高考数学压轴题解题技巧和方法

合集下载

一个万能公式秒杀数学压轴题!高考高中数学高考数学学习方法

一个万能公式秒杀数学压轴题!高考高中数学高考数学学习方法

一个万能公式秒杀数学压轴题!高考高中数学高考数学学习方法数学是一门需要理解和掌握基本概念和方法的学科,传统的学习方法是通过反复练习习题来巩固知识。

然而,在高考中,数学题目的难度和类型千差万别,单一的学习方法难以完全胜任。

因此,我们需要找到一个万能公式,可以帮助我们解决各种数学问题。

首先,我们需要明确一个事实,没有一个真正的万能公式可以解决所有数学问题。

不同的题目有不同的解题思路和解题方法,我们需要根据具体情况进行分析和处理。

然而,我们可以通过掌握一些数学的基本原理和方法,提高我们解题的能力。

2.提高分析问题能力:解决数学问题的关键在于分析问题,搞清楚问题的本质和要求。

我们需要学会运用数学的思维方法,将复杂的问题分解成简单的小问题,通过逐步求解来解决整个问题。

3.掌握解题方法:数学学科有很多解题方法,如倒推法、递推法、分类讨论法、一刀两断法等。

我们需要学会根据题目的特点和要求选择合适的解题方法,灵活运用。

经典的数学题目往往有固定的解题方法,我们可以通过反复练习来掌握。

4.培养逻辑思维:数学是一门逻辑性很强的学科,我们需要培养自己的逻辑思维能力。

通过学习和解题,我们可以锻炼自己的逻辑思维,提高分析问题和推理的能力。

5.多角度思考问题:解决数学问题的途径不仅仅是一种,我们可以通过多种角度和角度思考问题。

有时候,改变思考的角度就能够找到问题的突破口。

6.多做题目、理解思路:高考数学考试往往出现一些经典题型,我们需要在平时的学习中多做一些题目,掌握题目的解题思路和方法。

在解题的过程中,我们需要理解每一步的思路和原理,而不仅仅是死记硬背。

7.复习和总结:高考数学是一个全面考查学生的数学素养的考试,我们需要进行系统的复习和总结。

通过复习和总结,我们可以查漏补缺,巩固已有的知识,提高解题的能力。

综上所述,通过建立知识体系、提高分析问题能力、掌握解题方法、培养逻辑思维、多角度思考问题、多做题目、理解思路以及复习和总结这些方法,我们可以提高解题的能力,应对各种数学题目。

高考数学压轴题的技巧

高考数学压轴题的技巧

高考数学压轴题的技巧高考数学压轴题,是指在高考数学卷纸面末尾出现的试题,通常是难度较大、综合性较强、需要历年来所学知识的综合应用、思维难度较高的试题。

对于考生来说,这道题目有可能会成为考试的拦路虎,也有可能在不经意间成为抢分的机会。

下文将从几个角度来述说高考数学压轴题的技巧。

一、掌握数学知识这个听起来是肯定的,但是却有证据表明,有些考生在数学考试中,只是抱着会做17、18道题就过得思路。

数学题目的解法是脱离不了知识的,特别是对于中高难度的数学题目而言,所需要的知识点并不能仅限于该知识点名称,而是要理解知识点彼此的联系、相互影响,以及它们在复杂问题中的应用,相信这样做至少会让压轴题的难度降低很多。

二、提前研究到高考数学卷压轴题时,考生的头脑多半已经处于极度疲劳的状态。

如果此时才开始考虑如何解决难度较大的问题,那么一定会让自己更加紧张,甚至使自己惨遭失败。

所以,提前熟悉历年高考压轴题往往有助于压轴题的解决。

通览历年高考卷,可以发现有不少考题在难度和思维层次上有诸多相似之处,所以如果能在平时分析这些题目的解题思路,积累一些数学的解题经验,对于高考时的应对更是有益。

三、针对性解题针对性解题的方法是针对高考数学卷压轴题的特点,通过分析题目的难度,选用高考数学笔试中比较好掌握的部分解决高考数学卷压轴题这样一种方法。

特别是对于前三个题目的解决,往往关系到难题求解的过程,因此需要我们重点把握。

四、保持冷静由于高考数学卷压轴题的难度比较大,所以很容易让考生失去信心、紧张、焦虑等负面心理,甚至难以理解题目中的要点。

因此,保持冷静是解决高考压轴题的关键。

只有冷静下来,不慌不忙地分析题目,找到解题思路,才能顺利地解决该题。

五、动脑筋数学是一门学科,而不是简单的运算,高考数学卷压轴题的解题过程需要有创造性,需要考生在解题过程中运用自己的智慧,灵活运用数学知识。

所以,在解决高考数学卷压轴题的过程中,我们要学会动脑筋,灵活去解决问题。

关于高考数学压轴题解题方法_答题技巧

关于高考数学压轴题解题方法_答题技巧

关于高考数学压轴题解题方法_答题技巧1. 复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。

2. 运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,在找到变化线段之间的联系,用代数式慢慢求解。

3. 一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。

另外,还有一些细节要注意,三角比要善于运用,只要有直角就可能用上它,从简化运算的角度来看,三角比优于比例式优于勾股定理,中考命题不会设置太多的计算障碍,如果遇上繁难运算要及时回头,避免钻牛角尖。

如果遇到找相似的三角形,要切记先看角,再算边。

遇上找等腰三角形同样也是先看角,再看底边上的高(用三线合一),最后才是边。

这都是能大大简化运算的。

还有一些小技巧,比如用斜边上中线找直角,用面积算垂线等不一而足具体方法较多,如果有时间,我会举实例进行分析。

最后说一下初中需要掌握的主要的数学思想:1,高一. 方程与函数思想利用方程解决几何计算已经不能算难题了,建立变量间的函数关系,也是经常会碰到的,常见的建立函数关系的方法有比例线段,勾股定理,三角比,面积公式等2. 分类讨论思想这个大家碰的多了,就不多讲了,常见于动点问题,找等腰,找相似,找直角三角形之类的。

3. 转化与化归思想就是把一个问题转化为另一个问题,比如把四边形问题转化为三角形问题,还有压轴题中时有出现的找等腰三角形,有时可以转化为找一个和它相似的三角形也是等腰三角形的问题等等,代数中用的也很多,比如无理方程有理化,分式方程整式化等等4. 数形结合思想高中用的较多的是用几何问题去解决直角坐标系中的函数问题,对于高中生,尽可能从图形着手去解决,比如求点的坐标,可以通过往坐标轴作垂线,把它转化为求线段的长,再结合基本的相似全等三角比解决,尽可能避免用两点间距离公式列方程组,比较典型的是08年中考,倒数第2题,用解析法的同学列出一个极其复杂的方程后,无法继续求解下去了,而用几何方法,结合相似三角比可以轻易解决。

高考数学压轴题答题技巧

高考数学压轴题答题技巧

⾼考数学压轴题答题技巧很多⾼中⽣都会⾯临⾼考数学130分上不去的瓶颈,这其中很⼤⼀部分的原因都出在压轴题上。

那么接下来给⼤家分享⼀些关于⾼考数学压轴题答题技巧,希望对⼤家有所帮助。

⾼考数学压轴题答题技巧1.圆锥曲线圆锥曲线题,第⼀问求曲线⽅程,注意⽅法(定义法、待定系数法、直接求轨迹法、反求法、参数⽅程法等等)。

⼀定检查下第⼀问算的数对不,要不如果算错了第⼆问做出来了也⽩算了。

第⼆问有直线与圆锥曲线相交时,记住“联⽴完事⽤联⽴”,第⼀步联⽴,根据韦达定理得出两根之和、两根之差、因⼀般都是交于两点,注意验证判别式>;0,设直线时注意讨论斜率是否存在。

第⼆步也是最关键的就是⽤联⽴,关键是怎么⽤联⽴,即如何将题⾥的条件转化成你刚才联⽴完的x1+x2和x1x2,然后将结果代⼊即可,通常涉及的题型有弦长问题(代⼊弦长公式)、定⽐分点问题(根据⽐例关系建⽴三点坐标之间的⼀个关系式(横坐标或纵坐标),再根据根与系数的关系建⽴圆锥曲线上的两点坐标的两个关系式,从这三个关系式⼊⼿解决)、点对称问题(利⽤两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上)、定点问题(直线y=kx+b过定点即找出k与b的关系。

2.⽴体⼏何⽴体⼏何题,证明题注意各种证明类型的⽅法(判定定理、性质定理),注意引辅助线,⼀般都是对⾓线、中点、成⽐例的点、等腰等边三⾓形中点等等,理科其实证明不出来直接⽤向量法也是可以的。

计算题主要是体积,注意将字母换位(等体积法);线⾯距离⽤等体积法。

理科还有求⼆⾯⾓、线⾯⾓等,⽤建⽴空间坐标系的⽅法(向量法)⽐较简单,注意各个点的坐标的计算,不要算错。

3.导数⾼考导数压轴题考察的是⼀种综合能⼒,其考察内容⽅法远远⾼于课本,其涉及基本概念主要是:切线,单调性,⾮单调,极值,极值点,最值,恒成⽴,任意,存在等。

1.⼀般题⽬中会有少量⽂字描述,所以就会涉及⽂字的简单翻译。

2.题⽬中最核⼼的描述为各类式⼦:主要为普通类型:⼀般涉及三次函数,指对数,分式函数,绝对值函数,个别情况会涉及三⾓函数,特殊类型:主要含有x1,x2,f(x1),f(x2)类型。

高考数学压轴题解题技巧和方法

高考数学压轴题解题技巧和方法

圆锥曲线解题技巧一、常规七大题型: 〔1〕中点弦问题具有斜率弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在请款讨论〕,消去四个参数。

如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),那么有02020=+k by a x 。

〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)那么有02020=-k by a x 〔3〕y 2=2px 〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),那么有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A 〔2,1〕直线与双曲线交于两点P 1 及P 2,求线段P 1P 2中点P 轨迹方程。

〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+最值。

〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线位置关系根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数关系、求根公式等来处理,应特别注意数形结合思想,通过图形直观性帮助分析解决问题,如果直线过椭圆焦点,结合三大曲线定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线交点为A 、B ,且OA ⊥OB ,求p 关于t 函数f(t)表达式。

高考数学压轴题解法与技巧

高考数学压轴题解法与技巧

高考数学压轴题解法与技巧高考数学压轴题,一直以来都是众多考生心中的“拦路虎”。

然而,只要我们掌握了正确的解法与技巧,就能在这场挑战中脱颖而出。

首先,我们要明确什么是高考数学压轴题。

通常来说,压轴题是指在高考数学试卷的最后几道题目,它们综合性强、难度较大,往往涵盖了多个知识点,对考生的思维能力、计算能力和综合运用知识的能力都有很高的要求。

一、掌握扎实的基础知识要解决高考数学压轴题,扎实的基础知识是关键。

这包括对数学概念、定理、公式的深入理解和熟练掌握。

例如,函数的性质、导数的应用、数列的通项公式与求和公式、圆锥曲线的方程与性质等。

只有在基础知识牢固的基础上,我们才能在复杂的题目中找到解题的突破口。

以函数为例,要理解函数的定义域、值域、单调性、奇偶性、周期性等基本性质,并且能够熟练运用求导的方法来研究函数的单调性和极值。

如果对这些基础知识掌握不扎实,在面对压轴题中涉及函数的问题时,就会感到无从下手。

二、培养良好的数学思维1、逻辑思维在解决压轴题时,清晰的逻辑思维至关重要。

我们需要从题目中提取关键信息,分析已知条件和所求问题之间的逻辑关系,逐步推导得出结论。

比如,在证明一个数学命题时,要先明确证明的方向,然后根据已知条件选择合适的定理和方法进行推理。

在推理过程中,要保证每一步都有依据,逻辑严密,不能出现跳跃和漏洞。

2、逆向思维有时候,正向思考难以解决问题,我们可以尝试逆向思维。

即从所求的结论出发,反推需要满足的条件,逐步逼近已知条件。

例如,对于一些存在性问题,我们可以先假设存在满足条件的对象,然后根据假设进行推理,如果能够推出与已知条件相符的结果,那么假设成立;否则,假设不成立。

3、分类讨论思维由于压轴题的综合性较强,往往需要根据不同的情况进行分类讨论。

比如,对于含参数的问题,要根据参数的取值范围进行分类,分别讨论在不同情况下的解题方法。

在分类讨论时,要做到不重不漏,条理清晰。

每一类的讨论都要独立进行,最后综合各类的结果得出最终答案。

高考数学压轴题解题技巧

高考数学压轴题解题技巧

高考数学压轴题解题技巧高考数学压轴题是所有数学题目中最重要的一道题目,考察的不仅仅是学生的数学能力,还考查学生对于数学思想和思维能力的掌握情况。

因此,在考场上若要顺利完成这道题,学生不仅需要对于数学基础知识有扎实的理解掌握,还需要拥有一定的解题技巧。

本文旨在介绍高考数学压轴题的解题技巧,帮助广大考生在考场上顺利解答。

第一,审题应当仔细。

在进行高考数学压轴题解题之前,考生首先要仔细审题。

了解所给出的题目内容以及题目所要求的答案,这将对学生的解题过程起到关键作用。

如果考生没有对题目进行仔细审阅,就会导致对题目的主题和核心思想没有深入的认识,因此,无论如何都不会成功地进行解答。

所以我们在考试最初的时候要耐心地阅读,仔细研究每一个问题,弄清题目的要求,并牢记题目信息,不遗漏任何重要的条件。

第二,多思考并构思问题。

高考数学压轴题都是由一些较为抽象的问题组成的,在考试期间,只凭空造作很难得到正确的答案。

因此,我们需要花时间构思问题。

在阅读完题目之后,我们应该停下来,思考一下。

通过思考,可以使我们更快的解决问题。

并且要注意的是,做题思考不光在解决这道题时有用,随时思考和练习也能启发我们,从而提高我们的思考能力,让我们对数学产生浓厚的兴趣和热情。

第三,运用合适的公式和方法。

在考试中,我们需要善于运用公式和方法,寻找最优解方案。

可以先把题目中的数据列出来,然后尝试用刚学过的公式去套用。

通过这样的方式,我们可以找到最合适的解题方法。

同时,在进行数学压轴题的过程中,我们也可以将所学的知识进行紧密的结合,各种知识点之间的联系也是需要学生进行深入的思考的。

最后,做高考数学压轴题的时间是比较紧张的,因此我们需要合理分配时间来解答。

在考试期间,学生必须坚定自己的信念,保持镇静,不要慌乱,冷静分析题目,在规定时间内尽可能地得到答案。

总之,高考数学压轴题是考察学生数学素养的重要环节之一,在考试期间,如果我们能够采用上述的方法,注重审题,多思考构思,运用合适的公式和方法解题,以及合理分配时间,相信我们一定能够顺利地完成数学压轴题目,取得好成绩。

高考数学压轴题常用解题方式

高考数学压轴题常用解题方式

高考数学压轴题常用解题方式九种题型1线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3 动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

4一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。

这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的解题技巧一、常规七大题型: (1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a by a x 及直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by a x 。

(2))0,0(12222>>=-b a by a x 及直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)及直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线及双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,及两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。

(3)直线及圆锥曲线位置关系问题直线及圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根及系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()(1)求证:直线及抛物线总有两个不同交点(2)设直线及抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。

或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。

最值问题的处理思路:1、建立目标函数。

用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x、y的范围;2、数形结合,用化曲为直的转化思想;3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值;4、借助均值不等式求最值。

典型例题已知抛物线y2=2px(p>0),过M(a,0)且斜率为1的直线L及抛物线交于不同的两点A、B,|AB|≤2p(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。

(5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。

典型例题已知直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。

2.曲线的形状未知-----求轨迹方程 典型例题已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1, 动点M 到圆C 的切线长及|MQ|的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明它是什么曲线。

(6) 存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。

(当然也可以利用韦达定理并结合判别式来解决)典型例题 已知椭圆C 的方程x y 22431+=,试确定m 的取值范围,使得对于直线y x m =+4,椭圆C 上有不同两点关于直线对称(7)两线段垂直问题圆锥曲线两焦半径互相垂直问题,常用k k y y x x 1212121···==-来处理或用向量的坐标运算来处理。

典型例题 已知直线l 的斜率为k ,且过点P (,)-20,抛物线C y x :()241=+,直线l 及抛物线C 有两个不同的交点(如图)。

(1)求k 的取值范围;(2)直线l 的倾斜角θ为何值时,A 、B 及抛物线C 的焦点连线互相垂直。

四、解题的技巧方面:在教学中,学生普遍觉得解析几何问题的计算量较大。

事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。

下面举例说明: (1)充分利用几何图形解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。

典型例题 设直线340x y m ++=及圆x y x y 2220++-=相交于P 、Q 两点,O 为坐标原点,若OP OQ ⊥,求m 的值。

(2) 充分利用韦达定理及“设而不求”的策略我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。

典型例题 已知中心在原点O ,焦点在y 轴上的椭圆及直线y x =+1相交于P 、Q 两点,且OP OQ ⊥,||PQ =102,求此椭圆方程。

(3) 充分利用曲线系方程利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。

典型例题 求经过两已知圆C x y x y 122420:+-+=和C x y y 22224:+--=0的交点,且圆心在直线l :2410x y +-=上的圆的方程。

(4)充分利用椭圆的参数方程椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。

典型例题 P 为椭圆22221x y a b+=上一动点,A 为长轴的右端点,B 为短轴的上端点,求四边形OAPB 面积的最大值及此时点P 的坐标。

(5)线段长的几种简便计算方法① 充分利用现成结果,减少运算过程一般地,求直线及圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 20++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·||12a k △·+,若直接用结论,能减少配方、开方等运算过程。

例 求直线x y -+=10被椭圆x y 22416+=所截得的线段AB 的长。

② 结合图形的特殊位置关系,减少运算在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。

例 F 1、F 2是椭圆x y 222591+=的两个焦点,AB 是经过F 1的弦,若||AB =8,求值||||22B F A F +③ 利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离例 点A (3,2)为定点,点F 是抛物线y x 24=的焦点,点P 在抛物线y 2=4x 上移动,若||||PA PF +取得最小值,求点P 的坐标。

圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。

(2)及直线相关的重要内容 ①倾斜角及斜率tan ,[0,)k ααπ=∈②点到直线的距离d =③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-= 或12AB y =- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:2a = (3)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:122tan 2F PF P b θ∆=在椭圆上时,S122cot 2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅)(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。

(2)0||x e x a ±双曲线焦点在轴上时为(3)11||,||22pp x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备1、点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43-2、联立消元法:你会解直线及圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且及曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根及系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。

相关文档
最新文档