(word完整版)人教版初二数学上学期主要概念
最新初中数学新课程标准(版)word版

目录第一部分前言 (2)一、课程性质 (2)二、课程基本理念 (2)三、课程设计思路 (3)第二部分课程目标 (5)一、总目标 (5)二、学段目标 (6)第三部分内容标准 (7)第三学段(7~9年级) (7)一、数与代数 (7)二、图形与几何 (10)三、统计与概率 (14)四、综合与实践 (15)第四部分实施建议 (16)一、教学建议 (16)二、评价建议 (21)三、教材编写建议 (25)四、课程资源开发与利用建议 (30)附录 (32)附录1有关行为动词的分类 (32)附录2内容标准及实施建议中的实例 (33)第一部分前言数学是研究数量关系和空间形式的科学。
数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。
特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。
一、课程性质义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。
数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。
义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。
二、课程基本理念1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
人教版八年级上册数学各章节核心概念总结

人教版八年级上册数学各章节核心概念总结第一章线性方程组与二元一次方程- 线性方程组:包含多个线性方程的方程组。
- 二元一次方程:具有两个变量、各项次数为1的方程。
第二章比例与相似- 比例:两个量之间的比较关系。
- 相似:形状和大小相同或相似的物体。
第三章平方根与立方根- 平方根:一个数的平方等于给定数的正平方根。
- 立方根:一个数的立方等于给定数的正立方根。
第四章下册中心与离差- 中心:数据的中心倾向,包括平均数、中位数和众数。
- 离差:数据离开中心的程度。
第五章进一法与退一法- 进一法:四舍五入到一个更大的整数。
- 退一法:四舍五入到一个更小的整数。
第六章母线与棱台、棱锥- 母线:棱台或棱锥底面上两个对顶顶点的连线。
- 棱台:底面是一个多边形,侧面是三角形的多面体。
- 棱锥:底面是一个多边形,侧面是三角形的多面体。
第七章勾股定理- 勾股定理:直角三角形中,直角边的平方等于两直角边上的两个小正方形的面积之和。
第八章统计- 统计:收集、整理、分析和解释数据的过程。
- 数据图:用图形的方式展示数据分布、趋势和关系。
第九章多边形的面积- 多边形:由线段组成的封闭图形。
- 面积:一个平面图形或曲面所包含的单位正方形的个数。
第十章随机事件与概率- 随机事件:在相同条件下可能发生的事件。
- 概率:某个事件发生的可能性。
第十一章三角形的面积- 三角形:三条边围成的封闭图形。
- 面积:三角形所包含的单位正方形的个数。
第十二章分式方程与分式不等式- 分式方程:含有分数的方程。
- 分式不等式:含有分数的不等式。
第十三章平行线与比例线段- 平行线:在同一平面内永远不相交的两条直线。
- 比例线段:在两个或多个相交直线上的线段之间的比。
第十四章三角形的相似- 三角形相似:两个或多个三角形的内角相等,对应边成比例。
第十五章平面直角坐标系- 平面直角坐标系:由两个互相垂直的直线和他们的交点确定的坐标系。
第十六章图形的相似与投影- 图形相似:两个图形形状相同或相似。
新人教版八年级数学上册知识点总结-人教数学八年级上册知识点

新人教版八年级数学上册知识点总结-人教数学八年
级上册知识点
以下是新人教版八年级数学上册的知识点总结:
1. 负数的概念和运算:了解负数的概念和性质,掌握负数的四则运算法则,学会在数轴上表示负数。
2. 整式的加减法:了解整式的概念和性质,学会整式的加减运算法则。
3. 一元一次方程:了解一元一次方程的概念和性质,学会解一元一次方程,了解方程的解集和方程解的判断。
4. 一次函数的概念:了解函数的概念和性质,学会用函数的图象、方程、表格等形式描述函数,了解一次函数的特点。
5. 一次函数的应用:学会利用一次函数解决实际问题,包括线性规律、线性关系和一次函数的应用问题。
6. 一次不等式:了解一次不等式的概念和性质,学会解一元一次不等式,并了解不等式解集的表示方法。
7. 数据的收集整理和可视化:了解数据的收集和整理方法,学会利用统计图形描述数据分布和提取数据信息。
8. 小数运算:了解小数的概念和性质,学会小数的四则运算和混合运算。
9. 长方形和正方形:了解长方形和正方形的性质和关系,学会计算长方形和正方形的面积和周长。
10. 平行线与角:了解平行线的性质和判定方法,学会利用平行线的性质解决平行线和角的问题。
以上是新人教版八年级数学上册的主要知识点总结,希望对你有帮助!。
(word完整版)初二数学最短路径问题知识归纳+练习,推荐文档

初二数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题 - 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【问题1】作法图形原理AlB在直线l 上求一点P,使PA+PB 值最小.连AB,与l 交点即为P.AP lB两点之间线段最短.PA+PB 最小值为AB.【问题2】“将军饮马”作法图形原理ABl在直线l 上求一点P,使PA+PB 值最小.作B 关于l 的对称点B'连A B',与l 交点即为P.ABlP两点之间线段最短.PA+PB 最小值为A B'.B'【问题3】作法图形原理l1Pl2在直线l1、l2上分别求点M、N,使△PMN 的周长最小.分别作点P 关于两直线的对称点P'和P'连,P'P''与,两直线交点即为M,N.P' l1MPNl2P''两点之间线段最短.PM+MN+PN 的最小值为线段P'P''的长.【问题4】作法图形原理l1QPl2在直线l1、l2上分别求点M、N,使四边形PQMN 分别作点Q 、P 关于直线l1、l2的对称点Q'和Q'l1M QP两点之间线段最短.四边形PQMN 周长的最P'连Q'P',与两直线交l2N 小值为线段P'P''的长.点即为M,N.P'PE3在直线 l 上求一点 P ,使 直线 l 的交点即为 P .端点的距离相等.PA - PB =0.PA - PB 的值最小.【问题 10】作法图形原理ABl在直线 l 上求一点 P ,使PA - PB 的值最大.作直线 AB ,与直线 l 的交点即为 P .ABPl三角形任意两边之差小于第三边. PA - PB ≤AB .PA - PB 的最大值=AB .【问题 11】作法图形原理AlB在直线 l 上求一点 P ,使PA - PB 的值最大.三角形任意两边之差小于A第三作 B 关于 l 的对称点 B ' 作直线 A B ',与 l 交点B'Pl边. PA - PB ≤AB '.即为 P .BPA - PB 最大值=AB '.【问题 12】“费马点”作法 图形原理A所求点为“费马点”,即满足DBC∠APB =∠BPC =∠APC=120°.以 AB 、AC 为APE两点之间线段最短. PA +PB +PC 最小值△ABC 中每一内角都小于 边向外作等边△ABD 、△ BC=CD .120°,在△ABC 内求一 ACE ,连 CD 、BE 相交于 点 P ,使 PA +PB +PC 值最 P ,点 P 即为所求.小.【精品练习】1. 如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD +PE 的和最小,则这个最小值为( )A. 2B. 2 ADC .3D .BC2. 如图,在边长为 2 的菱形 ABCD 中,∠ABC =60°,若将△ACD 绕点 A 旋转,当 AC ′、AD ′分别与 BC 、CD- 3 -662 EDM3交于点 E 、F ,则△CEF 的周长的最小值为()A .2B . 2C . 2 +D .43. 四边形 ABCD 中,∠B =∠D =90°,∠C =70°,在 BC 、CD 上分别找一点 M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为()A .120°B .130°C .110°D .140°A DBNC4. 如图,在锐角△ABC 中,AB =4 ,∠BAC =45°,∠BAC 的平分线交 BC 于点 D ,M 、N 分别是 AD 和AB 上的动点,则 BM +MN 的最小值是 .A5. 如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点 E 在 AB 边上,点 D 在 BC 边上(不与点 B 、C 重合),且 ED =AE ,则线段 AE 的取值范围是 .ACB6. 如图,∠AOB =30°,点 M 、N 分别在边 OA 、OB 上,且 OM =1,ON =3,点 P 、Q 分别在边 OB 、OA 上,则 MP +PQ +QN 的最小值是 .(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即 Rt △ABC 中,∠C =90°,则有 AC 2 + BC 2 = AB 2 )- 4 -D M33 yABOxyBA OCDx7. 如图,三角形△ABC 中,∠OAB =∠AOB =15°,点 B 在 x 轴的正半轴,坐标为 B ( 6 ,0).OC 平分∠AOB ,点 M 在 OC 的延长线上,点 N 为边 OA 上的点,则 MA +MN 的最小值是.8. 已知 A (2,4)、B (4,2).C 在 y 轴上,D 在 x 轴上,则四边形 ABCD 的周长最小值为,此时 C 、D 两点的坐标分别为.9.已知 A (1,1)、B (4,2).(1)P 为 x 轴上一动点,求 PA +PB 的最小值和此时 P 点的坐标;(2)P 为 x 轴上一动点,求 PA PB 的值最大时 P 点的坐标;(3)CD 为 x 轴上一条动线段,D 在 C 点右边且 CD =1,求当 AC +CD +DB 的最小值和此时 C 点的坐标;10. 点 C 为∠AOB 内一点.(1) 在 OA 求作点 D ,OB 上求作点 E ,使△CDE 的周长最小,请画出图形;(2) 在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.A- 5 -yBA OxyBA OxCO BAF11.(1)如图①,△ABD 和△ACE 均为等边三角形,BE 、CE 交于 F ,连 AF ,求证:AF +BF +CF =CD ;(2)在△ABC 中,∠ABC =30°,AB =6,BC =8,∠A ,∠C 均小于 120°,求作一点 P ,使 PA +PB +PC 的值最小,试求出最小值并说明理由.DEBC① ①① ①12.荆州护城河在 CC '处直角转弯,河宽相等,从 A 处到达 B 处,需经过两座桥 DD '、EE ',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使 A 到 B 点路径最短?- 6 -- 7 -“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
人教版初二数学(上)知识点归纳

- 1 -初二数学(上)应知应会的知识点第十一章 全等三角形几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义: 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) ABC D几何表达式举例: (1) ∵AD 平分∠BAC ∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD ∴AD 是角平分线 2.三角形的中线定义: 在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)ABCD几何表达式举例:(1) ∵AD 是三角形的中线 ∴ BD = CD (2) ∵ BD = CD∴AD 是三角形的中线 3.三角形的高线定义: 从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线. (如图)AB CD几何表达式举例:(1) ∵AD 是ΔABC 的高 ∴∠ADB=90° (2) ∵∠ADB=90°∴AD 是ΔABC 的高 ※4.三角形的三边关系定理: 三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)AB C几何表达式举例:(1) ∵AB+BC >AC ∴…………… (2) ∵ AB-BC <AC∴…………… 5.等腰三角形的定义: 有两条边相等的三角形叫做等腰三角形. (如图)ABC几何表达式举例:(1) ∵ΔABC 是等腰三角形 ∴ AB = AC (2) ∵AB = AC∴ΔABC 是等腰三角形- 2 -6.等边三角形的定义: 有三条边相等的三角形叫做等边三角形. (如图)ABC几何表达式举例: (1)∵ΔABC 是等边三角形 ∴AB=BC=AC (2) ∵AB=BC=AC∴ΔABC 是等边三角形 7.三角形的内角和定理及推论: (1)三角形的内角和180°;(如图) (2)直角三角形的两个锐角互余;(如图) (3)三角形的一个外角等于和它不相邻的两个内角的和;(如图) ※(4)三角形的一个外角大于任何一个和它不相邻的内角 .(1) (2) (3)(4) 几何表达式举例: (1) ∵∠A+∠B+∠C=180° ∴………………… (2) ∵∠C=90° ∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B∴………………… (4) ∵∠ACD >∠A ∴…………………8.直角三角形的定义: 有一个角是直角的三角形叫直角三角形.(如图)ABC几何表达式举例: (1) ∵∠C=90° ∴ΔABC 是直角三角形 (2) ∵ΔABC 是直角三角形 ∴∠C=90° 9.等腰直角三角形的定义: 两条直角边相等的直角三角形叫等腰直角三角形.(如图)ABC几何表达式举例: (1) ∵∠C=90° CA=CB∴ΔABC 是等腰直角三角形 (2) ∵ΔABC 是等腰直角三角形∴∠C=90° CA=CB 10.全等三角形的性质:(1)全等三角形的对应边相等;(如图) (2)全等三角形的对应角相等.(如图)几何表达式举例: (1) ∵ΔABC ≌ΔEFG ∴ AB = EF ……… (2) ∵ΔABC ≌ΔEFG ∴∠A=∠E ………ABCGEFDAB CABCABC- 3 -11.全等三角形的判定:“SAS ”“ASA ”“AAS ”“SSS ”“HL ”. (如图)(1)(2)(3)几何表达式举例: (1) ∵ AB = EF ∵ ∠B=∠F 又∵ BC = FG ∴ΔABC ≌ΔEFG (2) ……………… (3)在Rt ΔABC 和Rt ΔEFG 中 ∵ AB=EF 又∵ AC = EG ∴Rt ΔABC ≌Rt ΔEFG12.角平分线的性质定理及逆定理:(1)在角平分线上的点到角的两边距离相等;(如图)(2)到角的两边距离相等的点在角平分线上.(如图)A O BCDE几何表达式举例: (1)∵OC 平分∠AOB又∵CD ⊥OA CE ⊥OB ∴ CD = CE(2) ∵CD ⊥OA CE ⊥OB又∵CD = CE∴OC 是角平分线 13.线段垂直平分线的定义: 垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)ABEFO几何表达式举例:(1) ∵EF 垂直平分AB ∴EF ⊥AB OA=OB (2) ∵EF ⊥AB OA=OB ∴EF 是AB 的垂直平分线 14.线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)ABCM N P几何表达式举例: (1) ∵MN 是线段AB 的垂直平分线 ∴ P A = PB (2) ∵P A = PB∴点P 在线段AB 的垂直平分线上A B C G EF AB C EF G15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都是60°.(如图)AB C(1)AB CD(2)AB C(3)几何表达式举例:(1) ∵AB = AC∴∠B=∠C(2) ∵AB = AC又∵∠BAD=∠CAD∴BD = CDAD⊥BC………………(3) ∵ΔABC是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形是等边三角形;(如图)(3)有一个角等于60°的等腰三角形是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)AB C(1)AB C(2)(3)ABC(4)几何表达式举例:(1) ∵∠B=∠C∴AB = AC(2) ∵∠A=∠B=∠C∴ΔABC是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC是等边三角形(4) ∵∠C=90°∠B=30°∴AC =21AB17.关于轴对称的定理(1)关于某条直线对称的两个图形是全等形;(如图)(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AEEFMOABCNG- 4 -- 5 -18.勾股定理及逆定理: (1)直角三角形的两直角边a 、b 的平方和等于斜边c 的平方,即a2+b2=c2;(如图) (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)ABC几何表达式举例: (1) ∵ΔABC 是直角三角形 ∴a2+b2=c2 (2) ∵a2+b2=c2∴ΔABC 是直角三角形 19.Rt Δ斜边中线定理及逆定理: (1)直角三角形中,斜边上的中线是斜边的一半;(如图) (2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图) DABC几何表达式举例: ∵ΔABC 是直角三角形∵D 是AB 的中点∴CD = 21AB(2) ∵CD=AD=BD ∴ΔABC 是直角三角形几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题) 一 基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数. 二 常识:1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA.4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即:A BCE DABCD12- 6 -(1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加; ② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD 是角平分线)① 在BA 上截取BE=BC 构造全等,转移线段和角;② 过D 点作DE ∥BC 交AB 于E ,构造等腰三角形 .BCD AE BCD AE- 7 -(3)已知三角形中线(若AD 是BC 的中线)① 过D 点作DE ∥AC 交AB 于E ,构造中位线 ; ② 延长AD 到E ,使DE=AD连结CE 构造全等,转移线段和角;③ ∵AD 是中线 ∴S ΔABD= S ΔADC (等底等高的三角形等面积)(4) 已知等腰三角形ABC 中,AB=AC① 作等腰三角形ABC 底边的中线AD (顶角的平分线或底边的高)构造全 等三角形; ② 作等腰三角形ABC 一边的平行线DE ,构造新的等腰三角形.(5)其它 作等边三角形ABC 一边 的平行线DE ,构造新的等边三角形;② 作CE ∥AB ,转移角;③延长BD 与AC 交于E ,不规则图形转化为规则图形;④ 多边形转化为三角形;⑤ 延长BC 到D ,使CD=BC ,连结AD ,直角三角形转化为等腰三角形;⑥ 若a ∥b,AC,BC 是角平 分线,则∠C=90°.ADECBA DECBADC BADCBEADCBE ADCBDAC BECBADECEBDAADOBC EBCDABACab- 8 -第十三章 实数数的开方1.平方根的定义:若x2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0.5.三个重要非负数: a2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1) ()a a 2=; (a ≥0)(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方.8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数.9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.- 9 -12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0.13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12=732.13=236.25=.第十五章 因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a2-b2=(a+ b )(a- b );(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全- 10 -变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x2+px+q ,有“ x2+px+q 是完全平方式 ⇔ q2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A的形式,如果B 中含有字母,式子B A叫做分式.2.有理式:整式与分式统称有理式;即⎩⎨⎧分式整式有理式. 3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变; 即分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单. 5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.7.分式的乘除法法则:,bdacd c b a =⋅ bc ad c d b a d c b a =⋅=÷.8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则:- 11 - (1)公式: a0=1(a ≠0), a-n=n a 1(a ≠0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:nn a b b a ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-,n m m n a b b a =--; (4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂.12.同分母与异分母的分式加减法法则: ;c b a c b c a ±=±bd bc ad bd bc bd ad d c b a ±=±=±.13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.。
(完整版)人教版初二数学上学期主要概念

初二上学期数学主要概念11.1 全等三角形能够完全重合的两个图形叫做全等形。
能够完全重合的两个三角形叫做全等三角形把两个全等三角形重合到一起。
重合的顶点叫做对应点;重合的边叫做对应边;重合的角叫做对应角。
全等三角形有这样的性质:全等三角形的对应角相等;全等三角形的对应边相等。
11.2 三角形全等的判定三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”)。
两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)。
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。
两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。
11.3 角平分线的性质角的平分线上的点到角的两边的距离相等。
角的内部到角的两边的距离相等的点在教的平分线上。
12.1 轴对称如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是他的对称轴。
这时,我们也说这个图形关于这条直线(成轴)对称。
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称这条直线叫做对称轴,折叠后重合的点是对应点。
对称轴经过对称点所连线段的中点,并垂直于这条线段。
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
线段垂直平分线上的点与这条线段两个端点的距离相等。
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
12.3 等腰三角形等腰三角形的两个底角相等(简写成“等边对等角”)等腰三角形的顶角平分线、底边上中线、底边上的高相互重合。
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。
人教版数学八年级上第十四章14.3因式分解第一课时教案-word文档

第十四章整式的乘法和因式分解14.3 因式分解第一课时14.3.1 提公因式法1 教学目标1.1 知识与技能:[1]理解因式分解的概念,知道因式分解和整式的乘法是方向相反的变形。
[2]理解公因式的概念,会根据“三定法”确定公因式。
[3]掌握因式分解中的提公因式法。
1.2过程与方法:[1]通过对比整式乘法,理解因式分解的概念,发展学生的逆向思维能力。
[2]通过类比数的结合律,抽象出因式分解中的提公因式方法。
1.3 情感态度与价值观:[1]在数学运算中培养学生细致严谨的精神素养。
[2]让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
2 教学重点/难点/易考点2.1 教学重点[1]因式分解的概念及提公因式法。
2.2 教学难点[1]正确找出多项式各项的公因式[2]正确认识分解因式与整式乘法的区别和联系。
3 专家建议学生刚刚学习过有关幂的运算,因此在教学设计中可以多适当安排一些有关幂的、应用提公因式法的分解因式题目。
此外,因式分解属于新概念,它和学生以往的运算认知是相反的,教师在教学过程中应该耐心面对学生的错误,并多举出实例使学生区别整式乘法和因式分解。
4 教学方法观察思考——概念介绍——补充讲解——练习提高5 教学用具多媒体。
6 教学过程6.1 引入新课【师】同学们好。
这节课开始,我们先来思考一个问题,630能被哪些数整除?【生】把630分解质因数,可以得到:630=2×32×5×7。
【师】这个问题大家小学就知道了对吧,但现在我们在学习整式的乘法,所以我们可以想一下,一个数可以写成若干个因数乘积的形式,整式能不能这样做呢?这就是这节课我们要学习的内容。
【板书】第十四章整式的乘法和因式分解14.3 因式分解14.3.1 提公因式法6.2 新知介绍[1]因式分解的概念【师】大家看投影(给出114页探究),首先我们来完成这样的一个任务:把下列多项式写成整式的乘积的形式。
根据整式的乘法,你能得到答案么?【生】(完成题目,给出答案)。
新人教版八年级数学上册12.1轴对称(第1课时)教案

1前准备,课前预习了解.
新人教版八年级数学上册 12.1 轴对称教案
(1 课时) 山东省滨州市滨城区滨北街道办事处北城中学 耿新华 邮 编:256651 联系电话:15865403584 一、教材分析: 本节教材是新人教版, 初中数学八年级上册第十二章第一节第一课时的内容, 它是在学 习了有关“全等三角形”的知识基础上,进一步学习有关图形性质的第一节课,它是初中数 学的重要内容之一.一方面,本节课为学习轴对称的性质、变换,等腰三角形的直观认识打 下坚实基础.另一方面,涉及到“空间与图形”领域中的图形与变换内容,能培养学生的观 察能力,归纳类比能力,合作交流能力,让学生经历数学现象的探究过程,感受数学美,从而激 发数学学习的乐趣,体会数学与生活的密切联系。所以,我认为本节课不仅是本章节的重要 开局,而且起着承前启后的桥梁作用. 教学目标 (一)教学知识点 1.在生活实例中认识轴对称图形. 2.分析轴对称图形,理解轴对称的概念. (二)能力训练要求 1.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴. 2.经历观察、分析的过程,训练学生观察、分析的能力. (三)情感与价值观要求 通过对丰富的轴对称现象的认识, 进一步培养学生积极的情感、 态度, 促进观察、 分析、 归纳、概括等一般能力和审美能力的提高. 教学重点 轴对称图形、轴对称的有关概念. 教学难点 能够识别轴对称图形并找出它的对称轴. 二、教学方法 启发诱导法. 三、教学过程 Ⅰ.创设情境,引入新课 [师]我们生活在一个充满对称的世界中, 许多建筑物都设计成对称形, 艺术作品的创作 往往也从对称角度考虑, 自然界的许多动植物也按对称形生长, 中国的方块字中些也具有对 称性„„
Ⅲ.实践和应用 1、 下列图片是生活中的一些建筑物,它们是轴对称图形吗? /i?ct=201326592&cl=&word= %BD%A8%D6%FE%CE%EF%CD%BC%C6%AC&istype=2&z=0&fm=rs3#pn=24 2、 下列图形是部分汽车的标志,那些是轴对称图形? /i?ct=201326592&cl=&word= %CA%C0%BD%E7%C3%FB%B3%B5%B1%EA%D6%BE%CD%BC%C6%AC&istype=2&z=0&fm=rs6 3、下图中的两个图形是否成轴对称?如果是,请找出它的对称轴. /i?ct=5033=%B3%C9%D6% E1%B6%D4%B3%C6%B5%C4%C1%BD%B8%F6%CD%BC%D0%CE&in=23156&cl=2&lm=-1&st=&pn=30&r n=1&di=7045485450&ln=1983&fr=&fm=&fmq=1332071370375_R&ic=&s=&se=&sme=0&tab=& width=&height=&face=&is=&istype=#pn30&-1&di7045485450&objURLhttp%3A%2F%2Ftec %2Fwzym%2F0129%2Fc20129%2Fc2sxq901.files%2Fimage015.jpg&fromURLhttp %3A%2F%%2Fwzym%2F0129%2Fc20129%2Fc2sxq901.htm&W368&H157&T10265 &S8&TPjpg
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二上学期数学主要概念
11.1 全等三角形
能够完全重合的两个图形叫做全等形。
能够完全重合的两个三角形叫做全等三角形
把两个全等三角形重合到一起。
重合的顶点叫做对应点;重合的边叫做对应边;重合的角叫做对应角。
全等三角形有这样的性质:全等三角形的对应角相等;全等三角形的对应边相等。
11.2 三角形全等的判定
三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”)。
两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)。
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。
两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)
斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。
11.3 角平分线的性质
角的平分线上的点到角的两边的距离相等。
角的内部到角的两边的距离相等的点在教的平分线上。
12.1 轴对称
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是他的对称轴。
这时,我们也说这个图形关于这条直线(成轴)对称。
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称这条直线叫做对称轴,折叠后重合的点是对应点。
对称轴经过对称点所连线段的中点,并垂直于这条线段。
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
线段垂直平分线上的点与这条线段两个端点的距离相等。
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
12.3 等腰三角形
等腰三角形的两个底角相等(简写成“等边对等角”)
等腰三角形的顶角平分线、底边上中线、底边上的高相互重合。
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。
等边三角形的三个内角相等,并且每一个角都等于60°。
三个角都相等的三角形是等边三角形。
有一个角是60°的三角形是等边三角形。
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
13.1 平方根
一般地,如果正数x的平方等于a,即x²=a,那么这个正数x叫做a的算数平方根,a 的算数平方根记为√a,读作“根号a”a叫做被开方数。
0的算数平方根是0.
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。
求一个数a的平方根的运算,叫做开平方。
正数有2个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
13.2 立方根
一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。
求一个数的立方根的运算,叫做开立方。
正数的立方根是正数,负数的立方根是负数;0的立方根是0.
类似于平方根,一个数a的立方根,用符合“3√a”表示,读作“三次根号a”,其中a 是被开方数,3是根指数。
13.3 实数
很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫做无理数。
有理数和无理数统称实数。
数a的相反数是-a,这里的a表示任意一个实数。
一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0. 14.1 变量与函数
在一个变化过程中,我们成数值发生变化的量为变量。
有些量的数值是始终不变的,我们称它们为常量。
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x是自变量,x与y的函数。
如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
14.2 一次函数
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们称它为直线y=kx,当k>0时,直线y=kx经过第三、一象限,从左向右上升,即随着x的增大y 也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小。
15.1 整式的乘法
同底数幂相乘,底数不变,指数相加。
幂的乘方,底数不变,指数相乘。
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
单项式与单项式相乘,把它们的系数相同字母分别相乘,对于只在一个单项式里含有字母,则连同它的指数作为积的一个因式。
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
15.2 乘法公式
两个数的和与这两个数的差的积,等于这两个数的平方差。
这个这个公式叫做(乘法的)平方差公式。
两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍。
这两个公式叫做(乘法的)完全平方公式。
添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。
15.3 整式的除法
同底数幂相除,底数不变,指数相减。
任何不等于0的数的0次幂都等于1.
单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
15.4 因式分解
把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个因式分解,也叫做把这个多项式分解因式。
多项式ma+mb+mc,它的各项都有一个公共的因式m,我们把因式,我们把因式m叫做这个多项式的公因式。
由m(a+b+c)=ma+mb+mc,可得ma+mb+mc=m(a+b+c).这样就把ma+mb+mc+分解成两个因式(a+b+c)是ma+mb+mc除以m所得的商。
像这种分解因式的方法叫做提公因式法。
两个数的平方差,等于这两个数的和与这两个数的差的积。
我们把a²+2ab+b²和a²-2ab+b²这样的式子叫做完全平方式,利用完全平方公式可以把形如完全平方式的多项式因式分解。
两个数的平方和加上(或减去)这两个数的积的两倍,等于这两个数的和(或差)的平方。
本数学概念按照人教版八年级上学期课本的所有概念。