”教学法为主,利用多媒体教学技术生动形象展示出数轴的相关知识,从而引导学生自主探索,学会数形结合的数学思想。
2.说学法:以“小组合作”的探讨式学习方法,引导学生先进行自主探究,有疑问在小组讨论解决,进而培养学生良好的学习习惯。
五:教学过程设计:分为(一)作业前置(二)引入新课,设疑自探(三)解疑合探(四)质疑再探,重难点点拨(五)拓展训练(六)课堂小结(七)布置作业等步骤(一)作业前置:1、下列各数中,哪些是正数?哪些是负数?7,-9.24,910,-301,427,31.25,0.正数有:负数有:2.有理数按照“正负分类”可以分为几类?3.如何用“几何图形”来直观的表示正数和负数,生活中有哪些利用正负数描述事物的例子?通过学生课前完成作业前置来复习旧知,并联系新课,对数轴的认识。
人教版数学七年级上册 第一章 有理数 1.2.2 数轴

人教版数学七年级上册第一章有理数1.2.2 数轴【学习目标】1.理解数轴的概念及三要素;2.理解有理数与数轴上的点的关系,并会借助数轴比较两个数的大小;【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.【典型例题】类型一、数轴的概念【例题】1.如图所示是几位同学所画的数轴,其中正确的是 ( )A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4)【答案】C【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)图中漏画了表示方向的箭头.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.【巩固练习】一、选择题1.下列说法正确的是( )A.数轴上一个点可以表示两个不同的有理数B.数轴上的两个不同的点表示同一个有理数C.有的有理数不能在数轴上表示出来D.任何一个有理数都可以在数轴上找到与它对应的唯一点2.如图,有理数a,b在数轴上对应的点如下,则有( ).(A)a>0>b (B)a>b>0 (C)a<0<b (D)a<b<03.从原点开始向右移动3个单位,再向左移动1个单位后到达A点,则A点表示的数是( ). A.3 B.4 C.2 D.-24.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这条数轴上任意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是( )A.2002或2003 B.2003或2004C.2004或2005 D.2005或20065.北京、纽约等5个城市的国际标准时间(单位:小时)可在数轴上表示如图若将两地国际标准时间的差简称为时差,则()A.首尔与纽约的时差为13小时B.首尔与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时二、填空题1.已知数轴上有A,B两点,A,B之间的距离为1,点A与原点O的距离为3,那么点B对应的数是.2. 若a为有理数,在-a与a之间(不含-a与a)有21个整数,则a的取值范围是.3.如图所示,矩形ABCD的顶点A,B在数轴上,CD=6,点A对应的数为-1,则点B所对应的数为.4.数轴上离原点的距离小于3.5的整数点的个数为m , 距离原点等于3.5的点的个数为n , 则3____m n -=.三、解答题1.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米.(1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?【答案与解析】一、选择题1.【答案】D【解析】A 、B 、C 都错误,因为所有的有理数都能在数轴上表示出来,但数轴上的点不都表示有理数;一个有理数在数轴上只有一个表示它的点.数轴上表示有理数的点一个点对应一个有理数.2.【答案】C3.【答案】C4.【答案】C【解析】若线段AB 的端点与整数重合,则线段AB 盖住2005个整点;若线段AB 的端点不与整点重合,则线段AB 盖住2004个整点.可以先从最基础的问题入手.如AB =2为基础进行分析,找规律.所以答案:C5.【答案】B【解析】本题以“北京等5个城市的国际标准时间”为材料,编拟了一道与数轴有关的实际问题.从选项上分析可得:两个城市之间相距几个单位长度,两个点之间的距离即为时差.所以首尔与纽约的时差为14小时,首尔与多伦多的时差为13小时,北京与纽约的时差为13小时,北京与多伦多的时差为12小时.因此答案:B.二、填空题1.【答案】±2,±4【解析】解:∵点A 和原点O 的距离为3,∴点A 对应的数是±3.当点A 对应的数是+3时,则点B 对应的数是1+3=4或3﹣1=2;当点A 对应的数是﹣3时,则点B 对应的数是﹣3+1=﹣2或﹣3﹣1=﹣4.2. 【答案】1011-1110a a <≤≤<-或3. 【答案】5【解析】CD =AB =6,即A 、B 两点间距离是6,故点B 对应的数为5.4. 【答案】1【解析】由题意可知:7,2m n ==,所以27321m n -=-⨯=三、解答题1. 【解析】(1)如图所示(2)小敏从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其路程为50×8=400(米),由上图知,此时小敏位于家西300米处,所以小敏在学校与图书馆之间,且距图书馆100米,距学校150米.。
人教版七年级上册数学课件1.2.2数轴(共17张PPT)

§2.2 数轴(1)
一、前置性预习
观察图中的温度计,回答下列问题:
(1)点A表示多少摄氏度?点B和点C呢? (2)A、B、C三点所表示的温度哪个高?
哪个低? (3)温度计刻度的正、负是怎样规定的?以
什么为基准?基准刻度线表示多少摄氏度?
(4)每摄氏度两条刻度线之间有什么特点?
-5 -4 -3 -2 -1 0 1 2 3 4 5 6
返回
通过本节课的学习,
我学会了…… 我感到最有趣的是… …
原点
1.数轴的三要素
正方向 单位长度
2.会用数轴上的点表示数,
能读出数轴上的点表示的数。
3.数轴的引入,使我们能用直观图形来 理解数的有关概念,这就是“数”与 “形”的结合,数形结合是一种重要的 方法,我们应注意掌握。
请小组合作,完成下面题目:
能否尝试着仿照温度计的模式,设计一条特殊的 直线表示有理数呢?
-
+
-3 -2 -1 0 1 2 3 4
1.数轴的概念
规定了原点、正方向和单位长度的直线
叫做数轴
题1 在数轴上画出表示下列各数的点:
Hale Waihona Puke ( 1) 0.5, 5, 0, 4, 5, 0.5, 1, 4
2
2
( 2 ) 2, 0 10 , 5 50 , 1 0, 0 100
任何一个有理数都可以用数轴上的一个点来表示。
题2
如图,数轴上的点A,B,C,D分别表示什么数?
A
BC
D
01
例1.解:A表示-5,B表示-1, C表示0, D表示3.5
恭喜你,答对获得4分
如图,在数轴上距离点A两个单位长度的 点所表示的数是 1和-.3
人教版七年级数学上册热点:第1章:数轴、相反数、绝对值

学生做题前请先回答以下问题问题1:有理数有几种分类,分别是什么?问题2:数轴的定义是什么?数轴的作用有哪些?问题3:什么是相反数,怎么找一个数或一个式子的相反数?问题4:什么是绝对值,绝对值法则是什么?问题5:(1)如果数a的绝对值等于a,那么a可能是正数吗?可能是0吗?可能是负数吗?(2)如果数a的绝对值大于a,那么a可能是正数吗?可能是0吗?可能是负数吗?(3)一个数的绝对值可能小于它本身吗?数轴、相反数、绝对值(人教版)一、单选题(共18道,每道5分)1.如果收入50元记作+50元,那么支出30元记作( )A.+30元B.-30元C.+80元D.-80元答案:B解题思路:正数和负数表示相反意义的量,收入和支出是相反意义的量,所以如果收入50元记作+50元,那么支出30元记作-30元.故选B.试题难度:三颗星知识点:正数和负数的意义2.有如下一些数:-3,-3.14,-(-20),0,+6.8,,,其中负数有( )A.2个B.3个C.4个D.5个答案:B解题思路:试题难度:三颗星知识点:负数3.下列说法正确的是( )A.正有理数和负有理数统称为有理数B.正分数、0、负分数统称为分数C.小数3.14不是分数D.整数和分数统称为有理数答案:D解题思路:选项A:正有理数、负有理数和0统称为有理数,0既不是正有理数也不是负有理数,错误;选项B:正分数、负分数统称为分数,0是整数不是分数,错误;选项C:3.14是有限小数,可以写成分数的形式,错误;选项D:整数和分数统称为有理数,正确.故选D.试题难度:三颗星知识点:有理数及其分类4.下列说法正确的是( )A.正整数和负整数统称整数B.0既不是正数,也不是负数C.0是最小的有理数D.有理数就是正有理数和负有理数答案:B解题思路:选项A:正整数、0和负整数统称为整数,A选项错误;选项B:0既不是正数,也不是负数,正确选项C:所有的负有理数都比0小,所以0不是最小的有理数,错误;选项D:有理数包括正有理数、0和负有理数,错误.故选B.试题难度:三颗星知识点:有理数及其分类5.5的相反数是( )A. B.C.+5D.-5答案:D解题思路:只有符号不同的两个数互为相反数,因此5的相反数是-5.故选D.试题难度:三颗星知识点:相反数6.下列各数中,是正数的是( )A. B.-3的相反数C. D.-3的相反数的相反数答案:B解题思路:试题难度:三颗星知识点:相反数7.如图,在数轴上点A表示的数可能是( )A.1.5B.-1.5C.-2.4D.2.4答案:C解题思路:试题难度:三颗星知识点:数轴的作用——表示数8.已知有理数a,b在数轴上的位置如图所示,则下列选项错误的是( )A.a<0<bB.b>-aC.-a>0D.-b>a答案:D解题思路:试题难度:三颗星知识点:利用数轴比较大小9.已知有理数a,b在数轴上的位置如图所示,则a,-b,,从大到小的顺序为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:利用数轴比较大小10.如图,如果数轴上A,B两点之间的距离是8,那么点B表示的数是( )A.5B.-5C.3D.-3答案:D解题思路:试题难度:三颗星知识点:数轴的作用——表示距离11.下列各对数中,互为相反数的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:绝对值法则12.若,则( )A.2mB.0C.-2mD.m答案:B解题思路:试题难度:三颗星知识点:绝对值法则13.数轴上的点A到原点的距离是6,则点A表示的数为( )A.6或-6B.6C.-6D.3或-3答案:A解题思路:试题难度:三颗星知识点:数轴的作用——表示距离14.若,则a=( )A.4B.-4C.±4D.±2答案:C解题思路:试题难度:三颗星知识点:绝对值的定义15.若,则( )A.0B.xC.-xD.以上答案都不对答案:C解题思路:试题难度:三颗星知识点:绝对值法则16.是一个( )A.正数B.非正数C.非负数D.负数答案:B解题思路:试题难度:三颗星知识点:绝对值法则17.若,则a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:绝对值法则18.已知学校、图书馆和小明家依次坐落在一条东西走向的大街上,学校在图书馆西边20米处,小明家位于图书馆东边70米处,小明从图书馆沿街向东走了30米,接着又向东走了-40米,此时小明的位置在( )A.图书馆B.小明家C.学校西10米处D.学校东10米处答案:D解题思路:试题难度:三颗星知识点:数轴的作用——表示数2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短2.如图,AB ∥CD ,CD ⊥EF ,若∠1=125°,则∠2=( )A .25° B.35° C.55° D.65° 3.下列说法中,不正确的个数是( )①将一根细木条固定在墙上至少需要两个钉子,这是因为:两点确定一条直线 ②角的两边越长,角的度数越大 ③多项式5ab -是一次二项式 ④232a b π的系数是32A.1B.2C.3D.44.如图,钟面上的时间是8:30,再经过t 分钟,时针、分针第一次重合,则t 为( )A .756B .15011C .15013D .180115.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-16.如图,两个三角形的面积分别是 7 和 3,对应阴影部分的面积分别是 m 、n , 则 m ﹣n 等于( )A .4B .3C .2D .不能确定7.如图,是用形状、大小完全相同的小菱形组成的图案,第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,……,按照此规律,第n 个图形中小菱形的个数用含有n 的式子表示为( )A .21n +B .32n -C .31n +D .4n8.请通过计算推测32018的个位数是( ) A .1B .3C .7D .99.下列结论不正确的是( )A .若a >0,b >0,则ab >0B .若a <0,b <0,则a ﹣b <0C .若a >0,b <0,且|a|>|b|,则a ﹣b >0D .若a <0,b >0,且|a|>|b|,则a ﹣b <0 10.5-的相反数是( ) A.15B.5C.15-D.5-11.下列运算正确的是( ).A .-(-3)2=-9 B .-|-3|=3 C .(-2)3=-6 D .(-2)3=812.某商贩在一次买卖中,同时卖出两件上衣,售价都是120元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( ).A .赔16元B .不赚不赔C .赚8元D .赚16元 二、填空题13.如图,以图中的A 、B 、C 、D 为端点的线段共有___条.14.如图,在△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过点O 作DE//BC ,分别交AB,AC 于点D,E,若AB=4,AC=3,则△ADE 的周长是_______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
启发诱导,初步运用: 有了数轴以后,所有的有理数都可以表示 在数轴上,那么反过来,数轴上的点是否 只表示有理数呢?(作为一个问题我让学生 去思考,为后面实数的学习埋下伏笔,这 里不再展开。)
(三) 手脑并用 深入理解
2、画数轴并表示出下列有理数。
2.5, -2 , 2,0,
9 2
2 ,3
-
3、指出数轴上A、B、C、D 、E点 分别表示什么数?
2、说学法:
“多观察、动脑想、大胆猜、勤 钻研”的研讨式学习方法。学生主要 采取自主式﹑合作式﹑探讨式的学习 方法,进而培养良好的学习习惯:
(一) 创设情景 引入课题 (二)得出定义 揭示内涵
(三) 手脑并用 深入理解 (四) 归纳总结 强化思想
(五) 分层作业 巩固课题
(一) 创设情景 引入课题
C E D
0 1
A
2 3 4 5
B
6
-5 -4 -3 -2 -1
分析:利用黑板上的例题图形让学生来操作,教师提 出要求: 1、要把点标在线上 2、要把数标在点的下方 这时,此题再拓展成说出几个有理数让学生去 标点,好让更多的学生去展示自己,并进一步 让学生从中感受已知有理数能用数轴上的点表 示,从而加深对数形结合思想的理解。 设计意图:学生会用数轴上的点表示有理数; 会利用数轴比较有理数的大小;并在这个学习 过程中,初步了解数形结合的思想方法,培养 了学生用联系的观点看待问题。
地位和作用
重概念和有理数在数轴 上的表示方法。学生初步接触数轴,对数轴 的表示方法比较陌生,故确定为教学重点。
教学难点:
建立有理数与数轴上的点的对应关系( 数与形的结合)。有理数与数轴的对应关系 学生相对难以理解,故确定其为教学难点。 教材分析 教学目标
(1)、知识技能
最后我用美国著名教育家 布鲁纳的一句话结束我今 天的说课:“探索是数学 教学的生命线”.
(二)得出定义 揭示内涵
2单位长度 、丰富数轴的内涵:分数和小数在数轴上怎么表示?
原点
正方向(向左或向右)
3、观察数轴上的有理数排列的大小?
5 -2 2
-1 0 1 1 1.5 2
2
3
-3 -2 -1 0
1
2
3
① 位于数轴左(下)边的数总比右(上)边的数_。 ② 一般地,设a是一个正数,则数轴上表示数 a在原点的____边,与原点的距离是____ 个单位长度;表示数-a的点在原点的____ 边,与原点的距离是____个单位长度。
30 25 20 15 10 5 0 -5 -10
30 25 20 15 10 5 0 -5 -10
O
4.8
3
0 1
3
7.5
(二)得出定义 揭示内涵
1、提问,到底什么是数轴?如何画数轴?
单位长度
原点
正方向(向左或向右)
-3
-2 -1 0
1
2
3
分析:(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0, 数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。) (2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯 与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无 限延伸。) (3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点 向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可 根据实际情况而定,但同一单位长度所表示的量要相同。) (由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。) 设计意图:画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”(通 过教师的亲切的语言启发学生,以培养师生间的默契。)通过讨论由师生共同得到数 轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
知识与技能 过程与方法 情感态度与价值观
情感态度价值观:
通过列举生活中的温度计的刻度表示引 入,使学生明白数学来源于生活;通过探究 学习,增强发现问题、解决问题的意识,培 养与他人交流合作的习惯,体验探究过程中 的方法及乐趣。
知识与技能 过程与方法 情感态度与价值观
1、说教法:
我主要以参与式、探究式教学法为主。 充分利用现代多媒体教学技术生动形象 展示出数轴的相关知识,从而引导学生 自主探索,学会数形结合的数学思想。
下一页
1、说教材的地位和作用 2、说教学重点和难点
《数轴》人教版九年义务教育七年级教科书第一册第 1.2.2“数轴”的第一课时内容。 本节课主要是在学生学习了有理数概念的基础上, 从标有刻度的温度计表示温度高低这一事例出发,引出 数轴的画法和用数轴上的点表示数的方法,初步向学生 渗透数形结合的数学思想,以使学生借助直观的图形来理 解有理数的有关问题。数轴不仅是学生学习相反数、绝 对值等有理数知识的重要工具,还是以后学好不等式的 解法、函数图象及其性质等内容的必要基础知识。
(2)、过程与方法 (3)、情感态度与价值观
知识技能:
①了解数轴的概念,学会如何画数轴; ②知道如何在数轴上表示有理数,能 说出数轴上表示有理数的点所表示 的数,知道任何一个有理数在数轴 上都有唯一的点与之对应。
知识与技能 过程与方法 情感态度与价值观
过程与方法:
①从直观认识到理性认识,从而建立 数轴概念。 ②通过数轴概念的学习,初步体会对 应的思想,数形结合的思想方法。
(三) 手脑并用 深入理解
4.数轴上的点P与表示有理数3的点A距离是2, (1)试确定点P表示的有理数; (2)将A向右移动2个单位到B点,点B表示的有理数是 多少? (3)再由B点向左移动9个单位到C点,则C点表示的有 理数是多少 设计意图:先让学生通过小组讨论得出结果,通过以 上练习使学生在掌握知识的基础上达到灵活运用,形 成一定的能力。
3、思考练习
在数轴上能否实际画出表示一千分之一的点?这个 点存在吗?
§1.2.2数轴
1、定 义:规定了原点、正方向和单 位长度的直线叫数轴.
正方向 原点 (向左或向右)
单位长度
-3 -2 -1 0 1 2 3
2、三要素: A、原点O(直线上任意一点) B、正方向(向上或向下) C、单位长度(适当长度,统一)
设计意图:这样设计,对刚刚学习有理数中 的正负数,对正负数的概念理解还不是很深 刻,容易造成知识遗忘的七年级学生来说是 合理的。 结合实例使学生以轻松愉快的心情 进入了本节课的学习,也使学生体会到数学 来源于实践,同时对新知识的学习有了期待, 为顺利完成教学任务作了思想上的准备。
(一) 创设情景 引入课题
2、画情境图,体会方向与距离。
在一条东西向的马路上,有一个汽车站, 汽车站东3m和7.5m处有一棵柳树和一棵杨树, 汽车站西3m和4.8m处分别有一棵槐树和一根 电线杆,试画图表示这一情境。
O
4.8
3
0 1
3
7.5
(一) 创设情景 引入课题
3、对比观察,
引入课题。
30 25 20 15 10 5 0 -5 -10
分析:(D)从数轴的三要素出发,是正确的,(A) 、 (B) 、(C)是学生可能出现的错误,给学生足够的观察、 思考的时间然后展开充分的讨论,教师参与到学生的 讨论之中去接触学生,认识学生,关注学生。 设计意图:为进一步强化概念,在对数轴有了正确认识 的基础上,请大家在练习本上画一个数轴(请三位同学 画在黑板上),学生在画数轴时教师巡视并予以个别指 导,关注学生的个体发展,画完后教师给出评价,如 “很好”、“很规范”、“老师相信你,你一定行”等 语言来激励学生,以促进学生的发展;并强调:原点、 正方向和单位长度是数轴的三要素,画数轴时这三要素 缺一不可。
(四) 归纳总结 强化思想
1、你知道什么是数轴吗?这节课 你学会了用什么来表示有理数?
2、数轴上,会不会有两个点表示 同一个有理数?会不会有一个点 表示两个不同的有理数?
(五) 分层作业 强化思想
1、教材第14页第2 、3题。 2、补充练习。
⑴ ⑵ ⑶ ⑷
画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。 画一条数轴,并表示出如下各点:1000,5000,-2000。 在数轴上标出到原点的距离小于3的整数。 在数轴上标出-5和+5之间的所有整数。
1、观察温度计,体会数、形对应。
学生观察温度计后回答下列问题: ①零上5℃怎样表示?
30 25 30 25 20 15 10 5 0 -5 -10 30 25 20 15 10 5 0 -5 -10
②零下10℃怎样表示?
③0℃怎样表示?
20 15 10 5 0 -5 -10
分析:然后让大家想一想:能否与温度计类 似,在一条直线上画上刻度,标出读数,用 直线上的点表示正数、负数和0呢?(答案 是肯定的,从而引出课题:数轴。)
教学评价:
有了数轴,数和形得到了初步结合,这有利于学 生对数学问题的研究,数形结合是学生理解数学、 学好数学的重要思想方法。 为了突出正确理解数轴的概念和有理数在数轴上 的表示方法这个教学重点,突破建立有理数与数 轴上的点的对应关系(数与形的结合)这个教学难点, 在本节课的教学过程中,我始终注意发挥学生的 主体作用,让学生通过自主、探究、合作学习来 主动发现结论,实现师生互动,通过这样的教学 实践取得了良好的教学效果,学生在课堂上得到 了新的发展。